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ON THE INTERPOLATION BETWEEN CERTAIN THEOREMS
ON FOURIER TRANSFORMS

by

M. S. YOUNIS

1. Introduction. It is well known that if {§(x) belongs to
LP(R), 1 < p < 2, then the Hausdorff-Young inequality ([1],
Theorem 74) asserts that its Fourier transform @(u) belongs
to Lp'(R), where

G.H. Hardy and J.E. Littlewood ([1] Theorems 79,80) proved

two variations of the Hausdorff-Young inequality by employ-
]

ing weight functions in LP(R) and LP (R), respectively.

Our aim in this paper is to apply the Stein-Weiss inter-
polation theorem ([2], Corollary 5.5.4, p.120), to these three
theorems and show the effect of this interpolation on the ex-

ponents of § and z respectively.

2. Definitions and Notations. All the definitions and nota-
tions used in this work are standard and well established in
the literature. We follow [1] and [2] for the basic results
that will be needed in due course. Thus LP(R) denotes the
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space of equivalence classes of functions whose pth power is
Lebesgue integrable on the real line R.

Let w be a positive non decreasing function. Then w(x)
is called a weight function. The measure space Lp(U,wdu)wiﬂ1
respect to the weight function w and the measure du on the
domain U is the LP space of those functions §(x) such that

Jlﬁlpwdu <,

The Fourier-transform of the function §(x) = LP(R) is the
function

A~

Jw = g [ g0e

with the usual extension of this definition to functions of

. . n
several variables in R".

It would be convenient for further reference to state

the following four theorems.

THEOREM 2.A (Hausdorff-Young). Let §(x) belong to Lp(R),

'
1 < p < 2. Then its Fourier transform §(u) belongs to LP s

1 1
2 & p' < o where E-+ET = 1.

THEOREM 2.B ([1], p.108). Let 5(x)qxq'2 (¢>2) belong to
L1(R). Then f§(u) exists and belongs to L9 (R). Furthermore

[ 13001% < k(@] 1500194 2ax
R R
k(q) being constant.

THEOREM 2.C ([1], p.110). Let §(x) belong to LP(R),
1 < p< 2. Then f(u) exists and

[ 13 1PlelP 2w < ke[ 1400 1Pax
R R
where k(p) is constant.

THEOREM 2.D (Stein-Weiss Theorem [2] p.120). Assume that
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1< Pos P> 952 21 < » and that

T:Lpo(u,wodu) — LQO(V,Qody)
T:Lp1(U,w1du) — Lq1(V,@1dY)

with norms My and My respectively. Then
T:Lp(u,wdu) - Lq(V,&)dY)

with norm M satisfying

1-6,,0
M < Mo M1
where
118,06  1_18, 8
p Po p1 q a5 a4
and
ol wg(T'e)/Pow$9/P1
W = wg(1-9)/qow$9/Q1’ 0 <8 < 1.

3. Main Results. In this section we shall apply the Stein-
Weiss Theorem (2.D) to Theorems 2.A and 2.B, then we will
apply it to (2.A) and (2.C). Thus for the first phase of
application we have (for Hausdorff-Young theorem)

w=V=R, du=dx, dy = du,

a = 1 = JE S = W =
PO = P, qO P p_] » wO wO 1.

L
wy = 2L 2 - PR Wy = 1.

s

With these notations Theorem 2.D asserts that the Fourier
transform g(u) is a linear operator T from Lp(R,wdx) into

LQ(R,wdu), where
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1_1-6,0 1 _1-8,.58 _ 1.p-2 pb
= -— B w_
A A i Lt
and
w =1
These relations yield
9 = p’

and hence we arrive at
¢ ’
(13 1P du < A[1§00 P12 P0/P ax

- A[1§00 1 PIx| GrPIPO/P dx

To see the relation between p and P we notice that

1_1-6,86 _1-8,8(p-1) _1, (p-2)6
P PP p P P p

Since 6 is always positive and p < 2, then the second part
on the right side of the last equation is negative, which

indicates that

| =
T |-
-

and hence P > p. Thus we have proved the following theorem.

THEOREM 3.1. Let §(x) belong to L'(R), 1 < p < 2. Then
!
for P > p, the Fourier transform f(u) belongs to LP (R) and

[I3 17 au < Af 15 | P12 GPPPay

This theorem shows the interplay between the power of
§(x) and that of the weight function w(x). Our next step is
to show in a similar manner the interplay between the power
of the Fourier transform f(u) and the weight function as-
sociated with it. For this purpose we apply the Stein-Weiss
Theorem to (2.A) and (2.C). In this case we have P =P =44,
w, =1, and Q1 = (up'z). Then
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Thus P = p, and

=
]
e
21
I
+

But p' > 2, and 6 > 0, hence
F>or.  de. Q<p
27 p

Now in this case, w = 1 and w = lup'lee/p . Thus we have

proved.

THEOREM 3.2. Let §(x) belong to LP(R), 1 < p < 2. Then

[131216) 2274y ¢ 4[| 4|Pax

where p' > Q.

One can also see in this case the effect of the Q-th
power of ?(u) on that of the weight function w.

REMARK 3.3. If we employ Parseval's identity instead
of the Hausdorff-Young inequality in Theorem 3.1 we get

1-6 ., 6 1 _1-8
Pt Q -

K i

1 B
P e
which shows that P and Q are equal in this case. But

1 1
=1- +
¥l 0

and hence P, Q are conjugate only if 8 = 2/p', i.e. for
p = 2, which is quite reasonable an expectation. On the
other hand if we use Parseval's identity in Theorem 3.2 we

arrive at

and thus
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which shows that P and Q are not conjugate in this case
except for the special value P = Q = 2.

Finally we would like to point out that the Setin-
Weisse interpolation theorem is valid for vector-valued
functions in a general Banach space and this suggests the
task of generalizing Hardy and Littlewood theorems ([1],
Theorem 79, 80) in that direction.
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