Revi.6.ta. Co.f.ombi.an.a de *MatemcU.ic.a.6* $Vol. XXII (1988)$, *págs.* 149-160

GENERALIZED URYSOHN SPACES

 by

Charles DORSETT

Abstract. In this paper two new generalizations of Urysohn spaces are investigated and used to obtain new characterizations of Urysohn spaces.

§l. **Introduction.** In 1961 A. Davis was interested in obtaining properties of topological spaces, which together with T_{i-1} would be equivalent to T_i , $i = 1, 2$, respectively. Davis' 1961 investigation led to the following definitions and discoveries. A space (X,T) is $R_{\overline{0}}$ iff for each $0\in\mathcal{T}$ and each $x \in 0$, $\overline{\{x\}} \subset 0$ and (X,T) is R_1 iff for each pair $x, y \in X$ such that $\overline{\{x\}} \neq \overline{\{y\}}$, there exist disjoint open sets U and V such that $\overline{\{x\}}$ = *U* and $\overline{\{y\}}$ = *V* [3]. A space (X, T) is T_i iff it is R_{i-1} and T_{i-1} , $i = 1, 2$, respectively [3].

The results above led to the introduction of weakly Urysohn spaces in this paper. A space *(X,T)* is *weakly Urysohn* iff for each pair $x, y \in X$ such that $\overline{\{x\}} \neq \overline{\{y\}}$, there exist disjoint open sets U and V such that $\overline{\{x\}} \subset U$, $\overline{\{y\}} \subset V$, and $\bar{u} \cap \bar{v} = \phi$.

In 1963 N. Levine introduced semi open sets. Let *(X,T)* be a space and let $A \subseteq X$. Then A is *semi open*, denoted by

 $A \in \mathcal{S}(\mathcal{X}, \mathcal{T})$, iff there exists $0 \in \mathcal{T}$ such that $0 \in A \subset \overline{0}$, [17j. In 1970 semi open sets were used to define semi closed sets, which were used to define the semi closure of a set. Let (X, T) be a space and let $A, B \subset X$. Then A is *semi closed* iff X-A is semi open and the *semi alosure of* B, denoted by scI B, is the intersection of all semi closed sets containing $B[1]$. In 1975 [18] T_i spaces were generalized to semi- T_i spaces by replacing the word open in the definition of \overline{T}_i by semi open, $i = 0,1,2$, respectively. These new separation axioms raised questions about properties of topological spaces, which together with semi- T_{i} , would be equivalent to T_{i} , $i= 0$, 1,2, respectively. The investigation of these questions led to the following definitions and discoveries, which give additional answers to Davis' 1961 questions. Let *(X,T)* be a space and let R be the equivalence relation on X defined by xRy iff $scl{x}$ = $scl{y}$. Then the $semi-T_o-identification$ *space of* (X, T) is $(X_S, Q_S(X, T))$, where X_S is the set of equivalence classes of R and $Q_S(X,T)$ is the decomposition topology on *^Xs* [5J. The spaee *(X,T)* is *s ^r eeeen tial lq T,i* iff $(X_S, Q_S(X,T))$ is T_i and (X,T) is T_i iff (X,T) is s-essentially T_{i} and semi- T_{i} , $i = 0$ [6], $i = 1$ [7], and $i = 2$ [8]. These results led to the introduction of s-essentially Urysohn spaces in this paper. The space (X, T) is *b*-essentially *Ury***sohn iff** $(X_{c},Q_{c}(X,T))$ **is Urysohn. The solution of the model of the sound foot**

In this paper weakly Urysohn and s-essentially Urysohn spaces are investigated and used to give new characterizations of Urysohn spaces. Throughout the remainder of this paper, for each space (X,T) the T_{o} -identification space of (X, T) will be denoted by $(X_0, Q(X, T))$, the natural map from (X, T) onto $(X_0, Q(X, T))$ will be denoted by P, the natural map from (X, T) onto $(X_S, Q_S(X, T))$ will be denoted by P_S , and for each $x \in X$, the element of X_0 containing x will be denoted by $c_{\boldsymbol{\chi}}$ and the element of $\boldsymbol{\chi}_{\mathcal{S}}$ containing $\boldsymbol{\chi}$ will be denoted by *Kx•* $\phi = \Psi \cap \hat{\mathbb{U}}$ bas

In 1963 N. Levine introduced semi open sets. Jet (X, T) be a space and let A = X. Then A is sami open, denoted by

§2. **Weakly Urysohn** Spaces.

THEOREM 2.1. *Let (X,T) be a space. Then the following are equivalent:* (a) *for each pair x,y* E *X such that* $\overline{\{x\}}$ \pm $\overline{\{y\}}$, there exist disjoint open sets U and V such that $x \in U$, $y \in V$, and $\overline{U} \cap \overline{V} = \phi$, (b) (X, T) is weakly *Urysohn*, (c) $(X_0, Q(X,T))$ is *Urysohn*, (d) $(X_S, Q_S(X,T))$ is *weakly Urysohn,* (e) *every homeomorphic image of (X,T)* is *weakly Ury-* $\text{sohn, and (f) for each $Y \subset X$, (Y, T_V) is weakly Urysohn.$

Proof. (a) *implies* (b). Let $0 \in \mathcal{T}$ and let $a \in 0$. Let $b \in X-0$. Then \overline{a} $\neq \overline{b}$ and there exist disjoint open sets A and B such that $a \in A$ and $b \in B$, which implies $b \notin \overline{\{a\}}$. Thus $\overline{\{a\}}$ = 0 and (X,T) is R_0 . Let $x, y \in X$ such that $\overline{\{x\}}$ \neq TYr. Then there exist disjoint open sets U and *^V* such that $x \in U$, $y \in V$, and $\bar{U} \cap \bar{V} = \phi$. Since (X, T) is R_0 , then $\overline{\{x\}} \subset U$ and $\overline{\{y\}} = \mathbf{V}$.

(b) *implies* (c). Let $C_x, C_y \in X_0$ such that $C_x \neq C_y$ Then $\overline{\{x\}} \neq \overline{\{y\}}$ and there exist disjoint open sets U and V such that $\overline{\{x\}} \subset U$, $\overline{\{y\}} \subset V$, and $\overline{U} \cap \overline{V} = \phi$. Since P is continuous, closed, and open [9], then $C_\chi \in P(U) \in Q(X,T)$, C_{y} = $P(V)$ = $Q(X,T)$, $P(\bar{u})$ = $\overline{P(u)}$, and $P(\bar{v})$ = $\overline{P(V)}$. Since $p^{21}(P(W)) = W$ for each $W \in T[9]$, then for each $W \in T$, $p^{-1}(P(\bar{w})) = p^{-1}(\overline{P(\bar{w})}) = \overline{p^{-1}(P(\bar{w}))} = \bar{w}$, which implies $P(U)$ \cap $P(V)$ = ϕ .

(c) *implies* (d). Let $x, y \in X$ such that $\overline{\{x\}} \neq \overline{\{y\}}$. Then $c_x \neq c_y$ and there exist disjoint open sets $\mathfrak V$ and $\mathfrak V$ such that that $C_x \in \mathcal{U}$, $C_y \in \mathcal{V}$, and $\bar{\mathcal{U}} \cap \bar{\mathcal{V}} = \phi$. Then $x \in P^{-1}(\mathcal{U}) \in \mathcal{T}$ $y \in P^{-1}(\mathcal{V}) = T$, and $P^{-1}(\mathcal{U}) \cap P^{-1}(\mathcal{V}) = P^{-1}(\mathcal{U}) \cap P^{-1}(\mathcal{V}) = \phi$. Thus (X, T) is weakly Urysohn. Let $K_u, K_v \in X_S$ such that $\overline{K_{\mu}}$ \overline{F} \neq $\overline{K_{\nu}}$. Since P_S is continuous and closed [5], then TUT f *TVT* and there exist disjoint open sets ^U and *^V* such that $\overline{\{u\}} \subset U$, $\overline{\{v\}} \subset V$, and $\overline{U} \cap \overline{V} = \emptyset$. Since P_S is continuous, closed, and open, and $P_S^{-1}(P_S(\mathbf{W})) = \mathbf{W}$ for all $\mathbf{W} = SO(X, T)$ $[5]$, then $\overline{K_u}$ = $P_S(U) = Q_S(X,T)$, $\overline{K_v}$ = $P_S(V) = Q_S(X,T)$, and $\overline{P_S(U)} \cap \overline{P_S(V)} = \phi$

(d) *implies* (e). Let $x, y \in X$ such that $\overline{\{x\}} \neq \overline{\{y\}}$. Then $\overline{\{K_y\}} \neq \overline{\{K_y\}}$ and there exist disjoint open sets $\mathfrak V$ and $\mathfrak V$

such that $\overline{\{K_x\}} = \mathbf{u}$, $\overline{\{K_u\}} = \mathbf{v}$, and $\overline{\mathbf{u}} \cap \overline{\mathbf{v}} = \phi$. Then $x \in P_S^{-1}(\mathbf{u})$ $\mathbf{F} = T$, $y \in P_{\mathcal{S}}^{-1}(\mathbf{V}) = T$, and $P_{\mathcal{S}}^{-1}(\mathbf{U}) \cap P_{\mathcal{S}}^{-1}(\mathbf{V}) = P_{\mathcal{S}}^{-1}(\mathbf{U}) \cap P_{\mathcal{S}}^{-1}(\mathbf{V}) = \phi$. Thus *(X,T)* is weakly Urysohn. The remainder of the proof is straightforward and omitted.

The straightforward proof that (e) implies (f) and (fj implies (a) is also omitted.

THEOREM 2.2. For each $\alpha \in A$ let (X_{α}, T_{α}) be a nonempty *space* and let *S be the product topology on* $\prod_{\alpha \in A} X_{\alpha}$. *Then* **aEA** (a) $\lim_{\alpha \to \infty} X_\alpha$, S) is weakly Urysohn *iff* (X_α , T_α) is weakly Urysohn for each $\alpha \in A$.

Proof. Let *W* be the product topology on the product of $\{((X_{\alpha})_{\alpha}, Q(X_{\alpha},T_{\alpha})) \mid \alpha \in A\}.$ Then $((\prod_{\alpha \in A} X_{\alpha})_{\alpha}, Q(\prod_{\alpha \in A} X_{\alpha},S))$ and $\left(\prod_{\alpha \in A} (X_{\alpha})_{\alpha}, \omega\right)$ are homeomorphic [10]. Suppose $\left(\prod_{\alpha \in A} X_{\alpha}, S\right)$ is weakly Urysohn. Then $((\prod_{\alpha \in A} X_{\alpha})_0, \mathbb{Q}(\prod_{\alpha \in A} X_{\alpha}, S))$ is Urysohn and since Urysohn is a topological property [2], then $(\prod_{\alpha\in A} (X_{\alpha})_0, W)$ is Urysohn, which implies $((X_{\alpha})_{\alpha}, Q(X_{\alpha},T_{\alpha}))$ is Urysohn for each $\alpha \in A$ and (X_{α},T_{α}) is weakly Urysohn.

Conversely, suppose (X_{α},T_{α}) is weakly Urysohn for each $\alpha \in A$. Then $((X_{\alpha})_0, \ Q(X_{\alpha},T_{\alpha}))$ is Urysohn for each $\alpha \in A$, which implies $\int_{\alpha \in A} (X_{\alpha})_0, \omega$ is Urysohn. Thus $(\int_{\alpha \in A} X_{\alpha})_0$, *Q(* Ttx *,S))* is Urysohn, which implies (Tt X *,S)* is weakly *a€f* a *a£f* a Urysohn. **4**

THEOREM 2.3. *Every regular space is weakly Urysohn.*

Proof. If (X, T) is regular, then $(X_0, Q(X, T))$ is T_3 [9], which implies $(X_0, Q(X,T))$ is Urysohn [21] and (X,T) is weakly Urysohn.

THEOREM 2.4. *Every Urysohn space is weakly Urysohn.*

Proof. If (X, T) is Urysohn, then (X, T) is T_2 [21] and $P: (X, T) \rightarrow (X_0, Q(X, T))$ is one-to-one, which implies P is a homeomorphism, $(X_o, Q(X,T))$ is Urysohn, and (X,T) is weakly Urysohn. ,

THEOREM 2.5. *Every weakly Urysohn space is* R1 .

nsdT

The straightforward proof is omitted. \triangle

In 1937 M. Stone introduced regular open sets. If (X,T) is a space and $A \subseteq X$, then A is *regular open*, denoted by $A \subseteq RO(X,T)$, iff $A = Int(\overline{A})$ [20]. In the 1937 investigation, Stone showed that for a space *(X,T), RO(X,T)* is a base for a topology T_S on X coarser than T , and called (X, T_S) the *semireguLarization of (X,T).* A space *(X,T)* is *semireguLar* iff T ⁼ *TS .* Below the semiregularization of a weakly Urysohn space is investigated.

THEOREM 2.6. *Let (X~T) be weakLy Urysohn~ Let* $(X_{\mathbf{o}}^{*},\mathbb{Q}(X,\mathsf{T}_{\mathbf{S}}))$ denote the $\mathsf{T}_{\mathbf{o}}$ -identification space of $(X,\mathsf{T}_{\mathbf{S}})$, *and Let (X;,QS(X,TS)) denote the semi-To-identifiaation* $space \ of \ (X, T_S) . \ Then \ (X_{0}, Q(X, T_S)) = (X_{0}^{*}, Q(X, T_S)) , \ which \ is \$ *Urysohn~ and (XS,QS(X,T)S)* ⁼ *(XS,QS(X,TS))' whiah is weakLy* Urysohn semi-T₁; which *implies* (X, T_S) *is weakly Hausdorff.*

Proof. Since (X, T) is weakly Usysohn, then (X, T) is R_1 and $(X_0, Q(X,T)_{S}) = (X_0, Q(X,T_S))$ [11] and $(X_S, Q_S(X,T)_{S}) =$ $(X_S, Q_S(X, T_S))$, which is semi-T₁ [12]. Since $(X_o, Q(X, T))$ is Urysohn, then $(X_0, Q(X,T)_{S})$ is Urysohn [13]. Thus $(X_0^*, Q(X,T_S))$ is Urysohn, which implies *(X,T^S)* is weakly Urysohn. Since $(X_S, Q_S(X,T))$ is weakly Urysohn, then $(X_S^*, Q_S(X,T_S))$ is weakly Urysohn. •

Examples can be given of a non weakly Urysohn spaces whose semiregularization is weakly Urysohn.

§3. S-Essentially Urysohn Spaces. In 1978 the semi closure operator was used to define feebly open sets, which were used to define feebly closed sets and the feebly closure of a set. Let (X, T) be a space and let $A, B, C \subseteq X$. Then A is *feebly open*, denoted by $A \subseteq F0(X,T)$, iff there exists $\mathcal{O} \subseteq T$ such that $\mathfrak{G} \subset A \subset \text{sc}1$ \mathfrak{G} , B is *feebly closed* iff *X-B* is feebly open, and the *feebLy aLosure* of C is the intersection

of all feebly closed sets containing C[19]. Further investi gation of feebly open sets showed that for a space *(X,T), FO(X,T)* is a topology on *X* and $T \nightharpoonup F0(X,T) = F0(X,F0(X,T))$ [14]. Below feebly induced spaces are used to obtain additional characterizations of &-essentially Urysohn spaces.

THEOREM 3.1. *Let (X~T) be a space. Then the following are equivalent:* (a) *(X, T) is 4-essentially Urysohn~* (b) (X,T) *is* weakly Urysohn and s -essentially T_2 , (c) for each $Y \subset X$, *(V,TV)* is *4-essentially Urysohn~* (d) *(X,T) is weakly Urysohn and s-s ^e ^e ^e enti ial ^l ^q To~* (e) *(X,T) is weakly Urysohn and X o* ⁼ *Xs '* (f) *(X,FO (X,T)) is 4-essentially Urysohn~ and* (g) *(X, FO (X, T)) is weakly Urysohn.*

Proof. Let $(X_{\{S}, Q_S(X, F_0(X, T)))$ denote the semi- T_0 -identification space of *(X,FO(X,T)).*

(a) *implies* (b).Since *(X,T)* is 4-ssentially Urysohn, then $(X_S, Q_S(X, T))$ is Urysohn. Thus $(X_S, Q_S(X, T))$ is weakly Urysohn and T_2 , which implies (X, T) is weakly Urysohn and 4-essentially *TZ'*

(b) implies (c). Since (X, T) is δ -essentially T_{2} , then (X, T) is δ -essentially T_0 and $X_0 = X_S$ [6] and since (X, T) is weakly Urysohn, then $(X_0, Q(X,T))$ is Urysohn. Thus $(X_{\mathcal{S}},\mathcal{Q}_{\mathcal{S}}(X,T)) = (X_{\mathcal{O}},\mathcal{Q}(X,T))$ is Urysohn, which implies (X,T) is δ -essentially Urysohn. Let γ \subset X. Then (γ, T_{γ}) is weakly Urysohn and s-essentially T₂ [8], which implies (**Y,T**y) is 4-essentially Urysohn.

(c) $implies$ (d). Since $X \subset X$, then (X, T) is δ -essentially Urysohn. Then by the argument above, *(X,T)* is weakly Urysohn and s-essentally T₂, which implies (X,T) is weakly Urysohn and 4-essentially *To'*

one Clearly (d) implies (e). same adoaval viistinaaed-2 . EE

(e) $implies$ (f). Since $X_0 = X_S$ and (X,T) is weakly Urysohn, then $(X_S, Q_S(X,T)) = (X_o, Q(X,T))$ is Urysohn and $(X_S, F0(X_S, Q_S(X,T)))$ is Urysohn [15]. Then $(X_{\zeta S}, Q_S(X, F0(X,T)))$ $= (X_S, F0(X_S, Q_S(X, T)))$ [16] is Urysohn, which implies $(X, F0(X,T))$ is δ -essentially Urysohn. \Box \Box \Box \Box \Box \Box

mode Clearly by the arguments above, (f) implies (g).

(g) *implies* (a). Since *(X,FO(X,T))* is weakly Urysohn, then (X,FO(X,T)) is R₁, which implies (X,FO(X,T)) is *s*-essentially T_2 [16]. Then by the argument above $(X, F0(X,T))$ is s -essentially Urysohn and $(X_{\mathcal{S}},F0(X_{\mathcal{S}},Q_{\mathcal{S}}(X,T)))$ = $(X_{\cancel{AS}},\mathbb{Q}_S(X,F0(X,T)))$ is Urysohn, which implies $(X_{\cancel{S}},\mathbb{Q}_S(X,T))$ is Urysohn $[15]$ and (X, T) is δ -essentially Urysohn.

Combining the results above gives the following corollary.

COROLLARY 3.1. *Every regular <i>b*-essentially T_o space is *~-essentially Urysohn.*

THEOREM 3.2. *Let (X,T) be a space. Then the following are equivalent:* (a) *(X,*T) *is Urysohn,* (b) *(X,*T) *is weakly Urysohn and To' and* (c) *(X,T) is ~-essentially Urysohn and semi-To·*

Proof. Clearly (a) implies (b).

(b) $implies$ (c). Since (X,T) is T_0 , then (X,T) is δ -essentially T_0 and semi- T_0 . Thus (X, T) is weakly Urysohn and *b*-essentially T_0 , which implies (X, T) is *b*-essentially Urysohn.

(c) implies (a). Since (X, T) is s-essentially Urysohn, then $(X_{\varsigma}, \mathcal{Q}_{\varsigma}(X, T))$ is Urysohn and since (X, T) is semi- T_{ς} , then *^Ps* is one-to-one. Thus ^Ps is a homeomorphism and *(X,T)* is Urysohn. !

Combining definitions and results above with the fact that for a space (X, T) , $(X_0, Q(X, T))$ is T_0 [21] and $(X_S, Q_S(X,T))$ is semi-T_o [5] gives the next result.

COROLLARY 3.2. Let (X, T) be a space. Then (X, T) is *weakly Urysohn iff (Xo,Q(X,T)) is weakly Urysohn and (X,T) is s*-essentially Urysohn iff $(X_S, Q_S(X, T))$ is *s*-essentially Ury*eo hri ,*

THEOREM 3.3. For each $\alpha \in A$, let (X_{α},T_{α}) be a nonempty $space,$ let S be the product topology on $\prod_{\alpha \in A} X_{\alpha}$, and let

 $B = {\alpha \in A | T_{\alpha} \text{ is not the } indices \text{retopology on } X_{\alpha}}.$ Then $\left(\prod_{\alpha\in A}X_{\alpha}, S\right)$ is δ -essentially Urysohn iff (1) $\left(X_{\alpha},T_{\alpha}\right)$ is Urysohn for all $\alpha \in A$, or (2) B is finite and for each $\alpha \in A$ and each $x_{\alpha} \in X_{\alpha}$, $\overline{\{x_{\alpha}\}} \in T_{\alpha}$, or (3) (X_{α},T_{α}) is s-essentially Urysohn for all $\alpha \in A$, B is finite, X_{α} is a singleton set for all $\alpha \in A-B$, and except for one element of A, T_o is the discrete topology on X_{α} .

Proof. Suppose $(\prod_{\alpha \in A} X_{\alpha}, S)$ is α -essentially Urysohn. Then $\left(\prod_{\alpha} X_{\alpha}, S\right)$ is weakly Urysohn and s-essentially T_2 . Then (X_{α}, T_{α}) is weakly Urysohn for all $\alpha \in A$ and since $\left(\prod_{\alpha \in A} X_{\alpha}, S\right)$ is 4-essentially T_2 , then (a) (X_{α},T_{α}) is T_2 for all $\alpha \in A$, or (b) B is finite and for each $\alpha \in A$ and each $x_{\alpha} \in X_{\alpha}$, $\overline{\{x_{\alpha}\}} \in T_{\alpha}$, or (c) (X_{α},T_{α}) is s-essentially T_{γ} for all $\alpha \in A$, B is finite, X_{α} is a singleton set for all $\alpha \in A-B$, and, except for one element of A, T_{α} is the discrete topology on X_{α} [8]. Thus (1), or (2) , or (3) is true.

Conversely, suppose (1), or (2), or (3) is satisfied. Then (X_{α}, T_{α}) is weakly Urysohn for each $\alpha \in A$ and $(\prod_{\alpha} X_{\alpha}, S)$ is weakly Urysohn and condition (a), or (b), or (c) above is satisfied, which implies $(\prod_{\alpha \in A} X_{\alpha}, S)$ is s-essentially T_2 [8]. Thus $\left(\prod_{\alpha} X_{\alpha}, S\right)$ is s-essentially Urysohn.

The results above can be combined to obtain the next result.

COROLLARY 3.3. Let (X, T) be s-essentially Urysohn. Then $(X_0^*, \mathcal{Q}(X, T_S)) = (X_0, \mathcal{Q}(X, T)_S) = (X_S, \mathcal{Q}_S(X, T)_S) = (X_S^*, \mathcal{Q}_S(X, T_S)),$ which is Urysohn, and (X, T_c) is s-essentially Urysohn.

Examples can be given of non s-essentially Urysohn spaces whose semiregularization is s-essentially Urysohn.

In 1972 [2] homeomorphisms were generalized to semi homeomorphisms by reaplacing the word open in the definition of homeomorphisms by semi open and properties preserved by semi homeomorphisms were called semi topological properties. In investigations of feebly open sets, it has been shown that certain properties are simultaneously shared by both a space and its feebly induced space. In [15] a topological property simultaneously shared by both a space and the feeblyinduced space was called a feebly property and it was shown that a property is a feeble property iff it is a semi topological property. Thus Theorem 3.1 above shows that ~-essentially Urysohn is a semi topological property.

Also, the investigation of feebly open sets has ledto several new characterizacion of regular open sets and in [11] it was shown that for a space (X, T) , $RO(X, T)$ = ${scl}$ 0 | 0 \in T}. This new characterizacion will be used below to further investigate semiregular, weakly Urysohn, and ~-essentially Urysohn spa€es.

THEOREM 3.4. Let (X, T) be a space and let $0 \in T$. Then $P(\text{sc1 0}) = \text{sc1 } P(0)$ *and* $P_{S}(\text{sc1 0}) = \text{sc1 } P_{S}(0)$.

Proof. Since P^{-1} (scl \mathbf{U}) = scl $P^{-1}(\mathbf{U})$ for each $\mathbf{U} \in \mathbb{Q}(X,T)$ [11], then $P(\text{sc}1 0) = P(\text{sc}1 P^{-1}(P(0))) = P(P^{-1}(\text{sc}1 P(0))) =$ scl $P(0)$ and since $P_S^{-1}(\text{sc1 } \mathbf{U}) = \text{sc1 } P_S^{-1}(\mathbf{U})$ for each $\mathbf{u} \in \mathcal{Q}_{\mathbf{S}}(X, T)$ [12], then, similarly, $P_{\mathbf{S}}(\text{sc}1 \ 0) = \text{sc}1 \ P_{\mathbf{S}}(0)$. **A**

THEOREM 3.5. *Let (X,T) be a space. Then the following are equivalent:* (a) (X, T) *is semiregular*, (b) $(X_0, Q(X, T))$ is semiregular, and (c) $(X_{c}, Q_{c}(X,T))$ is semiregular.

Proof. (a) *implies* (b). Let $0 \in Q(X,T)$. Let $C_v \in 0$. Then $P^{-1}(0) \in T = T_S$, $x \in P^{-1}(0)$, and there exists $0 \in T$ such that $x \in \text{ scl } 0 \subset P^{-1}(Q)$. Then $C_{\chi} \in P(\text{ scl } 0) = \text{ scl } P(0) = 0$ and scl $P(0) \in RO(X_0, Q(X,T))$, which implies $0 \in Q(X,T)_S$. Thus $Q(X,T) = Q(X,T)_S$, which implies $Q(X,T) = Q(X,T)_S$.

(b) implies (c). Let $0 \in Q_S(X,T)$. Let $K_\chi \in [0,1]$. Then $x \in P_S^{-1}(0) = T$ and $C_x \in P(P_S^{-1}(0)) = Q(X,T)_S$ and there eixsts $\mathbf{u} \in \mathcal{Q}(X, T)$ such that $c_x \in \text{sc1 } \mathbf{u} \subset \mathcal{P}(\mathcal{P}_S^{-1}(\mathcal{O}))$. Then $x \in P^{-1}(\text{sc1 } \mathbf{u}) = \text{sc1 } P^{-1}(\mathbf{u}) = P_S^{-1}(0)$ and $K_x \in P_S(\text{sc1 } P^{-1}(\mathbf{u}))$ $= P_S(\text{sc1 } P_S^{-1}(P_S(P^{-1}(\mathbf{U}))) = \text{sc1 } P_S(P^{-1}(\mathbf{U})) = 0$, where $\text{gcd } P_S(P^{-1}(\mathbf{U})) = RO(X_S, Q_S(X, T))$, which implies $0 = Q_S(X, T)_S$. Thus $Q_S(X,T) = Q_S(X,T)_S$, which implies $Q_S(X,T) = Q_S(X,T)_S$.

(c) *implies* (a). Let $0 \in T$. Let $x \in 0$. Then $K_{\chi} \subseteq P_S(0)$ $\mathcal{Q}_c(X,T)$ _c and there exists $\mathcal{V} \in \mathcal{Q}_c(X,T)$ such that

 K_{χ} = scl $\mathcal{V} = P_S(0)$. Then $x = P_S^{-1}(\text{sc1 } \mathcal{V}) = \text{sc1 } P_S^{-1}(\mathcal{V}) = 0$, where scl $P_S^{-1}(\vec{v}) = T_S$, which implies $0 \in T_S$. Thus $T \subset T_S$ and $T = T_S$. **A**

THEOREM 3.6. *The following are equivalent:* (a) *every Urysohn epac e is semiregu l.ar,* (b) *every weakly Urysohn epace is semiregular, and* (c) *every ~-essentially Urysohn spaae is semiregular.*

Proof. (a) *implies* (b). Let *(X,T)* be weakly Urysohn. Then $(X_{\mathbf{o}},\mathfrak{Q}(X,\mathcal{T}))$ is Urysohn and $(X_{\mathbf{o}},\mathfrak{Q}(X,\mathcal{T}))$ is semiregular, which implies (X, T) is semiregular. Clearly, from the results above, (b) implies (c) and (c) implies (a). \blacktriangle

Since not every Urysohn space is semiregular [21], then not every weakly Urysohn or &-essentially Urysohn space is semiregular, which implies not every weakly Urysohn or s -essentially Urysohn space is regular.

THEOREM 3.7. *The following are equivalent:* (a) *every eem i^r equ l.ar ^T* ² *epac ^e is Urysohn,* (b) *every semiregu La»* ^R 1 *spaae is weakly Urysohn, and* (c) *every semiregular ~-essentially T 2 spaae is ~-essentially Urysohn.*

Proof. (a) *implies* (b). Let *(X,T)* be semiregular *R 1 .* Then $(X_{\mathsf{O}},\mathbb{Q}(X,\mathcal{T}))$ is semiregular and T_2 [4], which implies $(X_{\alpha}, Q(X,T))$ is Urysohn and (X,T) is weakly Urysohn.

(**b**) *implies* (**c**). Since every *s*-essentially τ_{2} space is R_{1} [8], then every semiregular *s*-essentially T_{2} space is weakly Urysohn and 4-essentially *T 2 ,* which implies every semiregular δ -essentially T_2 space is δ -essentially Urysohn. Similarly, (c) implies (a). (4) is a compliant that (0)

ef(0) {{{i}} \\\\mn ||\\\...as;0n ;{n ; ;|| ||n }} } {\\\\\) 0 as if

Since not every semiregular *T 2* space is Urysohn [21], then not every semiregular R₁ space is weakly Urysohn and not every semiregular *s-*essentially r_2 space is *s*-essential ly Urysohn. In [10] it was shown that for rim-compact spaces, regular and R₁ are equivalent. Combining this result with those above give the following corollaries.

COROLLARY 3.4. *If (X,T)* is *rim-compact, then the following are equivalent:* (a) *(X,T)* is *T3 ,* (b) *(X,T)* is *Urysohn* (c) (X,T) is T_2 , and (d) (X,T) is semiregular T_2

COROLLARY 3.5. *If (X,T)* is *rim-compact, then the following are equivalent:* (a) *(X,*T) is *regular,* (b) *(X,*T) is *weakly Urysohn,* (c) *(X,*T) is ^R 1 , *and* (d) *(X,*T) is *eemirequ» lar* R_1 .

COROLLARY 3.6. *If (X,*T) is *rim-compact, then the following* are equivalent: (a) (X, T) is regular *&-essentially* T_{0} , (b) (X, T) is δ -essentially *Urysohn*, (c) (X, T) is δ -essen*tially* T_2 , and (d) (X, T) is *b*-essentially T_2 and semiregular.

There are examples of compact, regular, non a-essentially T_{α} spaces.

operad<mark>som 202. g(2021) AREFERENCES</mark>TH
- ago)JapjingA smo2. marsian . D. (1941) bms
Thgus2 .nU .C .listama avdbaM (3002 mago utd

Scaece Amer. Math. Monthly, 70 (1963).

emi-continuity in Topo-

- [1] Biswas, N., *On Ch~~~cte~iz~tiona 06 Semi-continuoua Fun~ tion~,* Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur . 8, 48 (4) (1970), 399-402.
- Crossley, S. and Hildebrand, S., *Semi-topologic~l P~op~ tie-6,* Ftmd. Math., 74 (1972), 233-254. [2]
- Davis, A., Indexed *Systems of Neighborhoods for General Topologic~l* Sp~cea, Amer. Math. Montly, 68 (1961), 886-893. [3J
- [4] Dunham, W., Weakly Hausdorff Spaces, Kyungpook Math. J., 15 (1975), 41-50.
- Dorsett, C., Sem*i*-T_O-Identification Spaces, Semi-Induce *Rel~tion~, And* Semi *Sep~~~tion Axioma,* Bull. Calcutta Math. Soc., 73 (1981),81-86. [5]
- Dorsett, C., Sem*i*-T_o-Iden*ti*fica*ti*on Spaces and S-Essentially T_o Spaces, accepted by Pure Math. Manuscript. [6]
- Dorsett, C., Semi-T_O-Identification Spaces and S-Essen[.] *tially* T1 Spacea, accepted by Eleutheria, Math. J. Sem. P. Zervos. [7]
- [8] Dorsett, C., *S-Essentially* T1 and *S-Essentially* T₂ *Spaces* accepted by Bull. Calcutta Math. Soc.
- Dorsett, C., *Cha~acte~ization~ 06 Space~ Uaing To-Identi-*[9] *fication* Spaces, Kyungpook Math. J., 17 Nº 2 (1977), 175-179.
- [10] Dorsett C., Strongly R₁ Spaces, Kyungpook Math. J.,
21 N² 2 (1981), 155-161.
- [11] Dorsett, C., Properties of Topological Spaces and the Semi-regularization Topology, Proc. Nat. Acad.
- Sci., India, Sec. A., 58 (II) (1988).
[12] Dorsett, C., Semi-To-Identification Spaces, Seminegularization Spaces, Feebly Induced Spaces, and Properties of Topological Spaces, Punjab Univ. J. Math.
- 21 (1988).
[13] Dorsett, C., New Chanacterizations of Topologycal Properties Using Regular Open Sets and r-Topological Properties, Bull. Fac. Sci., Assiut Univ., A. Phys.
Math., 14 N° 1 (1985), 75-88.
[14] Dorsett, C., Feeble Separation Axioms, the Feebly In-
- duced Topology, and Separation Axioms and the
Feebly Induced Topology, Karadeniz Univ. Math. J., 8 (1985), 43-54.
- [15] Dorsett, C., Feebly Open, a-Set, and Semi Closure Indu-
ced Topologies and Feeble Properties, Pure Math.
- Manuscript, 4 (1985), 107-114.
[16] Dorsett, C., Feebly Compact and Locally Feebly Compact
R₁ Spaces and Feeble One-point Compactification
- Spaces. Ricerche di Mat., 35 (1986), 175-189.
[17] Levine, N., Semi-open Sets and Semi-continuity in Topo-Logical Spaces. Amer. Math. Monthly, 70 (1963), $36 - 41.$
- [18] Maheshwari S. and Prasad, R., Some New Separation Axioms,
Ann. Soc. Sci. Bruxelles, 89 (1975), 395-402.
[19] Maheshwari S. and Tapi, U., Note on Some Applications
- of Feebly Open Sets, Madhya Bharati, J. Un. Saugar $(1978 - 1979)$.
- [20] Stone, M., Applications of the Theory of Boolean Rings to General Topology, Trans. A.M.S., 41 (1937), $374 - 481$.
- [21] Willard, S., General Topology, Addison-Wesley (1970). Anstarts. And Jackson Jackson

Dungang W. Weakla Kamsder (1, Sports, Spungande M.,

of the contract of the contract of the contract of

Department of Mathematics and Statistics
Louisiana Tech University
P.O. Box 3189 P.O. Box 3189 Ruston Louisiana 71272-0001 borgerow assembly all allows DOT WWW. SAMON - T-1002 ... D .1292100
NGC 2003 VISION - 129200 AVISTOR u. s. A.

(Recibido en julio de 1985). Massacheste a la presence