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GENERALIZED URYSOHN SPACES

by

Charles DORSETT

Abs tract. In this paper two new generalizations of Urysohn
spaces are investigated and used to obtain new characterizations
of Urysohn spaces.

§l. Introduction. In 1961 A. Davis was interested in obtain-
ing properties of topological spaces, which together with
Ti_1 would be equivalent to Ti, i = 1,2, respectively. Davis'
1961 investigation led to the following definitions and dis-
coveries. A spaee (X,T) is Ro iff for each 0 L T and each
x E: 0, TiT c:: 0 and (X,T) is R1 iff for each pair x,y e:: X such
that TiT ~ TYr, there exist disjoint open sets U and V such
that TiT c:: U and TYJc::v [3].A space (X,T) is Ti iff it is
R. 1 and T. l' i = 1,2. respectively [3].

.(.- .(.-

The results above led to the introduction of weakly
Urysohn spaces in this paper. A space (X,T) is weakly Ury-
sohn iff for each pair x,y L X such that TiT ~ TYr, there
exist disjoint open sets U and V such that TXT c:: u, TYr c:: V,
and U n {i = <p.

In 1963 N. Levine introduced semi open sets. Let (X,T)
be a space and let A c:: X. Then A is semi open, denoted by
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A ESO(X,T), iff there exists 0 e:: T such that 0 c: A c: 0
[17j. In 1970 semi open sets were used to define semi closed
sets, which were used to define the semi closure of a set.
Let (X,T) be a space and let A,B c: X. Then A is semi alosed
iff X-A is semi open and the semi alosure of B, denoted by
scI B, is the intersection of all semi closed sets containing
B [1]. In 1975 [18] T,i spaces were generalized to semi-T,i
spaces by replacing the word open in the definition of T,iby
semi open, ,i= 0,1,2, respectively. These new separation
axioms raised questions about properties of topological spaces,
which together with semi-T,i, would be equivalent to T,i' ,i= 0,
1,2, respectively. The investigation of these questions led
to the following definitions and discoveries, which give ad-
ditional answers to Davis' 1961 questions. Let (X,T) be a
space and let R be the equivalence relation on X defined by
xRy iff scl{x} scl{y}. Then the semi-To-identifiaation
spaae of (X,T) is (XS,QS(X,T)), where Xs is the set of equiv-
alence classes of Rand QS(X,T) is the decomposition topolo-
gy on Xs [5J. The spaee (X,T) is s r eeeen t ial lq T,i iff
(XS,QS(X,T)) is T,i and (X,T) is T,i iff (X,T) is .6-essential-
ly T,i and semi-T,i, ,i = 0 [6J, ,i = 1 [7J, and c = 2 [8].These
results led to the introduction of .6-essentially Urysohn
spaces in this paper. The space (X,T) is .6-essentially Ury-
sohn iff (XS,QS(X,T)) is Urysohn.

In this paper weakly Urysohn and .6-essentially Urysohn
spaces are investigated and used to give new characteriza-
tions of Urysohn spaces. Throughout the remainder of this
paper, for each space (X,T) the To-identification space of
(X,T) will be denoted by (Xo,Q(X,T)), the natural map from
(X,T) onto (Xo,Q(X,T)) will be denoted by P, the natural map
from (X,T) onto (XS,QS(X,T)) will be denoted by PS' and for
each x € X, the element of Xo containing x will be denoted
by ex and the element of Xs containing x will be denoted by
Kx•
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§2. Weakly Urysohn Spaces.

THEOREM 2.1. Let (X,T) be a space. Then the following
are equivalent: (a) for each pair x,y E X such that
TiT ± TYr, there exist disjoint open sets U and V such that
x Ii: U, Y E V, and [j n V = $, (b) (X,T) is weakly Urysohn,
(e) (Xo,Q.(X,T» is Urysohn, (d) (XS,Qs(X,T» is weakly Ury-
sohn, (e) every homeomorphic image of (X,T) is weakly Ury-
eohn, and (f) for each Y e: X.. (Y,Ty) is weakly Urysohn.

Proof. (a) implies (b). Let a E: T and let a £ a. Let
b E x-a. Then TaT f TOT and there exist disjoint open sets
A and 8 such that a E A and b E B, which implies b ¢ TaT.
Thus TaTe: a and (X,T) is Ro' Let x,y E X such that TXT fTYr. Then there exist disjoint open sets U and V such that
x EU, y Ii: V, and iinv = $. Since (X,T) is Ro' then {x} e: U

and TYr e: V.

(b) implies (c).Let Cx,Cy E Xo such that Cx f Cy'
Then TiT f TifT and there exist disjoint open sets U and V
such that TXT e: U, TYT e: V, and iin Ii = ¢. Since P is conti-
nuous, closed, and open [9], then Cx E P(U) &: Q.(X,T),
Cy Ii: P(V) E Q.(X,T), p(ii) = P(U), and P(V) = P(V). Since
p-1 (P(W» = W for each W E: T [9], then for each W e:: T,
P-1(P(W» = P-1(PTWTT = p-l(p(W» = W, which implies
P(U) n PTVT = <p.

(e) implies (d). Let x,y E X such that TXT f TYr. Then
ex f Cy and there exist disjoint open sets ~ and ~ such that
that Cx. E t(, Cy Ii: 1r, and 'Qn'lf' = <p. Then x E: p-l(U) E T,
Y Ii: P - 1 (V") &: T, and P - 1(~) n P - 1(V) = P" 1efn n P - 1 (1") = $.

Thus (X,T) is weakly Urysohn. Let Ku,Kvf!:XS such that
~T"~. Since Ps is continuous and closed [5], then
TUT f TVT and there exist disjoint open sets U and V such
that TUTe: U, TVT e: V, and Q n \I = ¢. Since PSis continuous,

- 1closed, and open, and Ps (PS(W» = W for all We: SO(X,T)
[5], then ~ e: Ps(U) E: Q.S(X,T), ~e: PS(V) E Q.S(X,T),
and pSTlTJ n l'SrvT = $

(d) implies (e). Let x.,y E: X such that TXT F {y}.

Then rr;r " TKYT and there exist disjoint open sets ~ and ~
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such that TQ c u, ~ c V'; and un V- = ~. Then x tE Ps 1 (t{)

E T, rj E PS 1 (V') tE T, and PS 1 (to n PS 1 m = P.s1eO.) n PS 1(~) = ill·

Thus (X,T) is weakly Urysohn. The remainder of the proof is
straightforward and omitted.

The straightforward proof that (e) implies (f) and (fj

implies (a) is also omitted. •

'l'BEOREM2.2 • Po r each a -= A let (Xa•Ta) be a nonempty
space and let S be the product topology on TIXa. ThenaE:A
(allXa'S) is weakly Urysohn iff (Xa,Ta) is weakly Urysohn

for each a e: A.
Proof. Let W be the product topology on the product of

{((XN)o,Q.(Xa,Ta)) I a e: A}. Then (( TIxa)o,Q.( TIAxa,S)) and'" a€A a€"
(n(X )o,W) are homeomorphic [10]. Suppose (TIxN,S) isaE:f\ a aE:A '"
weakly Urysohn. Then (( TIx )0,Q.(TIx ,S)) is Urysohn andaE'A a aE:A a
since Urysohn is a topological property [2], then (11 (Xa) o,W)ae:A
is Urysohn, which implies ((Xa)o' Q.(Xa,Ta)) is Urysohn for
each a c A and (Xa,Ta) is weakly Urysohn.

Conversely, suppose (Xa,Ta) is weakly Urysohn for each
a EA. Then ((Xa)o' Q.(Xa,Ta)) is Urysohn for each a E A,
which implies (TI (Xa)o,W) is Urysohn. Thus (( TIx )0'

aEf\ aEf\ a
Q( Ttx ,S)) is Urysohn, which implies (Tt X ,S) is weakly

a€f\ a a£f\ a
Urysohn. •

THEOREM 2.3. Every regular space is weakly Urysohn.

Proof. If (X,T) is regular, then (Xo,Q(X,T)) is T3 [9J,
whicrr implies (Xo,Q(X,T)) is Urysohn [21] and (X,T) is weak-
ly Urysohn. ,

THEOREM 2.4. Every Urysohn space is weakly Urysohn.

Proof. If (X,T) is Urysohn, then (X,T) is T2 [21] and
P:(X,T) + (Xo,Q.(X,T)) is one-to-one, which implies P is a
homeomorphism, (Xo,Q.(X,T)) is Urysohn, and (X,T) is weakly
Urysohn. ,

THEOREM 2.5. Every weakly Urysohn space is R1.
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The straightforward proof is omitted. i

In 1937 M. Stone introduced regular open sets. If (X,T)
is a space and A c X, then A is reguLar open~ denoted by
A&: RO(X,T), iff A = Int(A) [20j. In the 1937 investigation,
Stone showed that for a space (X,T), RO(X,T) is a base for
a topology TS on X coarser than T, and called (X,TS) the
semireguLarization of (X,T). A space (X,T) is semireguLar
iff T = TS. Below the semiregularization of a weakly Urysohn
space is investigated.

THEOREM 2.6. Let (X~T) be weakLy Urysohn~ Let
'"(Xo,Q(X,TS)) denote the To-identifiaation spaae of (X~TS)~

and Let (X;,QS(X,TS)) denote the semi-To-identifiaation
spaae of (X~TS). Then (X ,Q(X,T)S)) = (X"',Q(X,TS))' whiah is

o '" 0
Urysohn~ and (XS,QS(X,T)S) = (XS,QS(X,TS))' whiah is weakLy
Urysohn semi-Tl; whiah impLies (X~TS) is weakLy Hausdorff·

Proof. Since (X,T) is weakly Usysohn, then (X,T) is R1
and (Xo,Q(X,T)S) = (X~,Q(X,TS)) [11] and (XS,QS(X,T)S) =
(X~,QS(X,TS))' which is semi-T1 [12]. Since (Xo,Q(X,T)) is
Urysohn, then (Xo,Q(X,T)S) is Urysohn [13]. Thus (X~,Q(X,TS))
is Urysohn, which implies (X,TS) is weakly Urysohn. Since
(XS,QS(X,T)) is weakly Urysohn, then (X~,QS(X,TS)) is weWdy
Urysohn. •

Examples can be given of a non weakly Urysohn spaces
whose semiregularization is weakly Urysohn.

§3. S-Essentially Urysohn Spaces. In 1978 the semi closure
operator was used to define feebly open sets, which were
used to define feebly closed sets and the feebly closure of
a set. Let (X,T) be a space and let A,B,C ex. Then A is
feebLy op en , denoted by A&: FO(X,T), iff there exists {JE T
such that ~ cA c scI ~, B is feebLy aLosed iff X-B is
feebly open, and the feebLy aLosure of C is the intersection
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of all feebly closed sets containing C[19]. Further investi
gation of feebly open sets showed that for a space (X,T),
FO(X,T) is a topology on X and T c FO(X,T) = FO(X,FO(X,T))
[14J. Below feebly induced spaces are used to obtain addi-
tional characterizations of ~-essentially Urysohn spaces.

THEOREM 3.1. Let (X~T) be a space. Then the following
are equivalent: (a) (X, T) is 4-essentially Urysohn~ (b) (X,T)
is weakly Urysohn and 4-essentially Tz~ (c) for each V c X~

(V,TV) is 4-essentially Urysohn~ (d) (X,T) is weakly Urysohn
and s-se e e enti ial l q To~ (e) (X,T) is weakly Urysohn and
Xo = Xs' (f) (X,FO (X,T)) is 4-essentially Urysohn~ and
(g) (X, FO (X, T)) is weakly Urysohn.

Proof. Let (X6S,Qs(X,FO(X,T))) denote the semi-To-iden-
tification space of (X,FO(X,T)).

(a) implies (b).Since (X,T) is 4-ssentially Urysohn,
then (XS,QS(X,T)) is Urysohn. Thus (XS,QS(X,T)) is weakly
Urysohn and TZ' which implies (X,T) is weakly Urysohn and
4-essentially TZ'

(b) implies (e). Since (X,T) is 4-essentially TZ' then
(X,T) is 4-essentially To and Xo = Xs [6J and since (X,T) is
weakly Urysohn, then (Xo,Q(X,T)) is Urysohn. Thus
(XS,QS(X,T)) = (Xo,Q(X,T)) is Urysohn, which implies (X,T)
is 4-essentially Urysohn. Let Y eX. Then (Y,Ty) is weakly
Urysohn and 4-essentially TZ [8J, which implies (Y,TV) is
4-essentially Urysohn.

(e) implies (d). Since X c X, then
ly Urysohn. Then by the argument above,
sohn and 4-essentally TZ, which implies
sohn and 4-essentially To'

Clearly (d) implies (e).
(e) implies (f). Since Xo = Xs and (X,T) is weakly Ury-

sohn, then (XS,QS(X,T)) = (Xo,Q(X,T)) is Urysohn and
(Xs,FO(XS,QS(X,T))) is Urysohn [15}. Then (X6S,QS(X,FO(X,T)))
= (XS,FO(XS,QS(X,T))) [16) is Urysohn, which implies
(X,FO(X,T)) is 4-essentially Urysohn.

Clearly by the arguments above, (f) implies (g).

(X, T)
(X,T)
(X,T)

is weakly Ury-
is weakly Ury-

is ~ -essential-
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(g) implies (a). Since (X,FO(X,T)) is weakly Urysohn,
then (X,FO(X,T)) is R1, which implies (X,FO(X,T)) is ~-essen-
tially TZ [16]. Then by the argument above (X,FO(X,T)) is
~-essentially Urysohn and (XS,FO(XS,QS(X,T))) =
(X6S,QS(X,FO(X,T))) is Urysohn, which implies (XS,QS(X,T))
is Urysohn [1SJ and (X,T) is ~-essentially Urysohn. !

Combining the results above gives the following coro-
llary.

COROLLARY 3.1. Eve~y ~egular ~-essentially To space is
~-essentially Urysohn.

THEOREM 3.2. Let (X,T) be a space. Then the following
are equivalent: (a) (X,T) is Urysohn, (b) (X,T) is weakly
Urysohn and To' and (c) (X,T) is ~-essentially Urysohn and
semi-To·

Proof. Clearly (a) implies (b).
(b) implies (c). Since (X,T) is To' then (X,T) is

~-essentially To and semi-To. Thus (X,T) is weakly Urysohn
and ~-essentially To' which implies (X,T) is ~-essentially
Urysohn.

(c) implies
then (XS,QS(X,T))
Ps is one-to-one.
Urysohn. !

(a). Since
is Urysohn
Thus Ps is

(X,T) is ~-essentially Urysohn,
and since (X, T) is semi -To' then
a homeomorphism and (X,T) is

Combining definitions and results above with the fact
that for a space (X,T), (Xo,Q(X,T)) is To [21J and
(XS,QS(X,T)) is semi-To [SJ gives the next result.

COROLLARY 3.2. Let (X,T) be a space. Then (X,T) is
weakly Urysohn iff (Xo,Q(X,T)) is weakly Urysohn and (X,T) is
~-essentially Urysohn iff (XS,QS(X,T)) is ~-essentially Ury-
eo hri ,

THEOREM 3.3. For each a £ A, let (Xa,Ta) be a nonempty
space, let S be the product topology on nX , and let

ClE:f\ Cl
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B = {a -= A I T is not the i nd i e ore t:e topo'logy on X }. Thena a
( ITX , S) is s-ce e een t i:a Z"ly Urysohn iff (1) (X , T ) is Urysohna~~ a a a
for a l L a e: A, or (2) B is finite and for eaah u» e::: A and each
x &:X , TX"} e::: T , or (3) (XN, TN) is s s e e e en t ia l l u Urysohna a a a ~ "
for al'l a e:::A, B is finite, Xa is a sing'leton set for a'l'l
a E A-B, and exaept for one e'lement of A, Ta is the disarete
topo'logy on Xa.

Proof. Suppose (TIXa,S) is .f.-essentially Urysohn. Then
a":f\

(aTIXa,S) is weakly Urysohn and .f.-essentially T2• Then (\t,Ta)

is weakly Urysohn for all a e::: A and since (a1lXa'S) is .f.-es-
sentially T2, then (a) (Xa,Ta) is T2 for all a E A, or (b) B
is finite and for each a e::: A and each xa &:Xa' rx;r e::: Ta, or
(c) (Xa,Ta) is .f.-essentially T2 for all a e::: A, B is finite,
Xa is a singleton set for all a e: A-B, and, except for one
element of A, Ta is the discrete topology on Xa [8]. Thus (1),
or (2), or (3) is true.

Conversely, suppose (1), or (2), or (3) is satisfied.
Then (X ,T ) is weakly Urysohn for each a e::: A and (It XN,S)a a aEf\ "
is weakly Urysohn and condition (a), or (b), or (c) above is
satisfied, which implies (a~Xa'S) is .f.-essentially T2 [8].
Thus (It X ,S) is .f.-essentially Urysohn. •aEf\a

The results above can be combined to obtain the next
result.

COROLLARY 3.3. Let (X, T) be s s e e e en t i.a l l.u Urysohn. Then
* ~(Xo,Q.(X,TS)) = (Xo,Q.(X,T)S) = (XS,Q.S(X,T)S) = (XS,Q.S(X,TS)),

whian is Urysohn, and (X,TS) is .f.-essentia'l'ly Urysohn.

Examples can be given of non .6-essentially Urysohn
spaces whose semiregularization is .f.-essentially Urysohn.

In 1972 [2J homeomorphisms were generalized to semi
homeomorphisms by reaplacing the word open in the definition
of homeomorphisms by semi open and properties preserved by
semi homeomorphisms were called semi topological properties.
In investigations of feebly open sets, it has been shown
that certain properties are simultaneously shared by both a
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space and its feebly induced space. In [15J a topological
property simultaneously shared by both a space and the fee-
blyinduced space was called a feebly property and it was
shown that a property is a feeble property iff it is a semi
topological property. Thus Theorem 3.1 above shows that
~-essentially Urysohn is a semi topological property.

Also, the investigation of feebly open sets has ledto
several new characterizacion of regular open sets and in
[11J it was shown that for a space (X,T), RO(X,T)
{scI 0 I 0 e:::T}. This new characterizacion will be used below
to further investigate semiregular, weakly Urysohn, and
~-essentially Urysohn spa€es.

THEOREM 3.4. Let (X,T) be a space and let 0 e:::T. Then

P(scl 0) = scl P(O) and PS(scl 0) = scl PS(O).
Proof. Since p-1 (scI U) = scl p-1 (to for each Ue:::Q.(X,T)

[llJ, then P(scl 0) = P(scl P-1(P(0))) = P(P-1(scl P(O)))
-1 -1scI P(O) and since Ps (scI U) = scI Ps (U) for each

t( e: Q.S(X,T) [12], then, similarly, PS(scl 0) = scl PS(O) .•

THEOREM 3.5. Let (X,T) be a space. Then the following
a1'e equivalent: (a) (X, T) is e em-ir equ l.ar , (b) (Xo,Q.(X,T))
is e emir equ l a r , and (c) (XS,Q.S(X,T)) is e emir equ l ar ,

Proof. (a) implies (b). Let 0 e::: Q.(X,T). Let Cx e:::O.
-1 -1Then P (0) &: T = TS' x &: P (0), and there exists 0 &: T such

that x II: scl 0 c::: p-1 (0). Then C E: P(scl 0) = scl P(O) c::: 0. x
and scI P(O) II: RO(Xo,Q(X,T)), which implies 0 E: Q(X,T)S.Thus
Q(X,T) c::: Q.(X,T)S' which implies Q.(X,T) = Q.(X,T)S'

(b) implies (c). Let 0 II: Q.S(X,T). Let Kx e:::O. Then
x E: ps1 (0) II: T and Cx e:::P(PS1 (0)) e:: Q.(X,T)s and there eixsts

- 1t(, II: Q.(X,T) such that C x e:: scl U c::: pcPS (0)). Then
x E: P-1(scl t{) = scI P-1(t() c::: pSl(O) and Kx e:: PS(scl P-1(t())

= Ps (scI Ps lcpsW1(t{))) = scl Ps (P-1 rU)) c::: 0, where
scI PS(P-1(U)) &: RO(XS,Qs(X,T)), which implies 0 &: Q.S(X,T)S'
Thus QS(X,T) c::: QS(X,T)S' which implies Q.S(X,T) = QS(X,T)S'

(e) implies (a). Let 0 II: T. Let x Iii: O. Then Kx Ii: Ps (0)

c Q.S(X,T)S and there exists ~ Ii: Q.S(X,T) such that
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Kx e:: scl ~ c::: PS(O). Then x -=
-1where scI Ps (~) -= TS' which

T = TS. !

-1~.. -1"s (scI v) = scI "s ('V) c::: 0,
implies 0 E TS. Thus T c::: TS and

THEOREM 3.6. The following are equivalent: (a) every
Urysohn epac e is semiregu l.ar, (b) every weakly Urysohn epace

is semiregular, and (c) every ~-essentially Urysohn spaae
is semiregular.

Proof. (a) implies (b). Let (X,T) be weakly Urysohn.
Then (X ,Q(X,T)) is Urysohn and (X ,Q(X,T)) is semiregular,o 0
which implies (X,T) is semiregular. Clearly, from the resul~
above, (b) implies (c) and (c) implies (a). !

Since not every Urysohn space is semiregular [21J, then
not every weakly Urysohn or ~-essentially Urysohn space is
semiregular, which implies not every weakly Urysohn or ~-es-
sentially Urysohn space is regular.

THEOREM 3.7. The following are equivalent: (a) every

eem ir equ l.ar T 2 ep ac e is Urysohn, (b) every semiregu La» R1
spaae is weakly Urysohn, and (c) every semiregular ~-essen-

tially T2 spaae is ~-essentially Urysohn.

Proof. (a) implies (b). Let (X,T) be semiregular R1.
Then (Xo,Q(X,T)) is semiregular and T2 [4J, which implies
(Xo,Q(X,T)) is Urysohn and (X,T) is weakly Urysohn.

(b) implies (c). Since every 4-essentially T2 space is
R1 [8J, then every semiregular ~-essentially T2 space is
weakly Urysohn and 4-essentially T2, which implies every
semiregular ~ -essentially T 2 space is 4-essentially Urysohn.
Similarly, (c) implies (a). 4

Since not every semiregular T2 space is Urysohn [21],
then not every semiregular R1 space is weakly Urysohn and
not every semiregular ~-essentially T2 space is ~-essential-
ly Urysohn. In [10J it was shown that for rim-compact spaces,
regular and R1 are equivalent. Combining this result with
those above give the following corollaries.
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COROLLARY 3.4. If (X,T) is rim-compact, then the fol-
lowing are equivalent: (a) (X,T) is T3, (b) (X,T) is Urysohn
(c) (X,T) is TZ' and (d) (X,T) is semiregularTZ'

COROLLARY 3.5. If (X,T) is rim-compact, then the fol-
lowing are equivalent: (a) (X,T) is regular, (b) (X,T) is
weakly Urysohn, (c) (X,T) is R1, and (d) (X,T) is eemirequ»
l.a» R 1 •

COROLLARY 3.6. If (X,T) is rim-compact, then the fol-
lowing are equivalent: (a) (X,T) is regular ~-essentially
To' (b) (X,T) is ~-essentially Urysohn, (c) (X,T) is s-seeeen-
tially TZ' and (d) (X,T) is a-essentially TZ and semiregula~

There are examples of compact, regular, non a-essen-
tially To spaces.

*
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