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Abstract. Recently we proved some approximation theorems
on the rth derivative of a Lebesgue integrable function by
the corresponding rth derivative of modified Bernstein poly-
nomials, Publ.Inst.Math., 87 (51) (1986) . In the present pa-
per we improve an estimate of our earlier paper and compare
it with the corresponding known results.

§1. Introduction. For a Lebesgue integrable function
§ = L1[0,1], Derriennic [2] studied a new kind of positive
linear operator {L,} of order n as defined by

n 1
(L (D) = @) | p, (0] P, (041, (1.1)
k=0 "’ o "’

where

P p® = (DxFC-0""
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and modifies the Bernstein polynomials {B,},
n

B0 = 1 pyp (WG, 6= clo,]. (1.2)

In our recent paper [3], we gave some theorems on the
approximation of the rth derivative of a given function §
by the corresponding rth derivative of the operators (1.1).
Thr object of the present paper is to sharpen a result of

that earlier paper ([8], Theorem 3.2).

§2. Preliminary Lemmas. In this section we give some lemmas
which are useful in proving the main results of section 3.

LEMMA 2.1. For n < n, one obtains that

LM (0 = (D) /(e ey ) TP ()
h Bk n-n,k

, ()(z (2.1)
La n+n, k+n(t) -
Proof. It follows from Derriennic ([2], page 334).

LEMMA 2.2. For atf t, x, = [a,b] and & > 0, one ob-

tains
i 2
J rly-yol/a Tdy <« ((£-x)“/28+(|2-x|)/2+6/8), (2.2)
X

where the symbof [+ 7| 4indicates the ceiling of the numben.

Proof. It follows from Anastassiou ([1], page 264).

LEMMA 2.3. For n > n, Let

' T : m-n
Tpopmn =M /00D 1oy () fo P b A0, (2.3)

then we get the folLLowing nrelation,
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((n+m+2)(m-n+1)/(m+1))Tn_n’m_n+1(x) (2.4)

= (m+1)(1-2x)Tn_ m_a(x)+2mx(1-x)T 1(x)+...+x(1-x)T

1
n-n,m-n(x)’

n n-n,m-n-

with

Tpon, o) = 24/ (neast). (2.5)

Proof. It follows from the paper [3].
LEMMA 2.4. Ffor n > n, one gets
Lg”)(t-x))(x) = (! (n+1) !/ (1)t (nea+2) 1)) (1-2x),  (2.6)
and
(M (t-x)2%) (x)
n 2.7
= ((n+1)!(n+1)!/(n-n)!(n+a+3)!){2x(1-x)+(n+1)(n+2)(1-2x)2/(n+1)}.

Proof. It follows from (2.1), (2.3) to (2.5).

LEMMA 2.5. Forn > n, 0 < x £ 1, one gets

(Lﬁ“)(z-x)z(x) < d(n,n)/ (n+n+2) (2.8)
whene
{(n+1)(n+2)/(u+1) i n> 2ndeen’
d(n,n) = (2.9)
1/2 otherwise.

Proof. We see from (2.7) that
WP (0D (0 < (7 we2) {2x(1-0+ (1) (42 (1-20°/ (1)},
= (1/(n+a+2))A(n,x,1n) (say).

Clearly the maximum values of A(n,x,r) for 0 ¢ x ¢ 1 are
d(n,n).
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§3. Main results.

THEOREM 3.1. Let § «Cc(**1)[0,1] and tet w(f(**V); )
be the moduli of eontinuity cf 6(l+1). Then for n > n,
(n=0,1,2,...), we have

B PRV ek

+ w(g(”+1);1//h+n+2)'(1//h+n#2)... (3.1)
d d(n, 2 1
.__(J%IJ.LL).-'.'&.S-),

where d(n,n) has been defined in (2.9) and nonm || stands
for sup-norm overn [0,1].

Proof. Following [4], we write that

§ 0-¢W (0 = ct-x)s(”*"cx)-+[t{6‘”*‘)(y)-a‘”*‘)(xJ}dy
X

Now on applying (2.1) to the above and using the inequality
of Anastassion ([1], page. 251).

D -V s w(s™ 56 [y-x1/6 T
we get that
(LM ) (0-§0 (0
< | 5(“*‘)(x)|-|(Lﬁ”J(z>x))(x)|*w(5‘**1);a)ltﬁ”)(1fr'...I(y-x)/cr1dy)(x)

) (£-x)2
< 16D 01109 (2-0) (0 s ®* ;6 (LA ED I

L A E0H 0 | g/
z .

Be choosing 8§ =1/Yn+1+2 and using the results (2.6) and
(2.8), we get the required result (3.1). This completes the

proof.

comoLLARY 3.2. 1§ {**1 « Lip, , 0 <a g 1; N> 0,
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then we have

1L - & (1) eeme2)) 4D e (3.2)

v tM(near2) " (@ 1)/2 {iQ‘.ﬁib..w + %}

THEOREM 3.3. 14, 4in addition to the hypotheses of
Theonem 3.1, § = c**D[0,1], then we have

1L g4 < (e 1)/ (nen+2)) 4D (3.3)
¢ Q6D ez { 4Gy AT 2

Proof. From the definition of W(ﬂ(m+1);5), it follows
that

6ls(’””(y)-ﬁ("*”(x)l

JyWPIﬁ“Q%DI. x$ESY

w(g D5 -

—-wn
AT

u
x-y|

s
|

< €
no

x-

A

s

e

sup [§2) (5|
| x-y|<6

ssup |42 (8)| < 8]+ (3.4)
0gEx1

<

I/

By using (3.4) in (3.1), we get the required result (3.5).
This completes the proof.

4. Remarks.

[A] The estimate (3.1) is sharper than the following
corresponding estimate [3],

LM - ¢ vy 7 nenr2)) 16D
+ AR/ w17,
where A = 1+(1/2).

[B] By putting ¥ = 0 in the estimate (3.1), we get
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It 461 < (§'1/m+2) + (1/73D){(d(n,0)/2) + (YA, 00/2)+...
ot P @1,

where
2/(n+1) if n > 3
d(n,0) =
1/2 otherwise.

We note here that the estimate (4.1) is sharper than the
following estimate ([5], page 27),

1L 6-4ll < (g'1/(n+2)) + (1/V0) ((2VZ + 1) /8)w(§" 517m) .
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