Revista Colombiana de Matemáticas Vol. XXII (1988), págs. 61-66

A CHARACTERIZATION OF PRIMAL NOETHERIAN RINGS

bу

P. L. MANLEY

Abstract. A Noetherian ring with identity is shown to be a primal ring if and only if the prime ideals are totally ordered by inclusion.

In this paper we prove that a Noetherian ring with identity is a primal ring if and only if the prime ideals are totally ordered by inclusion. This partially extends the following theorem proved in [2].

THEOREM. If R is a commutative ring with identity and no zero divisor, then R is primal if and only if the set of all prime ideals of R is simply ordered by inclusion.

Barnes [1] formulated a definition of a primal ideal for non-commutative rings which reduces to the definition of Fuchs [4] for commutative rings and to that of Curtis [3] for Noetherian rings with identity.

Let R be a ring with identity, and A and B be proper two-sided ideals in R, including the zero ideal but not R itself. The subset

 $A \setminus B = \{x \in R : xB \subseteq A\}$

61

is a two-sided ideal in R, and $A \subseteq A \setminus B$.

An ideal B is said to be (right) prime with respect to A if and only if $A \setminus B = A$. The ring R itself is regarded as a prime ideal.

Let $\{B_{i} : i \in J\}$, J a non empty index set, be the set of all two-sided ideals not (right) prime with respect to A. Then

$$\bar{A} = \sum (B_i : i \in J) \tag{1}$$

is a two-sided ideal of R.

An ideal A is called a *right primal ideal*, if whenever B_{i} ($i \in J$) are any two-sided ideals which are not right prime with respect to A, then $\sum (B_{i}: i \in J)$ is not right prime with respect to A, equivalently, if \overline{A} is not right prime with respect to A. If all the proper two-sided ideals of R are right primal ideals, then R is said to be a *right primal ring*.

In the sequel, primal ideal (ring) and prime with respect to A will be understood to mean right primal ideal (ring) and right prime with respect to A.

LEMMA 1. If A is a primal ideal, then \overline{A} is either equal to R or a prime ideal.

Proof. Let $BC \subseteq \overline{A}$. Since $A \setminus \overline{A} \supset A$ (proper inclusion), then $A \setminus (BC) \supset A$. Since $A \setminus (BC) = (A \setminus C) \setminus B$, then if $A \setminus C = A$, it must be that $A \setminus B \supset A$. Therefore $B \subseteq \overline{A}$. On the other hand, if $A \setminus C \supset A$, it follows that $C \subseteq \overline{A}$.

An ideal A of R is called irreducible if A = R, or if A is different from R and different from the intersection of the ideals of R which are proper factors of A. We state an elementary lemma without proof.

LEMMA 2. An irreducible ideal is a primal ideal.

Now we state the main theorem.

THEOREM 1. A ring R with identity, satisfying the ascending chain condition on two-sided ideals, is a primal ring if and only if the prime ideals of R are totally ordered by set inclusion.

Proof. To prove the necessity of the condition, we proceed by contradiction. Let P and Q be prime ideals in the primal ring R, and suppose that $P \neq Q$ and $Q \neq P$.

Now, if $A = P \cap Q$, then $P \not\subseteq A$ and $Q \not\subseteq A$. Since $P \subseteq A \setminus Q$ and $Q \subseteq A \setminus P$, then $A \setminus P \neq A$ and $A \setminus Q \neq A$. Hence neither Pnor Q is prime with respect to A, and, because R is a primal ring, then P + Q is not prime with respect to A. Hence $A \setminus (P + Q) \Rightarrow A$. Therefore $A \setminus (P + Q) \not\subseteq P$ or $A \setminus (P + Q) \not\subseteq Q$.

Without loss of generality, suppose that $A \setminus (P + Q) \notin P$ Then we consider the fact that $[A \setminus (P + Q)](P + Q) \subseteq A \subseteq P$. Because P is a prime ideal, it follows that $(P + Q) \subseteq P$, so that $Q \subseteq P$, contrary to the hypothesis. Whence this contradiction proves that the prime ideals of R are totally ordered by set inclusion.

For the converse, let A be a proper ideal of R. From the ascending chain condition, for any $x \notin A$, there exists a maximal ideal A_{χ} such that $x \notin A_{\chi}$ and $A \subseteq A_{\chi}$. Since every proper factor of A_{χ} includes x, then A_{χ} is an irreducible ideal, and by the Lemma 2 is a primal ideal.

Now, since $A = \bigcap (A_x : x \in R - A)$, then from the ascending chain condition of R, it suffices to consider only a finite number of the A_x , say $A = A_{x1} \bigcap ... \bigcap A_{x_n}$. We assume that there is no redundancy in this expression and that each A_{x_k} (k = 1, ..., n) in it cannot be exchanged into a larger ideal.

Let \bar{A}_{χ_k} , k = 1, ..., n, be defined as in (1). Then, from the condition in the theorem and Lema 1 { \bar{A}_{χ_k} : k = 1, ..., n} must be ordered by inclusion. Suppose $\bar{A}_{\chi_1} \supseteq \cdots \supseteq \bar{A}_{\chi_n}$. Now, if $A \subset A \setminus B_j$, then

$$A = A \setminus B_{i} = (A_{x_{1}} \cap \dots \cap A_{x_{n}}) \setminus B_{i}$$
$$= A_{x_{1}} \setminus B_{i} \cap \dots \cap A_{x_{n}} \setminus B_{i}$$

Thus, there exists a k $(1 \le k \le n)$ such that $A_{x_k} = A_{x_k} \setminus B_i$ or $\bar{A}_{x_1} \supseteq \bar{A}_{x_k} \supseteq B_i$. This shows that $\bar{A} \subseteq \bar{A}_{x_1}$. The reverse inclusion also holds since

$$A \setminus \overline{A}_{x_1} = A_{x_1} \setminus \overline{A}_{x_1} \cap \ldots \cap A_{x_n} \setminus \overline{A}_{x_1} \supset A_{x_1} \cap \ldots \cap A_{x_n}.$$

This shows that $\bar{A}_{\chi_1} \subseteq \bar{A}$. Whence $\bar{A} = \bar{A}_{\chi_1}$ and \bar{A} is not prime with respect to A because A_{χ_1} is primal, that is, A is primal ideal. This completes the proof of the theorem.

Let R_n denote the matrix ring of order *n* over R, and A_n be a two-sided ideal of R_n .

The set $A_n^{(j)}$ of the ij^{th} elements of all the matrices of A_n forms a two-sided ideal of R. For any i $(1 \le i \le n)$ and j $(1 \le j \le n)$, the ideal $A_n^{(j)}$ is always identical, and $A_n^{(j)}$ is independent of i (i = 1, ..., n) and j (j = 1, ..., n).

independent of i (i = 1, ..., n) and j (j = 1, ..., n). If we denote A_n^{ij} by A and arbitrarily take $n \times n$ elements x_{ij} (i, j = 1, ..., n) in A, then $[x_{ij}]$ is a matrix in A_n , and A_n is a ring formed by all the $n \times n$ matrices over A. In this way, we have established the one-to-one correspondence between all the two-sided ideals of R_n and all of the two-sided ideals of R. Then it is easy to show that $[\sum_{i=1}^{n} (B_i: i \in J)]_n =$ $\sum_{i=1}^{n} ([B_i]]_n : i \in J)$.

THEOREM 2. A ring R with identity is a primal ring if and only if the matrix ring R_n over R is primal.

Proof. Suppose R is a primal ring. Now, if $A \setminus B \supseteq A$, then $A_n \setminus B_n \supseteq A_n$. In fact, $x \notin A$ and $xB \subseteq A$, so that $xI_nB_n \subseteq A_n$ and $xI_n \notin A_n$, where I_n is the unit matrix.

Conversely, suppose R_n is a primal ring. Now, if $A_n \setminus B_n \supseteq A_n$, then there is a square matrix $P = [x_{ij}] \notin A_n$ such that $PB_n \subseteq A_n$. By the hypothesis there exists an ij^{th} $(i, j \leq n)$ element x in P such that $x \notin A$. Since $A_n \setminus B_n$ is an ideal, then $P \in A_n \setminus B_n$, so that $xI_n \in A_n \setminus B_n$ and $xB \subseteq A$,

64

that is, $x \in A \setminus B$. Therefore, whenever $A \setminus A \supseteq A$, we have that $A_n \setminus \bar{A}_n \supset A_n$. This completes the proof of the theorem.

*

REFERENCES

[1] Barnes, W.E., Primal ideals and isolated components in noncommutative rings, Trans. Amer. Math. Soc.

12 Cheo, P.H., On primal rings, Acta Math. Sinica 6 (1956), 542-547 (MR (1961)#8010).
[3] Curtis, C.W., On additive ideal theory in general rings, Amer. J. Math. 74 (1952), 687-700.

- [4] Fuchs, L., On primal ideals, Proc. Amer. Math. Soc. 1 (1950), 1-6.

Department of Mathematics & Statistics University of Windsor Windsor, Ontario N9B 3P4 CANADA.

(Recibido en mayo de 1984, la versión revisada en octubre de 1986).