Revista Colombiana de Matemáticas Vol. XXII (1988), págs. 203-208

ON THE INTERPOLATION BETWEEN CERTAIN THEOREMS ON FOURIER TRANSFORMS

by

M. S. YOUNIS

1. Introduction. It is well known that if f(x) belongs to $L^p(R)$, $1 , then the Hausdorff-Young inequality ([1], Theorem 74) asserts that its Fourier transform <math>\hat{f}(u)$ belongs to $L^{p'}(R)$, where

$$\frac{1}{p'} + \frac{1}{p} = 1$$

G.H. Hardy and J.E. Littlewood ([1] Theorems 79,80) proved two variations of the Hausdorff-Young inequality by employing weight functions in $L^{p}(R)$ and $L^{p'}(R)$, respectively.

Our aim in this paper is to apply the Stein-Weiss interpolation theorem ([2], Corollary 5.5.4, p.120), to these three theorems and show the effect of this interpolation on the exponents of f and \hat{f} respectively.

2. Definitions and Notations. All the definitions and notations used in this work are standard and well established in the literature. We follow [1] and [2] for the basic results that will be needed in due course. Thus $L^{p}(R)$ denotes the space of equivalence classes of functions whose pth power is Lebesgue integrable on the real line R.

Let w be a positive non decreasing function. Then w(x) is called a *weight function*. The measure space $L_p(U,wdu)$ with respect to the weight function w and the measure du on the domain U is the L^p space of those functions $\delta(x)$ such that

$$\int |\delta|^p w du < \infty$$

The Fourier-transform of the function $f(x) \in L^p(\mathbb{R})$ is the function

$$\hat{\delta}(u) = \frac{1}{2\pi} \int_{\mathcal{R}} \delta(x) e^{-ixu} dx$$

with the usual extension of this definition to functions of several variables in R^{n} .

It would be convenient for further reference to state the following four theorems.

THEOREM 2.A (Hausdorff-Young). Let f(x) belong to $L^{p}(R)$, $1 . Then its Fourier transform <math>\hat{f}(u)$ belongs to $L^{p'}$, $2 \leq p' < \infty$ where $\frac{1}{p} + \frac{1}{p'} = 1$.

THEOREM 2.B ([1], p.108). Let $f(x)^q x^{q-2}$ (q>2) belong to $L^1(R)$. Then f(u) exists and belongs to $L^q(R)$. Furthermore

$$\int_{\mathcal{R}} |\hat{\mathfrak{f}}(u)|^{q} du \leqslant k(q) \int_{\mathcal{R}} |\mathfrak{f}(x)|^{q} |x|^{q-2} dx$$

k(q) being constant. The side to cool to odd words bus energies

THEOREM 2.C ([1], p.110). Let f(x) belong to $L^p(R)$, 1 \hat{f}(u) exists and

$$\int_{\mathcal{R}} \left| \hat{\delta}(u) \right|^{p} |u|^{p-2} du \leq k(p) \int_{\mathcal{R}} \left| \delta(x) \right|^{p} dx$$

where k(p) is constant. [1] but [1] wollot by subtracting the set

THEOREM 2.D (Stein-Weiss Theorem [2] p.120). Assume that

 $1 < p_0, p_1, q_0, q_1 < \infty$ and that

$$\begin{split} & T: L_{p_0}(U, w_0 d\mu) \rightarrow L_{q_0}(V, \bar{w}_0 d\gamma) \\ & T: L_{p_1}(U, w_1 d\mu) \rightarrow L_{q_1}(V, \bar{w}_1 d\gamma) \end{split}$$

with norms M_0 and M_1 respectively. Then

$$T:L_p(U,wd\mu) \rightarrow L_q(V,\bar{w}d\gamma)$$

with norm M satisfying

$$M \leq M_0^{1-\theta} M_1^{\theta}$$

where

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} , \qquad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$$

and

$$w = w_0^{p(1-\theta)/p_0} w_1^{p\theta/p_1}$$
$$\bar{w} = \bar{w}_0^{q(1-\theta)/q_0} \bar{w}_1^{q\theta/q_1}, \qquad 0 < \theta < 1.$$

3. Main Results. In this section we shall apply the Stein-Weiss Theorem (2.D) to Theorems 2.A and 2.B, then we will apply it to (2.A) and (2.C). Thus for the first phase of application we have (for Hausdorff-Young theorem)

$$u = V = R$$
, $d\mu = dx$, $d\gamma = du$,
 $p_0 = p$, $q_0 = p' = \frac{p}{p-1}$, $w_0 = \bar{w}_0 = 1$

For Theorem (2.B) we have

$$p_1 = q_1 = q = p' = \frac{p}{p-1} = q,$$

$$w_1 = x^{q-2} = x^{p'-2}, \quad \bar{w}_1 = 1$$

With these notations Theorem 2.D asserts that the Fourier transform $\hat{\delta}(u)$ is a linear operator T from $L_p(\mathbf{R}, wdx)$ into $L_0(\mathbf{R}, \bar{w}du)$, where

$$\frac{1}{p} = \frac{1-\theta}{p} + \frac{\theta}{p^{\prime}}, \quad \frac{1}{Q} = \frac{1-\theta}{p^{\prime}} + \frac{\theta}{p^{\prime}}, \quad w = |x^{p^{\prime}-2}| \frac{p\theta}{p^{\prime}}$$

and

$$\bar{w} = 1$$

These relations yield

Q = p'

and hence we arrive at

$$\int |\hat{\delta}(u)|^{p'} du \leq A \int |\delta(x)|^{p} |x^{p'-2}|^{P\theta/p'} dx$$
$$= A \int |\delta(x)|^{p} |x|^{(2-p)P\theta/p'} dx.$$

To see the relation between p and P we notice that

$$\frac{1}{p} = \frac{1-\theta}{p} + \frac{\theta}{p^{\star}} = \frac{1-\theta}{p} + \frac{\theta(p-1)}{p} = \frac{1}{p} + \frac{(p-2)\theta}{p}$$

Since θ is always positive and p < 2, then the second part on the right side of the last equation is negative, which indicates that

$$\frac{1}{P} < \frac{1}{p} ,$$

and hence P > p. Thus we have proved the following theorem.

THEOREM 3.1. Let f(x) belong to $L^{p}(R)$, 1 . Thenfor <math>P > p, the Fourier transform f(u) belongs to $L^{p'}(R)$ and

$$\int |\hat{\delta}(u)|^{p'} du \leq A \int |\delta(u)|^{p} |x|^{(2-p) P\theta/p} dx$$

This theorem shows the interplay between the power of f(x) and that of the weight function w(x). Our next step is to show in a similar manner the interplay between the power of the Fourier transform f(u) and the weight function associated with it. For this purpose we apply the Stein-Weiss Theorem to (2.A) and (2.C). In this case we have $p_1 = p = q_1$, $w_1 = 1$, and $\bar{w}_1 = (u^{p-2})$. Then

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} = \frac{1-\theta}{p} + \frac{\theta}{p}$$

Thus P = p, and

$$\frac{1}{Q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1} = \frac{1-\theta}{p'} + \frac{\theta}{p} = \frac{1-\theta}{p'} + \frac{\theta(p'-1)}{p'} = \frac{1}{p'} + \frac{(p'-2)\theta}{p'}$$

But p' > 2, and $\theta > 0$, hence

$$\frac{1}{Q} > \frac{1}{p'}$$
, i.e. $Q < p'$.

Now in this case, w = 1 and $\bar{w} = |u^{p-2}|^{Q\theta/p}$. Thus we have proved.

THEOREM 3.2. Let f(x) belong to $L^p(R)$, 1 . Then

$$\int |\hat{\delta}|^{Q} |u|^{(p-2)Q\theta/p} du \leq A \int |\delta|^{p} dx$$

where p' > 0.

One can also see in this case the effect of the Q-th power of f(u) on that of the weight function \bar{w} .

REMARK 3.3. If we employ Parseval's identity instead of the Hausdorff-Young inequality in Theorem 3.1 we get

$$\frac{1}{P} = \frac{1-\theta}{2} + \frac{\theta}{p'}, \qquad \frac{1}{Q} = \frac{1-\theta}{2} + \frac{\theta}{p'}$$

which shows that P and Q are equal in this case. But

$$\frac{1}{p} + \frac{1}{Q} = 1 - \theta + \frac{2\theta}{p^*}$$

and hence P, Q are conjugate only if $\theta = 2/p'$, i.e. for p = 2, which is quite reasonable an expectation. On the other hand if we use Parseval's identity in Theorem 3.2 we arrive at

$$\frac{1}{p} = \frac{1}{Q} = \frac{1-\theta}{2} + \frac{\theta}{p} ,$$

and thus

$$\frac{1}{p} + \frac{1}{Q} = 1 - \theta + \frac{2\theta}{p} ,$$

which shows that P and Q are not conjugate in this case except for the special value P = Q = 2.

Finally we would like to point out that the Setin-Weisse interpolation theorem is valid for vector-valued functions in a general Banach space and this suggests the task of generalizing Hardy and Littlewood theorems ([1], Theorem 79, 80) in that direction.

REFERENCES

 Titchmarsh, E.C., Theory of Fourier Integrals, 2nd Ed., Oxford University Press, 1948.
Bergh, J. and Löfström, J., Interpolation Spaces, Springer Verlag, 1976.

Department of Mathematics Yarmouk University Irbid - Jordan.

(Recibido en julio de 1984, la versión revisada en octubre de 1987).

and thus word on your conjugated only if you are for a set of the set of the