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GENERALIZED URYSOHN SPACES
by

Charles DORSETT

Abstract. In this paper two new generalizations of Urysohn
spaces are investigated and used to obtain new characterizations
of Urysohn spaces.

§1. Introduction. In 1961 A. Davis was interested in obtain-
ing properties of topological spaces, which together with
T£-1 would be equivalent to T,, 4 = 1,2, respectively. Davis'
1961 investigation led to the following definitions and dis-
coveries. A spaee (X,T) is R, iff for each 0 « T and each

x € 0, Ix} =0 and (X,T) is R, iff for each pair x,y € X such
that {xT # TyTJ, there exist disjoint open sets U and V such
that {x} = U and {y¥=V [3]. A space (X,T) is T; iff it is
R,.qand T, ,, &=1,2, respectively [3].

The results above led to the introduction of weakly
Urysohn spaces in this paper. A space (X,T) is weakly Ury-
sohn iff for each pair x,y « X such that {xJ # {yJ, there
exist disjoint open sets U and V such that {xJ = u, TyF = v,
and Un0V = ¢.

In 1963 N. Levine introduced semi open sets. Let (X,T)
be a space and let A = X. Then A is semi open, denoted by
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A €8S0(X,T), iff there exists 0 € T such that 0 e A = 0 ,
[17]. In 1970 semi open sets were used to define semi closed
sets, which were used to define the semi closure of a set.
Let (X,T) be a space and let A,B = X. Then A is semi closed
iff X-A is semi open and the semi closure of B, denoted by
scl B, is the intersection of all semi closed sets containing
B[1]. In 1975 [18] T, spaces were generalized to semi-T,
spaces by replacing the word open in the definition of T by
semi open, £ = 0,1,2, respectively. These new separation
axioms raised questions about properties of topological spaces,
which together with semi-T;, would be equivalent to T,, <=0,
1,2, respectively. The investigation of these questions led
to the following definitions and discoveries, which give ad-
ditional answers to Davis' 1961 questions. Let (X,T) be a
space and let R be the equivalence relation on X defined by
xRy iff scl{x} = scl{y}. Then the semi-T -identification
space of (X,T) is (Xg,25(X,T)), where Xg is the set of equiv-
alence classes of R and QS(X,T) is the decomposition topolo-
gy on Xg [5]. The space (X,T) is 4-essentially T, iff
(Xg,2¢(X,T)) is TL and (X,T) is T, iff (X,T) is s-essential-
ly T; and semi-T;, £ =0 [6], < =1 [7], and £ = 2 [8]. These
results led to the introduction of 4-essentially Urysohn
spaces in this paper. The space (X,T) is 4-essentially Ury-
sohn iff (XS,QS(X,T)) is Urysohn.

In this paper weakly Urysohn and 4-essentially Urysohn
spaces are investigated and used to give new characteriza-
tions of Urysohn spaces. Throughout the remainder of this
paper, for each space (X,T) the T -identification space of
(X,T) will be denoted by (XO,Q(X,T)), the natural map from
(X,T) onto (X,,2(X,T)) will be denoted by P, the natural map
from (X,T) onto (XS,QS(X,T)) will be denoted by Pg, and for
each x € X, the element of X, containing x will be denoted
by Cy and the element of Xg containing x will be denoted by

Ky-
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§2. Weakly Urysohn Spaces.

THEOREM 2.1. Let (X,T) be a space. Then the following
are equivalent: (a) for each pair x,y € X such that
IxY = Ty}, there exist disjoint open sets U and V such that
xelU, yeV, and UNTV = ¢, (b) (X,T) is weakly Urysohn,
(c) (XO,Q(X,T)) is Urysohn, (d) (Xg,Qg(X,T)) is weakly Ury-
sohn, (e) every homeomorphic image of (X,T) <is weakly Ury-
sohn, and (f) for each Y = X, (Y,Ty) is weakly Urysohn.

Proof. (a) <implies (b). Let 0 € T and let a« 0. Let
b « X-0. Then {a} # {b} and there exist disjoint open sets
A and B such that a € A and b « B, which implies b & T{a¥.
Thus Taf = 0 and (X,T) is R,. Let x,y « X such that TxT #
TyT. Then there exist disjoint open sets U and V such that
x €U, y<=V, and UNV = ¢. Since (X,T) is Ry, then {x} = U
and Tyt = V.

(b) Zmplies (c). Let Cx,Cy € X, such that C Cy.
Then {x} # {yT and there exist disjoint open sets U and V
such that xF = U, TyF =V, and NV = ¢. Since P is conti-
nuous, closed, and open [9], then C, = P(U) = 2(x,T),
« P(V) = Q(X,T), P(I) = P(U), and P(¥) = P(V). Since

y
1(P(W)) = W for each We T [9], then for each W e T,
Yee@) = PV F@Y = P 1(P(W)) = @, which implies
PiUi nePv) =

(c) implies (d). Let x,y « X such that TxT # {yT. Then
C, # Cy and there exist disjoint open sets U and V such that
that C U, C «V, and YUN" = ¢. Then x « P~ Tw e,
ye<P 1(1r)= T and P1WNP (M =P l@nr ! =
Thus (X,T) is weakly Urysohn. Let I(LL,KVEXS such that
TE(;T#TW. Since Pg is continuous and closed [5], then
Taf # TvF and there exist disjoint open sets U and V such
that TuJeu, WI <=V, and 0NV = ¢. Since Pg is continuous,
closed, and open, and Pé‘(PS(W)) = W for all W< SO(X,T)
[5], then TR, J = Pg(U) = Qg(X,T), TKF=Pg(V) = 2(X,T),
and Pg(M)n Pg(V) = ¢

(d) implies (e). Let x,y = X such that {x} # {yJ.
Then TK,7T # TR;}" and there exist disjoint open sets Y and W
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such that {K,} = U, 1Kyf =V, and 4N ¥ = ¢. Then x « Pé‘(ﬂ)
T, yePg' (™ «T, and PN P35I (M = P31 (W nP5' (7 = o-
Thus (X,T) is weakly Urysohn. The remainder of the proof is

straightforward and omitted.
The straightforward proof that (e) implies (f) and (f)

implies (a) is also omitted. A

THEOREM 2.2. For each o « A let (Xy,Ty) be a nonempty
space and let S be the product topology on 'TTXG. Then
(;EEXQ,S) is weakly Urysohn iff (X ,T,) is gggkly Urysohn
for each a = A.

Proof. Let W be the product topology on the product of
{((Xg) 0»2(Xq,Ty)) | @ =A}. Then ((GEXQ)O,Q(QEXG,S)) and
(;E&(XG)O,W) are homeomorphic [10]. Suppose (;E&XG,S) is
weakly Urysohn. Then ((;E&Xa)o,Q(;EEXa,S)) is Urysohn and
since Urysohn is a topological property [2], then (;E&(XG)O,W)
is Urysohn, which implies ((Xy)go» Q(Xy,Ty)) is Urysohn for

each a « A and (X,,T,) is weakly Urysohn.
Conversely, suppose (X,,T,) is weakly Urysohn for each

o € A. Then ((Xy)g, 2(X4,Ty)) is Urysohn for each a = A,
wh%FF implie? (;EE(Xa)O,W).is grys?hn. ?FFS ((;EEXG)O,
Q(GEAXG,S)) is Urysohn, which implies (acha’s) is weakly
Urysohn. A

THEOREM 2.3. Every regular space is weakly Urysohn.

Proof. If (X,T) is regular, then (X,,2(X,T)) is Tz [9],
which implies (X,,2(X,T)) is Urysohn [21] and (X,T) is weak-
ly Urysohn. A

THEOREM 2.4. Every Urysohn space is weakly Urysohn.

Proof. If (X,T) is Urysohn, then (X,T) is T, [21] and
P:(X,T) + (X5,2(X,T)) is one-to-one, which implies P is a
homeomerphism, (X,,2(X,T)) is Urysohn, and (X,T) is weakly
Urysohn. A

THEOREM 2.5. Every weakly Urysohn space is R1.
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The straightforward proof is omitted. A

In 1937 M. Stone introduced regular open sets. If (X,T)
is a space and A = X, then A is regular open, denoted by
A< RO(X,T), iff A = Int(A) [20]. In the 1937 investigation,
Stone showed that for a space (X,T), RO(X,T) is a base for
a topology Tg on X coarser than T, and called (X,Tg) the
semiregularization of (X,T). A space (X,T) is semiregular
iff T = Tg. Below the semiregularization of a weakly Urysohn
space is investigated.

THEOREM 2.6. Let (X,T) be weakly Urysohn, let
(XO,Q(X,TS)) denote the T,-identification space of (X,Tg),
and let (XS,QS(X TS)) denote the semi-T —zdentzfzcatzon
space of (X,Tg). Then (X , (X, T)s)) = (XO,Q(X Tg)), which is
Urysohn, and (Xg,Qg(X, T)S) = (XS,QS(X T )), which 1s weakly
Urysohn semi-Tq1; which implies (X, TS) is weakly Hausdorff.

Proof. Since (X, T) is weakly Usysohn, then (X,T) is R1
and (X,,2(X,T)g) = (XO,Q(X Tg)) [11] and (Xg,25(X,T)g) =
(Xs,Qs(X Tg)), which is semi-T, [12]. Since (X»2(X,T)) is
Urysohn, then (X,,2(X,T)g) is Urysohn [13] Thus (X*,Q(X,TSD
is Urysohn, which implies (X,Tg) is weakly Urysohn. Since
(Xg,2g(X,T)) is weakly Urysohn, then (XS,QS(X Ts)) is weakly
Urysohn. A

Examples can be given of a non weakly Urysohn spaces
whose semiregularization is weakly Urysohn.

§3. S-Essentially Urysohn Spaces. In 1978 the semi closure
operator was used to define feebly open sets, which were
used to define feebly closed sets and the feebly closure of
a set. Let (X,T) be a space and let A,B,C = X. Then A is
feebly open, denoted by A € FO(X,T), iff there exists 0<€ T
such that @ = A = scl 0, B is feebly closed iff X-B is
feebly open, and the feebly closure of C is the intersection
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of all feebly closed sets containing C[19]. Further investi
gation of feebly open sets showed that for a space (X,T),
FO(X,T) is a topology on X and T = FO(X,T) = FO(X,FO0(X,T))
[14]. Below feebly induced spaces are used to obtain addi-
tional characterizations of s-essentially Urysohn spaces.

THEOREM 3.1. Let (X,T) be a space. Then the following
are equivalent: (a) (X,T) is s-essentially Urysohn, (b) (X,T)
is weakly Urysohn and s-essentially TZ’ (c) for each Y < X,
(Y,Ty) is s-essentially Urysohn, (d) (X,T) is weakly Urysohn
and s-essentially T,, (e) (X,T) is weakly Urysohn and
Xo = XS’ (f) (X,FO(X,T)) Zs s-essentially Urysohn, and
(g) (X,FO(X,T)) Zis weakly Urysohn.

Proof. Let (Xés,Qs(X,FO(X,T))) denote the semi-T,-iden-
tification space of (X,FO0(X,T)).

(a) <Zmplies (b).Since (X,T) is 4-ssentially Urysohn,
then (Xg,Q2g(X,T)) is Urysohn. Thus (XS,QS(X,T)) is weakly
Urysohn and T, which implies (X,T) is weakly Urysohn and
4-essentially Tj.

(b) Zmplies (c). Since (X,T) is 4-essentially TZ, then
(X,T) is s-essentially T, and X, = Xg [6] and since (X,T) is
weakly Urysohn, then (X,,2(X,T)) is Urysohn. Thus
(XS,QS(X,T)) = (X5,2(X,T)) is Urysohn, which implies (X,T)
is s-essentially Urysohn. Let ¥ < X. Then (Y,Ty) is weakly
Urysohn and 4-essentially T, [8], which implies (Y,Ty) is
s-essentially Urysohn.

(c) implies (d). Since X = X, then (X,T) is 4-essential-
ly Urysohn. Then by the argument above, (X,T) is weakly Ury-
sohn and 4-essentally T, which implies (X,T)} is weakly Ury-
sohn and s-essentially T,.

Clearly (d) implies (e).

(e) implies (f). Since X, = Xg and (X,T) is weakly Ury-
sohn, then (XS,QS(X,T)) = (XO,Q(X,T)) is Urysohn and
(XS,FO(XS,QS(X,T))) is Urysohn [15]. Then (X‘S,QS(X,FO(X,TD)
= (Xg,F0(Xg,25(X,T))) [16] is Urysohn, which implies
(X,FO(X,T)) is s-essentially Urysohn.

Clearly by the arguments above, (f) implies (g).

154



(g) implies (a). Since (X,FO(X,T)) is weakly Urysohn,
then (X,FO0(X,T)) is R1, which implies (X,FO(X,T)) is 4-essen-
tially T, [16]. Then by the argument above (X,FO(X,T)) is
4-essentially Urysohn and (XS,FO(XS,QS(X,T))) =
(Xﬂs,Qs(X,FO(X,T))) is Urysohn, which implies (XS,QS(X,T))
is Urysohn [15] and (X,T) is s-essentially Urysohn. A

Combining the results above gives the following coro-
llary.

COROLLARY 3.1. Every regular s-essentially T, space is
s-essentially Urysohn.

THEOREM 3.2. Let (X,T) be a space. Then the following
are equivalent: (a) (X,T) is Urysohn, (b) (X,T) is weakly
Urysohn and T,, and (c) (X,T) is s-essentially Urysohn and
semi-To.

Proof. Clearly (a) implies (b).

(b) implies (c). Since (X,T) is To» then (X,T) is
4-essentially T, and semi-T,. Thus (X,T) is weakly Urysohn
and s-essentially T,, which implies (X,T) is 4-essentially
Urysohn.

(c) implies (a). Since (X,T) is s-essentially Urysohn,
then (XS,QS(X,T)) is Urysohn and since (X,T) is semi-T,, then
Ps is one-to-one. Thus Ps is a homeomorphism and (X,T) is
Urysohn. A

Combining definitions and results above with the fact
that for a space (X,T), (X,,2(X,T)) is T, [21] and
(Xg,2g(X,T)) is semi-T [5] gives the next result.

COROLLARY 3.2. Let (X,T) be a space. Then (X,T) is
weakly Urysohn iff (XO,Q(X,T)) is weakly Urysohn and (X,T) is
s-essentially Urysohn iff (XS,QS(X,T)) is 4-essentially Ury-

sohn.

THEOREM 3.3. For each o €A, let (X,,T,) be a nonempty
space, let S be the product topology on ;E&xa, and let
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B = {a A lTa is not the indiscrete topology on Xa}' Then
(;nga,S) is s-essentially Urysohn iff (1) (X ,T ) is Urysohn
for all a €A, or (2) B is finite and for each a « A and each
x < Xa, T;;T =S Ta’ or (3) (Xy,Ty) is s-essentially Urysohn

a
for all o e A, B ie finite, X, is a singleton set for all

[0 )
o « A-B, and except for one element of A, 9 18 the discrete
topology on Xa'

Proof. Suppose (&ERXG’S) is 4-essentially Urysohn. Then
(;EEXG,S) is weakly Urysohn and 4-essentially Tz.Thml(&aﬂh)
is weakly Urysohn for all ¢ € A and since (&EEXa’S) is 4-es-
sentially TZ’ then (a) (X,,Ty) is T2 for all o = A, or (b) B
is finite and for each a € A and each Xy e:Xa, T?;T's Ta’ or
(c) (xa’Ta) is 4-essentially T2 for all a « A, B is finite,
Xa is a singleton set for all o « A-B, and, except for one
element of A, Ta is the discrete topology on Xa [8]. Thus (1),
or (2), or (3) is true.

Conversely, suppose (1), or (2), or (3) is satisfied.
Then (X ,T,) is weakly Urysohn for each a = A and (;EE X,»S)
is weakly Urysohn and condition (a), or (b), or (c) above is
satisfied, which implies (;EEXG’S) is 4-essentially T, [8].
Thus (;E&XG,S) is 4-essentially Urysohn. A

The results above can be combined to obtain the next

result.

COROLLARY 3.3. Let (X,T) be s-essentially Urysohn. Then
* *
(X550(X,Tg)) = (X, QX,Tg) = (Xg,06(X,T)g) = (Xg,0(X,Tg)),
which is Urysohn, and (X,Ts) 18 4-essentially Urysohn.

Examples can be given of non 4-essentially Urysohn
spaces whose semiregularization is s-essentially Urysohn.

In 1972 [2] homeomorphisms were generalized to semi
homeomorphisms by reaplacing the word open in the definition
of homeomorphisms by semi open and properties preserved by
semi homeomorphisms were called semi topological properties.
In investigations of feebly open sets, it has been shown
that certain properties are simultaneously shared by both a
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space and its feebly induced space. In [15] a topological
property simultaneously shared by both a space and the fee-
bly induced space was called a feebly property and it was
shown that a property is a feeble property iff it is a semi
topological property. Thus Theorem 3.1 above shows that
s-essentially Urysohn is a semi topological property.

Also, the investigation of feebly open sets has ledto
several new characterizacion of regular open sets and in
[11] it was shown that for a space (X,T), RO(X,T) =
{sc1 0 |0 = T}. This new characterizacion will be used below
to further investigate semiregular, weakly Urysohn, and
4-essentially Urysohn spaees.

THEOREM 3.4. Let (X,T) be a space and let 0 = T. Then
P(scl 0) = scl P(0) and Ps(scl 0) = scl PS(O)

Proof. Since P~ (scl U = scl P (‘u) for each Y=9Q(X,T)
[11], then P(scl 0) = P(scl P~ (P(O))) = P(P” (scl P(0))) =
scl P(0) and since P§1(sc1 U) = scl P§1(U) for each
Ue QS(X,T) [12], then, similarly, Ps(scl 0) = scl Ps(O). A

THEOREM 3.5. Let (X,T) be a space. Then the following
are equivalent: (a) (X,T) is semiregular, (b) (XO,Q(X,T))
i8 semiregular, and (c) (XS,QS(X,T)) 18 semiregular.

Proof. (a) implies (b). Let 0 « Q(X,T). Let Cx = 0.
Then P'1(0) €T =Tg, x = P'1(0), and there exists 0 « T such
that x« scl 0 < P'l(Q). Then C, « P(scl 0) = scl P(0) =0
and scl P(0) « RO(XO,Q(X,T)), which implies 0 = Q(X,T)g. Thus
2(X,T) = Q(X,T)g, which implies Q(X,T) = Q(X,T)g.

(b) implies (c). Let 0 < QS(X T). Let Ky € 0. Then
X Ps (0) & T and C e P(PS (0)) = Q(X T)s and there eixsts
U< Q(X T) such that C c scl U c P(Ps (0)). Then
X (scl Y) = scl P~ (u) c P (0) and K, € Ps(scl P (u))
Ps(scl P3P iw))) = sci ps(p Tw) =0, where
scl Pg(P” (W) = RO(Xg,Qg(X,T)), which implies 0 € Qg(X,T)g.
Thus QS(X,T) s QS(X,T)S, which implies QS(X,T) = QS(X,T)S.

(c) implies (a). Let 0« T. Let x« 0. Then Kx < Pg(0)
< QS(X,T)S and there exists 7 « QS(X,T) such that
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Ky cscl’V::P(O) ThenxcP (scl'V’)=sc1P ('V)t:O
where scl Ps (V) = Tg, which 1mp11es 0 TS Thus T < TS and
T = TS’ A

THEOREM 3.6. The following are equivalent: (a) every
Urysohn space is semiregular, (b) every weakly Urysohn space
is semiregular, and (c) every s-essentially Urysohn space
18 semiregular.

Proof. (a) implies (b). Let (X,T) be weakly Urysohn.
Then (XO,Q(X,T)) is Urysohn and (XO,Q(X,T)) is semiregular,
which implies (X,T) is semiregular. Clearly, from the results
above, (b) implies (c) and (c) implies (a). A

Since not every Urysohn space is semiregular [21], then
not every weakly Urysohn or s-essentially Urysohn space is
semiregular, which implies not every weakly Urysohn or s-es-
sentially Urysohn space is regular.

THEOREM 3.7. The following are equivalent: (a) every
semiregular T, space is Urysohn, (b) every semiregular R1
space is weakly Urysohn, and (c) every semiregular s-essen-
tially T2 space is g-essentially Urysohn.

Proof. (a) implies (b). Let (X,T) be semiregular R1.
Then (KO,Q(X,T)) is semiregular and T2 [4], which implies
(XO,Q(X,T)) is Urysohn and (X,T) is weakly Urysohn.

(b) implies (c). Since every s-essentially T2 space is
R1 [8], then every semiregular s-essentially T2 space is
weakly Urysohn and 4-essentially TZ, which implies every
semiregular 4-essentially T2 space is 4-essentially Urysohn.
Similarly, (c) implies (a). 4

Since not every semiregular T2 space is Urysohn [21],
then not every semiregular R1 space is weakly Urysohn and
not every semiregular s-essentially T2 space is 4-essential-
ly Urysohn. In [10] it was shown that for rim-compact spaces,
regular and R1 are equivalent. Combining this result with
those above give the following corollaries.
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COROLLARY 3.4. If (X,T) is rim-compact, then the fol-
lowing are equivalent: (a) (X,T) is Tz, (b) (X,T) Zs Urysohn
(c) (X,T) is TZ’ and (d) (X,T) <Zs semiregular'Tz.

COROLLARY 3.5. If (X,T) ie rim-compact, then the fol-
lowing are equivalent: (a) (X,T) is regular, (b) (X,T) <s
weakly Urysohn, (c) (X,T) <s R1, and (d) (X,T) Zs semiregu-

lar R1.

COROLLARY 3.6. If (X,T) <is rim-compact, then the fol-
lowing are equivalent: (a) (X,T) is regular s-essentially
Tos (b) (X,T) is s-essentially Urysohn, (c) (X,T) is s-essen
tially T,, and (d) (X,T) Zs s-essentially T, and semiregular.

There are examples of compact, regular, non 4-essen-
tially T0 spaces.
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