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Abstract. The purpose of this note is to point out that
the subset exchange property of matroid "bases is a
special case of a general vector exchange property, satis-
fied by submodular systems.

Introduction. That the Steinitz exchange property for bases
of a matroid is really a special case of a subset exchange
property for pairs of bases was proved, independently, by
Woodall [9], Greene [5] and 5rylawski [lJ. Whereas [5] and
[1] use a lengthy set-theoretic approach, the argument in
[8] is based on Edmonds' matroid intersection theorem [2].
Employing the matroid sum theorem, the dual of the inter-
section theorem, instead, McDiarmid [6] was the able to,
further simplify the proof.

The purpose of this note is to point out that the sub-
set exchange property of matroid bases in turn is a special
case of a general vector exchange property, satisfied by
submodular systems. This exchange property rests on the
fact that a polyhedral analogue of the matroid sum theorem
exists for general submodular systems.

The submodular systems, considered here, are convex

209



polytopes determined by normalized submodular functions on
distributive lattices of subsets. Passing to submodular
functions on crossing families of subsets would not result
in greater generality, as Fujishige [4J has shown that the
collection of bases of a submodular polytope with respect
to a crossing family containing the ground set coincides
with the collection of bases of an unique submodular system
as defined here, unless the former collection was empty.

Preli.inaries. In this section, we list some fundamental
properties of submodular systems as introduced by Fujishige
[3]. The properties are straightforward generalizations of
well-known properties of polymatroids (e.g., see [Z] or [~).

Let E be a finite set and ~ ~ ZE a family of subsets
with 0, E £~, so that ~ is closed under taking unions and
intersections. A function 6:~~ R is (normalized) submodu-

lar, if
(1) 6(0) = 0,
(Z) 6(A U B) + 6(A n B) ~ 6(A) + 6(B), for all A,B l!!: 'lJ.

The pair (~,t) gives rise to a submodular system, i.
e., to the (unbounded) convex polytope
(3) P(6) = {Xe:RE:x(A)" 6(A), for all Ae:'!J},

where yeS) denotes the sum of those components of the vector
y ERE with indices in S ~ E. If 6 is non-decreasing and
~ =' ZE, we obtain the polymatroid

(4) P+(6) = Ix e: P(6) : x ~ O}.

Given the submodular systems (~,,61) and (Dz,6z), we
may consider the submodular function 6,+6Z:V1 n Vz ... R. The
sum theorem [3,6J states that

Moreover, for polymatroids, we obtain
(6) + + +

p (61+6z) = P (6,) + P (6z).

If P(6) is a submodular system and v ERE, we define
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the left tpanslation of P(6) by v as
(7) P(6-v) = {x e:RE : x+v £ P(6)}.
In view of (3), P(6-v) is the sum of the submodular polytopes
determined by 6 and (-v). Furthermore, if 6 is non-decreas-
ing and v e:P+(6), 6-v again gives rise to a polymatroid.

A submodular system or polymatroid is integpal, 1f it
is derived from an integer-valued function. It is well-known
that the sum theorem remains true if attention is restricted
to the integral vectors of integral submodular systems or
polymatroids.

The exchange property. Using the sum theorem, we are now in
the position to prove the vector exchange property.

THEOREM. Let x and y be apbitpapy vectors in the sub-

modul-ar system P( 6) and x" Xz E: RE
3 so that x '= xl+xZ. Then,. E

there are vectors Yl'YZ £ R , so that Y • Yl.YZ and both
x1+Y1 and xZ+YZ E P(6). Moreover3 if- 6 is non-decreasing

+( ) . "r )and x1,xZ,Y e:P 6, then one mau rehoo ee Y1~YZ e:P 6.
The exchange property remains satisfied if attention is res-
tricted to integral vectors of integral submodular systems

or polymatroids.

Proof. We must show Y e:P(6-xl)+P(6-xZ)' i.e.,
Y £ P(Z6-x), by the sum theorem. But this follows immediate-
ly from the hypothesis YCA) " 6 (A) and l6 -x.) (A) ~ o. Mo're-

+over, in the case of polymatroids, note that Yi e: P C6-xi)
and x. ~ 0 implies y. e:P+(6). !

.{. .{.

A vector x e:P(6) is a basis of the submodular system
P(6), if x(E) = 6(E). It is clear that if the vectors x and
Y in theorem are bases, x1+Y1 and xZ+yz are bases as well.
Since the integral vectors of the integral polymatroid
defined by a matroid rank function are exactly the 0-1 in-
cidence vectors of independent sets, the theorem therefore
yields
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COROLLARY ([1,5,8]). Let X and Y be bases of a matroid
on the set E and X = Xl UX2 a partition of X. Then, there
exists a partition Y = Yl U Y2 of Y, so that Xl n Yl = X2 n Y2
= 0 and both Xl U Yl and X2 U Y2 are bases.
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