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ON THE INTERPOLATION BETWEEN CERTAIN THEOREMS
ON FOURIER TRANSFORMS

by

M. S. YOUN IS

1. Introduction. It is well known that if 6(x) belongs to
LP(R), 1 < P ~ 2, then the Hausdorff-Young inequality ([1],
Theorem 74) asserts that its Fourier transform feu) belongs
to LPt (R), where

1 +.1.-=1YJT P

G.H. Hardy and J.E. Littlewood ([1] Theorems 79,80) proved
two variations of the Hausdorff-Young inequality by employ-
ing weight functions in LP(R) and LP' (R), respectively.

Our aim in this paper is to apply the Stein-Weiss inter-
polation theorem ([2], Corollary 5.5.4, p.120), to these three
theorems and show the effect of this interpolation on the ex-

Aponents of 6 and 6 respectively.

2. Definitions and Notations. All the definitions and nota-
tions used in this work are standard and well established in
the literature. We follow [1] and [2] for the basic results
that will be needed in due course. Thus LP(R) denotes the
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space of equivalence classes of functions whose pth power is
Lebesgue integrable on the real line R.

Let W be a positive non decreasing function. Then w(x)

is called a weight function. The measure space L (U,wdu) with
Prespect to the weight function wand the measure du on the

domain U is the LP space of those functions 6(x) such that

JI61PWdu < 00 •

The Fourier-transform of the function 6(x) E LP(R) is the
function

A 1 f --<-xu6(u) = z:rr R 6(x)e. dx

with the usual extension of this definition to functions of
several variables in Rn.

It would be convenient for further reference to state
the following four theorems.

THEOREM 2.A (Hausdorff-Young). Let 6(x) belong to LP(R),
1 < P ~ 2. Then its Fourier transform 6Cu) belongsto LP

I

1 12 ~ p' < 00 where - + - = 1.
P p'

THEOREM 2.B ([lJ, p.l08). Let 6(x)qxq-2 (q>2) belong to

L 1 (R). Then 6 (u) exists and belongs to Lq (R). Furthermore

k(q) being constant.

THEOREM 2.C ([lJ, p.ll0). Let nex) belong to LPCR),
1 < P < 2. Then feu) exists and

where k(p) is constant.

THEOREM 2.0 (Stein-Weiss Theorem [2J p.120). Assume that
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1 < Po' Pl' qo' ql < 00 and that

T: Lpo (U, wodj.l) -+ Lqo (V, wody)

T:Lp1 (U,w1dj.l) -+ Lq1 (V,w1dy)

with norms Mo and M1 respectiveZy. Then

with norm M satisfying

M Ml-8M8
~ 0 1

where
1
P

1 - 8
-- +
Po

8
P'1

1
q

and
W

W 0<8<1.

3. Main Results. In this section we shall apply the Stein-
Weiss Theorem (Z.D) to Theorems Z.A and Z.B, then we will
apply it t (Z.A) and (z.e). Thus for the first phase of
application we have (for Hausdorff-Young theorem)

u. = V = R, dj.l = dx , dY du ,

--E-
p-l

W o 1.

For Theorem (Z.B) we have

-p 1 = q 1 = q p' = -.E.-1 = q,p-

q- Z p'-Z -
W1 = x = x , w1

With these notations Theorem Z.D asserts that the Fourier
transform 6(U) is a linear operator T from Lp(R,wdx) into
LQ(R,wdu), where
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1
P

1 - 6 6
p+p-r'

1
Q

1 - 6 + 6
po pr' w =

and
w 1.

These relations yield
Q p'

and hence we arrive at

fI6cu)IP'dU ~ AJI6CX) IP/XP-2,P6Ip'dx

Af I 6C x) I P I x I C 2 - P ) P6 I P , d x •

To see the relation between p and P we notice that

1
P

1 - 6 6p+pr _1 -_6 +.:....6-'.!C p_---"1..L)
P P

1 + Cp-2)6
P P

Since 6 is always positive and p < 2, then the second part
on the right side of the last equation is negative, which
indicates that

1 1
P < P

and hence P > p. Thus we have proved the following theorem.

THEOREM 3.1. Let 6Cx) beZong to LPCR), 1 < P < 2. Then
for P > p, the Fourier transform 6Cu) beZongs to LP' CR) and

This theorem shows the interplay between the power of '
6Cx) and that of the weight function wCx). Our next step is
to show in a similar manner the interplay between the power
of the Fourier transform 6CU) and the weight function as-
sociated with it. For this purpose we apply the Stein-Weiss
Theorem to C2.A) and C2.e). In this case we have P1 =P =Q1'

- p-2w1 = 1, and w1 = Cu ). Then
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1 1 - 8 + 8 1 -8 8
if +

Po P1 P P

Thus P p, and

1 1 - 8 8 1-8 8 1-8 8(p'-1) 1 +(p'-Z)8
"Q: -- + 7 + 7 + =prqo q1 P pi pi

But p' > Z, and 8 > 0, hence

i.e. Q < p' .

Now in this case, W =
proved.

and w = lup-Z,Q8Ip . Thus we have

THEOREM 3.2. Let 6(x.) belong to LP(R), 1 < P -: Z. Then

where p' > Q.

One can also see in this case the effect of the Q-th
.IIpower of n(u) on that of the weight function W.

REMARK 3.3. If we employ Parseval's identity instead
of the Hausdorff-Young inequality in Theorem 3.1 we get

1
P

1 - 8 8
-Z- + P" 1

Q
1 - 8 8
-Z- +-p'

which shows that P and Q are equal in this case. But
1 1 Z8
if + "Q: = 1-8 + pr

and hence P, Q are conjugate only if 8 = Zip', i.e. for
p = Z, which is quite reasonable an expectation. On the
other hand if we use Parseval's identity in Theorem 3.Z we
arrive at

1 1 1 - 8 + 8
P Q -Z-

P
and thus

1 + 1 1-8 + Z8
P "Q: p ,
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which shows that P and Q are not conjugate in this case
except for the special value P = Q = 2.

Finally we would like to point out that the Setin-
Weisse interpolation theorem is valid for vector-valued
functions in a general Banach space and this suggests the
task of generalizing Hardy and Littlewood theorems ([1],
Theorem 79, 80) in that direction.

*

REFERENCES

[1 ]

[ 2)

Titchmarsh, E.C., TheoAy 06 FoUAleA rnteg~al~, 2nd Ed.,
Oxford University Press, 1948.

Bergh, J. and Lofstrom, J., rnte~polatlon SpaQe~, Sprin-
ger Verlag, 1976.

*

VepaJr.tmenta6 Mathemali~
YaJT.mOUQ UniVeM1ty
r~bld - JMdan.

(Recibido en julio de 1984, la version revisada en octubre
de 1987).

208


