Revista Colombiana de Matemáticas Vol. XXII (1988), págs. 51-60

A SURJECTIVITY RESULT FOR NONLINEAR MAPPINGS ON UNIFORM SPACES AND APPLICATIONS

bу

Vasil G. ANGELOV

Summary. The main purpose of the present paper is to establish a surjectivity result for nonlinear continuous mappings on uniform spaces. Then one can prove that every surjective, continuous and expansive map of an uniform space onto itself has a unique fixed point. Moreover, such a map is a global homeomorphism of the uniform space onto itself. As a consequence of the main theorem a generalization of McCord's theorem to locally convex spaces is proved.

The main purpose of the present paper is to establish a surjectivity result for nonlinear continuous mappings on uniform spaces, using the technique of Kasahara [1]. Then one can prove that every surjective, continuous and expansive map of an uniform space onto itself has a unique fixed point. Moreover, such a map is a global homeomorphism of the uniform space onto itself. As a consequence of the main theorem a generalization of McCord's theorem [2] to locally convex spaces is proved.

§1. A surjectivity result. We shall denote by X α sequentially complete Hausdorff uniform spaces whose uniformity is generated by a saturated family of pseudometrics

$$\{\rho_{\lambda}(x,y) : \lambda \in \Lambda\}$$
,

and by \mathbf{Y} a quasicomplete Hausdorff uniform space with a saturated family of pseudometrics $\{\bar{\rho}_{\mu}(x,y): \mu \in \mathbf{M}\}$. (cf. [3], [4]). The uniform space \mathbf{Y} is said to be quasicomplete if every bounded closed subset of \mathbf{Y} is complete in the induced topology.

If $\alpha \in \mathcal{Y}$ and $S \subset \mathcal{Y}$ we shall use the standard notation $\mathcal{D}(\mu)(\alpha,S) = \inf\{\bar{\rho}_{ij}(\alpha,x) : x \in S\}$

Let $\phi: M \times Y \times Y \to M$ be a mapping and $\{\bar{y}_k\}_{k=0}^{\infty}$, $\{\bar{y}_k\}_{k=0}^{\infty}$ be sequences in Y. We shall use the notation

$$\boldsymbol{\varphi}^{k}(\boldsymbol{\mu},\bar{y}_{k},\bar{\bar{y}}_{k}) = \boldsymbol{\varphi}(\boldsymbol{\varphi}^{k-1}(\boldsymbol{\mu},\bar{y}_{n-1},\bar{\bar{y}}_{k-1}),\bar{y}_{k},\bar{\bar{y}}_{k})\,,\;(k=1,2,\dots)\,,\;\boldsymbol{\varphi}^{o}(\boldsymbol{\mu},\bar{y}_{o},\bar{\bar{y}}_{o}) = \boldsymbol{\mu}.$$

Let $(\Phi) = \{\Phi(\mu)(t) : \mu \in M\}$ be a family of functions $\Phi(\mu)(\cdot) : \mathcal{R}^1_+ \to \mathcal{R}^1_+$ $(\mathcal{R}^1_+ = [0,\infty))$ with the properties:

- 1) $\Phi(\mu)(t)$ is non-decreasing and continuous from the right with respect to t on R_1^1 , for fixed $\mu \in M$.
- 2) $0 < \Phi(\mu)(t) < t \text{ for all } t > 0 \text{ and } \mu \subseteq M$.
- 3) For every $\mu \in M$ there exists $\bar{\Phi}(\mu)(t) \in (\Phi)$ such that

$$\sup \left\{ \Phi(\phi^n(\mu,\bar{y}_n,\bar{\bar{y}}_n))(t) : n = 0,1,2,\ldots \right\} \leqslant \bar{\Phi}(\mu)(t)$$
 where $\bar{\Phi}(\mu)(t)/t$ is non-decreasing in t .

Assume there is a mapping $k:\Lambda \to M$ which is onto, and let $T:X \to Y$ be a continuous mapping and $F \subset Y$ be a bounded and closed subset of Y.

THEOREM 1. Assume: (1) there is a mapping $\alpha(\lambda):\Lambda \to R^1_+$ such that for every $x \in X$ there exists $z \in X$ for which the following inequalities hold

$$\rho_{\lambda}(x,z) \leq \alpha(\lambda) \mathcal{D}(k(\lambda)) (Tx,F)$$

for every $\lambda \in \Lambda$,

$$\mathcal{D}(\mu)(Tz,F) \leq \Phi(\mu)(\mathcal{D}(\phi(\mu,Tx,y))(Tx,F)))$$

for every $\mu \in M$ and $y \in F$. (2) there exist an element $x_0 \in X$ and a constant $\Delta = \Delta(\mu, F) > 0$ such that

$$\mathcal{D}(\phi^{n}(\mu, Tx_{0}, y))(Tx_{0}, F) \leq \Delta < \infty$$

for every $y \in F$ and n = 0, 1, 2, ... Then there exists an $a \in X$ for which $Ta \in F$, and moreover:

$$\rho_{\lambda}(x_{0}, a) \leqslant \alpha(\lambda) \sum_{n=0}^{\infty} \bar{\Phi}^{n}(k(\lambda))(\Delta) < \infty.$$

(Here $\bar{\Phi}^{N}(\mu)(t)$ stands for *n*-th iterate of $\bar{\Phi}(\mu)(t)$, as function of t, and $\bar{\Phi}^{O}(\mu)(t) = t$).

Proof. By the assumption 1 for every $x \in X$ the set

$$S(x) = \{z \in X : \rho_{\lambda}(x,z) \leqslant \alpha(\lambda)\mathcal{D}(k(\lambda))(Tx,F)$$
 and $\mathcal{D}(k(\lambda))(Tz,F) \leqslant \Phi(k(\lambda))(\mathcal{D}(\phi(k(\lambda),Tx,y))(Tx,F))$ for every $\lambda \in \Lambda$ and $y \in F\}$

is nonempty. Begining with $x_0 \in X$ from assumption 2, we define the sequence $\{x_n\}_{n=0}^\infty$ by chosing $x_1 \in S(x_0), x_2 \in S(x_1), \ldots, x_{n+1} \in S(x_n), \ldots$ Now the sequence is independent on λ . Consequently, we have for every $\lambda \in \Lambda$ and $y \in F$ $\rho_{\lambda}(x_n, x_{n+1}) \leq \alpha(\lambda) \mathcal{D}(k(\lambda)) (Tx_n, F),$

 $\rho_{\lambda}(x_n, x_{n+1}) \leq \alpha(\lambda) \mathcal{V}(k(\lambda)) (\forall x_n, F),$ and

$$\mathcal{D}(k(\lambda))\left(\mathsf{Tx}_{n+1},\mathsf{F}\right) \,\leqslant\, \Phi(k(\lambda))\left(\mathcal{D}(\phi(k(\lambda),\mathsf{Tx}_{n},y))\left(\mathsf{Tx}_{n},\mathsf{F}\right)\right).$$

Then

$$\begin{split} & \rho_{\lambda}(x_{n}, x_{n+1}) \leq \alpha(\lambda) \Phi(k(\lambda)) \left(\mathcal{D}(\phi(k(\lambda), \mathsf{T}x_{n-1}, y)) \left(\mathsf{T}x_{n-1}, \mathsf{F} \right) \right) \\ & \leq \alpha(\lambda) \Phi(k(\lambda)) \left(\Phi(\phi(k(\lambda), \mathsf{T}x_{n-1}, y)) \left(\mathcal{D}(\phi^{2}(k(\lambda), \mathsf{T}x_{n-2}, y)) \left(\mathsf{T}x_{n-2}, \mathsf{F} \right) \right) \right) \\ & \leq \ldots \leq \alpha(\lambda) \Phi(k(\lambda)) \left(\Phi(\phi(k(\lambda), \mathsf{T}x_{n-1}, y)) \right) \end{split}$$

$$(\dots \Phi(\phi^{n-1}(k(\lambda), \mathsf{Tx}_1, y)) (\mathcal{D}(\phi^n(k(\lambda), \mathsf{Tx}_0, y)) (\mathsf{Tx}_0, F)) \dots)$$

$$\leq \alpha(\lambda) \bar{\phi}^n(k(\lambda)) (\Delta),$$

and

$$\begin{split} & \mathcal{D}(\mu) \, (\mathsf{Tx}_{n},\mathsf{F}) \, \leqslant \, \Phi(\mu) \, (\mathcal{D}(\varphi(\mu,\mathsf{Tx}_{n-1},y)) \, (\mathsf{Tx}_{n-1},\mathsf{F})) \\ & \leqslant \, \Phi(\mu) \, (\Phi(\varphi(\mu,\mathsf{Tx}_{n-1},y)) \, (\mathcal{D}(\varphi^{2}(\mu,\mathsf{Tx}_{n-2},y)) \, (\mathsf{Tx}_{n-2},\mathsf{F}))) \, \leqslant \, \ldots \\ & \leqslant \, \Phi(\mu) \, (\Phi(\varphi(\mu,\mathsf{Tx}_{n-1},y)) \, \ldots \, \Phi(\varphi^{n-1}(\mu,\mathsf{Tx}_{0},y)) \, (\mathsf{Tx}_{0},\mathsf{F})) \, \ldots)) \\ & \leqslant \, \bar{\Phi}^{n}(\mu) \, (\Delta) \, . \end{split}$$

Since

$$\bar{\Phi}^{n+1}(\mu)(\Delta)/\bar{\Phi}^{n}(\mu)(\Delta) \leq \bar{\Phi}(\mu)(\Delta)/\Delta < 1$$

then the serie $\sum_{n=0}^{\infty} \bar{\Phi}^n(\mu)(\Delta)$ is convergent and hence $\lim \bar{\Phi}^n(\mu)(\Delta) = 0.$

Hence

$$\rho_{\lambda}(x_{n},x_{n+m}) \leqslant \sum_{k=1}^{m} \rho_{\lambda}(x_{n+k-1},x_{n+k}) \leqslant \alpha(\lambda) \sum_{k=1}^{m} \bar{\Phi}^{n+k-1}(\mu)(\Delta)$$

and therefore $\{x_n\}_{n=0}^{\infty}$ is a Cauchy sequence that in view of the sequential completeness of X tends to the limit $a \in X$. The continuity of T implies $\lim_{n \to \infty} Tx_n = Ta$ in Y. But Y is quasicomplete and F is bounded and closed. Therefore $Ta \in F$. Finally, we have

$$\rho_{\lambda}(x_{0},a) \leq \rho_{\lambda}(x_{0},x_{1}) + \rho_{\lambda}(x_{1},x_{2}) + \dots + \rho_{\lambda}(x_{n-1},x_{n}) + \rho_{\lambda}(x_{n},a)$$

$$\leq \alpha(\lambda) \sum_{k=0}^{n-1} \bar{\phi}^{k}(\mu)(\Delta) + \rho_{\lambda}(x_{n},a)$$

and then, when $n \rightarrow \infty$,

$$\rho_{\lambda}(x_{0}, \alpha) \leq \alpha(\lambda) \sum_{k=0}^{\infty} \bar{\Phi}^{k}(\mu)(\Delta) < \infty$$

Theorem 1 is thus proved. A

Theorem 2 is a consequence of Theorem 1. Here the assumption for a quasicompleteness of Y is not necessary.

THEOREM 2. $T: X \to Y$ be a continuous map. Suppose there are a map $\alpha(\lambda): \Lambda \to R^1_+$ and one element $x \in X$ such that for every $x \in X$ there is $\bar{x} \in X$ for which

$$\rho_{\lambda}(x,\bar{x}) \leqslant \alpha(\lambda)\bar{\rho}_{k(\lambda)}(Tx,y)$$

and

$$\bar{\rho}_{k(\lambda)}(T\bar{x},y) \leqslant \Phi(k(\lambda))(\bar{\rho}_{\Phi}(k(\lambda),Tx,y)(Tx,y))$$

for every $\lambda \in \Lambda$ and $y \in Y$, and for n = 0,1,2,...

$$\bar{\rho}_{\phi N}(\mu, Tx_{Q}, y) (Tx_{Q}, y) \leq \Delta < \infty$$
, where $\Delta = \Delta(\mu, y) > 0$,

Then T is surjective. Moreover, if $Tx = \ell$ then

$$\rho_{\lambda}(x_{0},a) \leq \alpha(\lambda) \sum_{n=0}^{\infty} \bar{\Phi}^{n}(k(\lambda))(\Delta(k(\lambda),\ell)) < \infty$$

§2. Application 1 - Fixed points. Now we are going to obtain fixed point theorem for surjective continuos and expansive mappings.

We shall consider a uniform space X with a saturated family of pseudometrics $\{\rho_{\mu}(x,y): \mu \in M\}$. Here the mapping ϕ is defined only on M, that is $\phi: M \to M$.

The mapping $T:X \to X$ is said to be a Φ -expansion on X if

$$\rho_{\mu}(x,y) \leq \Phi(\mu) \left(\rho_{\Phi(\mu)}(Tx,Ty)\right)$$

for every $x, y \in X$ and $\mu \in M$.

If, for instance, we choose $\phi(\mu) = \mu$ and $\Phi(\mu)(t) = k_{\mu}t$ with 0 < k_{μ} < 1, then

$$\rho_{\mu}(Tx,Ty) \geqslant (1/k_{\mu})\rho_{\mu}(x,y).$$

THEOREM 3. Let $T:X \to X$ be a continuous, surjective and Φ -expansive mapping. If there is $x_0 \in X$ whose inverse image $T^{-1}x_0$ contains an element x_0 such that

$$0 < \rho_{\phi} n_{(u)} (Tx_1, x_1) \leq \Delta(\mu) < \infty \quad (n = 0, 1, 2, ...)$$

then T has at least one fixed point.

Proof. Since T is surjective we may define the sequence $\{x_n\}_{n=0}$ by the equality $x_n = Tx_{n+1}$, begining with x_0 and with x_1 satisfying the assumption of the theorem. Setting $c_n^{\mu} = c_n^{\mu} (x_n, x_{n+1})$ we obtain

$$\begin{split} c_{n}^{\,\mu} &= \, \rho_{\mu}(x_{n}, x_{n+1}) \, \leqslant \, \Phi(\mu) \, (\rho_{\varphi(\mu)}(Tx_{n}, Tx_{n+1})) \, = \, \Phi(\mu) \, (\rho_{\varphi(\mu)}(x_{n-1}, x_{n})) \\ & \leqslant \, \Phi(\mu) \, (\Phi(\varphi(\mu)) \, (\rho_{\varphi^{2}(\mu)}(x_{n-2}, x_{n-1}))) \, \leqslant \, \ldots \\ & \leqslant \, \Phi(\mu) \, (\Phi(\varphi(\mu)) \, (\ldots \Phi(\varphi^{n-1}(\mu)) \, (\rho_{\varphi^{n}(\mu)}(x_{0}, x_{1})) \ldots)) \, \leqslant \, \bar{\Phi}^{n}(\mu) \, (\Delta) \, . \end{split}$$

The inequalities

$$\rho_{\mu}(x_{n}, x_{n+m}) \leq \sum_{k=1}^{m} c_{n+k-1}^{\mu} \leq \sum_{k=1}^{m} \bar{\Phi}^{n+k-1}(\mu)(\Delta)$$

show that $\{x_n\}_{n=0}^{\infty}$ is a Cauchy sequence because

$$\bar{\Phi}^{n+1}(\mu)(\Delta)/\bar{\Phi}^{n}(\mu)(\Delta) \leqslant \bar{\Phi}(\mu)(\Delta)/\Delta < 1, \quad (\Delta = \Delta(\mu)).$$

Then the completeness of X implies $\lim_{n\to\infty} x_n = x \subset X$. The element x is the desired fixed point of T. In fact, since T is continuous, $x_n = Tx_{n+1}$ and $\lim_{n\to\infty} x_n = x$, then x = Tx.

THEOREM 4. Let the condititons of Theorem 3 hold true. If, in addition, we suppose that for every fixed points x and y of T the sequence $\{\rho_{\phi} n_{(\mu)}(x,y)\}_{n=0}^{\infty}$ is bounded, that is, $\rho_{\phi} n_{(\mu)}(x,y) \leqslant Q(\mu,x,y)$ (Q>0), then T has a unique fixed point.

Proof. The desired conclusion follows immediately from the inequalities

$$\begin{split} \rho_{\mu}(x,y) &\leqslant \Phi(\mu) \left(\rho_{\varphi(\mu)}(Tx,Ty) \right) = \Phi(\mu) \left(\rho_{\varphi(\mu)}(x,y) \right) \leqslant \\ \dots &\leqslant \Phi(\mu) \left(\Phi(\varphi(\mu)) \left(\dots \Phi(\varphi^{n-1}(\mu)) \left(\rho_{\varphi^n(\mu)}(x,y) \right) \dots \right) \right) \leqslant \\ &\leqslant \bar{\Phi}^n(\mu) \left((\mu,x,y) \right). \end{split}$$

COROLLARY 1. Let the conditions of theorems 3 and 4 hold good for T^{δ} , which is a Φ -expansion for some positive

integer s. Then T has a unique fixed point.

Let us redefine the family (Φ) , using the conditions (1) and (2) and replacing the condition (3) in §1 by the following one:

3') for every $\mu \in M$,

$$\lim_{n\to\infty} \Phi(\mu) \left(\Phi(\phi(\mu)) \left(\dots \Phi(\phi^n(\mu)) (t) \dots \right) \right) = 0, \qquad t>0.$$

In Theorem 5 the notation of Φ -expansion is taken with respect to the redefined family (Φ) .

THEOREM 5. Let $T:X \to X$ be continuous, surjective and Φ -expansive mapping. If (1) the mapping $\phi:M \to M$ is surjective and $\rho_{\mu}(x_n,x_{n+m}) > \rho_{\phi(\mu)}(x_n,x_{n+m})$ for some $x_0 \in X$ and every $\mu \in M$, where $x_n = Tx_{n+1}$, and (2) for every two fixed points of T, x and y,

$$\rho_{\phi n(\mu)}(x,y) \leq Q(\mu,x,y) < \infty \quad (n = 0,1,2,...) ;$$

then T has a unique fixed point.

Proof. Let us put $c_n^{\mu} = \rho_{\mu}(x_n, x_{n+1})$, $p(\mu) = \rho_{\mu}(x_0, x_1)$. Then

$$c_{n}^{\mu} = \rho_{\mu}(x_{n}, x_{n+1}) \leq \Phi(\mu) (\rho_{\phi(\mu)}(Tx_{n}, Tx_{n+1}))$$

$$= \Phi(\mu) (\rho_{\phi(\mu)}(x_{n-1}, x_{n})) \leq \Phi(\mu) (\Phi(\phi(\mu)) (\rho_{\phi^{2}(\mu)}(x_{n-2}, x_{n-1}))) \leq \dots \leq \Phi(\mu) (\Phi(\phi(\mu)) (\dots \Phi(\phi^{n-1}(\mu)) (\rho_{\phi^{n}(\mu)}(x_{0}, x_{1})) \dots))$$

$$\leq \Phi(\mu) (\Phi(\phi(\mu)) (\dots \Phi(\phi^{n-1}(\mu)) (p(\mu)) \dots)).$$

Therefore $\lim_{n\to\infty} c_n^{\mu} = 0$ for every $\mu \in M$.

We suppose, by contradiction, that $\{x_n\}_{n=0}^{\infty}$ is not a Cauchy sequence. Then there exists $\epsilon_0 > 0$ and finite number of pseudometrics $\{\rho_{\tilde{\mu}}\}$ such that for every ν there is $m = m(\nu) > \nu$ and $p = p(\nu) > 0$ for which $\rho_{\tilde{\mu}}(x_m, x_{m+p}) > \epsilon_0$. But ϕ is surjective and we can find $\mu \in M$ such that $\tilde{\mu} = \phi(\mu)$. Moreover, $\rho_{\mu}(x_m, x_{m+p}) > \rho_{\phi(\mu)}(x_m, x_{m+p}) > \epsilon_0$. Let p be the

smallest positive integer for which $\rho_{\phi(\mu)}(x_{m+\bar{p}},x_{m}) > \epsilon_{o}$, It follows that $\rho_{\phi(\mu)}(x_{m+\bar{p}-1},x_{m}) < \epsilon_{o}$. Setting $a_{\nu}^{\phi(\mu)} = \rho_{\phi(\mu)}(x_{m+\bar{p}},x_{m})$, we have

$$\epsilon_{\text{\scriptsize o}} \leqslant \ \alpha_{\text{\scriptsize v}}^{\varphi(\mu)} \leqslant \rho_{\varphi(\mu)}(x_{m+\bar{p}},x_{m+\bar{p}-1}) + \rho_{\varphi(\mu)}(x_{m+\bar{p}-1},x_{m}) \leqslant c_{m+\bar{p}-1}^{\varphi(\mu)} + \epsilon_{\text{\scriptsize o}}$$

Passing to the limit in the last inequality when $\nu \to \infty$ we obtain $\lim_{\nu \to \infty} \alpha_{\nu}^{\phi(\mu)} = \varepsilon_{0}$. On the other hand we have:

$$\varepsilon_{o} \leq \rho_{\mu}(x_{m+\bar{p}}, x_{m}) \leq \rho_{\mu}(x_{m+\bar{p}}, x_{m+\bar{p}+1}) \\ + \rho_{\mu}(x_{m+\bar{p}+1}, x_{m+1}) + \rho_{\mu}(x_{m+1}, x_{m}) \\ \leq c_{m+\bar{p}} + \Phi(\mu)(\rho_{\mu}(\mu)(x_{m+\bar{p}}, x_{m})) + c_{m}^{\mu}$$

which yields for $v \to \infty$, $\varepsilon_0 \leqslant \Phi(\mu)(\varepsilon_0)$. The obtained contradiction shows that $\{x_n\}_{n=0}^{\infty}$ is a Cauchy sequence. From there on, the proof can be accomplished as those of Theorem 3 and 3. \blacktriangle

REMARK. The mapping T is continuous, surjective and inversible. The inverse mapping T^{-1} is continuous, because it is a contraction. Therefore T is a global homeomorphism of X onto itself. Moreover, if we state $x_0 = T^{-1}x_0$, one can obtain a fixed point theorem for Φ -contractive mappings, as in [5]. Then by choosing particular values of $\Phi(\mu)$, we obtain the fixed point theorem of Tarafdar [6], Theorem 11.

§3. Application 2 - McCord's Theorem. Here we establish an extension of McCord's Theorem [2]. Let E and G be Hausdorff locally convex topological vector spaces with saturated families of seminorms, $\{\|\cdot\|_{\lambda}:\lambda \in \Lambda\}$ and $\{\|\cdot\|_{\mu}:\mu \in M\}$, respectively. Assume there exists an onto $k:\Lambda \to M$, and let $T:E \to G$ be a continuous linear mapping.

THEOREM 6. Suppose that for each $y \in G$ with $|y|_{y} = 1$

for some $\mu \in M$, there exists an element $x \in E$ and mapppings $\alpha(\lambda): \Lambda \to R^1_+$, $\beta(\mu): M \to [0, \beta]$, $0 < \beta < 1$, such that $\|x\|_{\lambda} \le \alpha(\lambda)$ and $\|y-Tx\|_{k(\lambda)} \le \beta(k(\lambda))$ for every $\lambda \in \Lambda$. Then T is surjective. If C = Ta, then $\|a\|_{\lambda} \le \alpha(\lambda) \sum_{n=0}^{\infty} \beta^n$.

Proof. Let $x \in E$ and $y \in G$. One can suppose that $y \neq Tx$, then there exists $\mu_0 \in M$ such that $\|y - Tx\|_{\mu_0} \neq 0$, because is a Hausdorff space. Then we can find an element $z \in E$ for which $\|z\|_1 \leq \alpha(\lambda)$ and

$$\left|\frac{y-Tx}{\left|y-Tx\right|_{\mu_{\Omega}}}-Tz\right|_{k(\lambda)}\leqslant\beta(k(\lambda)).$$

Let us put $\bar{x} = x + |y - Tx|_{k(\lambda)} z$. We have

$$\|\bar{x}-x\|_{\lambda} \leq \|z\|_{\lambda} \|y-Tx\|_{k(\lambda)} \leq \alpha(\lambda) \|y-Tx\|_{k(\lambda)}$$

and then

$$T\bar{x} - y = Tx - y + \|y - Tx\|_{k(\lambda)} Tz$$

for every $\lambda \in \Lambda$, and so for every $\mu \in M$, the following inequality is satisfied:

$$\|\mathsf{T}\bar{\mathsf{x}}-\mathsf{y}\|_{k(\lambda)} = \|\mathsf{y}-\mathsf{T}\mathsf{x} - \|\mathsf{y}-\mathsf{T}\mathsf{x}\|_{\mu_0}\mathsf{T}\mathsf{z}\|_{k(\lambda)} \leqslant \beta(\mu)\|\mathsf{y}-\mathsf{T}\mathsf{x}\|_{\mu_0}.$$

In order to obtain the assumptions of Theorem 2 we define the mapping $\phi: G \times G \to M$ in the following way: for every $\bar{y}, \bar{\bar{y}} \in G$, $\phi(\bar{y}, \bar{\bar{y}})$ is the index $\mu \in M$ of the norm for which $\|\bar{y} - \bar{\bar{y}}\|_{\mu} \neq 0$. Then we put $\phi(Tx, y) = \mu_0$. Since ϕ does not depend on μ , we have $\Delta(\mu, y) = \rho_{\mu}(T\bar{0}, y)$ where $\bar{0}$ is the null element of E. Applying Theorem 2 we obtain the assertion of Theorem 6.

Acknowledgement. I thank you very much the referee for his very useful remarks.

REFERENCES

[1] Kasahara, S., Surjectivity and fixed points of nonlinear mappings. Mathematica Japonicae, 20 (Special

Issue) (1975), 57-64.

[2] McCord, A., A theorem on linear operations and Tietze extension theorem. Amer. Math. Monthly, 75 (1968) 47-48.

- [3] Weil, A., Sur les espaces à structure uniforme et sur la topologie générale. Hermann Editeurs, Paris, 1937.
- [4] Köthe, G., Topological vector spaces I, Springer, Berlin Heidelberg-New York, 1969.
- [5] Angelov, V., Fixed point theorems in uniform spaces and applications. Czech. Math. Journal 37(1987), 19-33.
- [6] Tarafdar, E., An approach to fixed-point theorems on uniform spaces. Trans. Amer. Math. Soc. 191 (1974) 209-225.
- [7] Kuratowski, K., Topology I, Mir, Moscow, 1966, (in Russian).

Higher Institute of Mining and Geology Sofia, BULGARIA.

Dirección para correspondencia: P.O. BOX 37 1184 Sofia BULGARIA.

(Recibido en mayo de 1984, la versión revisada en junio de 1986).