COMPACT POLYNOMIALS ON NON-ARCHIMEDEAN BANACH SPACES

bу

Dinamérico P. POMBO, Jr. (*)

Abstract. The object of the present note is to prove that every compact polynomial between non-Archimedean Banach spaces over a complete discretely valued field of characteristic zero is a limit of a sequence of polynomials of finite rank.

In [2] Enflo has given a counterexample to the Banach-Grothendieck approximation problem. However, Serre [6] has proved the validity of the Banach-Grothendieck approximation problem in the case of compact operators between non-Archimedean Banach spaces over a local field. Recently, Krishnamachari [3] has pointed out that Serre's result still holds when the ground field is complete. The purpose of this note is to establish a polynomial version of Serre's result. For further results concerning compact polynomials see [1] and [4].

Now let us fix some notations adopted in the text. Throughout this note K denotes a field of characteristic zero with a non-trivial non-Archimedean absolute value. Given E and F non-Archimedean normed spaces over K, p(E;F) (resp. $p(^{m}E;F)$) denotes the K-vector space of continuous (resp. con-

^(*) Partially supported by CNPq 1980 Subject Classification (1985 Revision): 46P05.

tinuous m-homogeneous) polynomials from E into F ([4],[5]). We endow p(E;F) with the non-Archimedean norm

$$P \in p(E;F) \mapsto |P| = \sup_{\|x\| \le 1} |P(x)| \in \mathbb{R}_+.$$

DEFINITION. A polynomial $P:E \to F$ is said to be compact if P maps the unit ball B of E into a relatively compact subset of F. We denote by $p_c(E;F)$ (resp. $p_c(^mE;F)$) the K-vector space of compact (resp. compact m-homogeneous) polynomials from E into F.

PROPOSITION 1. If $P: E \to F$ is a non-zero compact polynomial, $P = P_0 + \ldots + P_m (P_j \text{ being } j - \text{homogeneous, } j = 0, \ldots, m,$ $P_m \neq 0$), then each P_j is a compact j-homogeneous polynomial. In particular, $P_j \in p(jE;F)$, $j = 1, \ldots, m$, and so $P \in p(E;F)$.

Proof. We argue by induction on m, the cases m=0 and m=1 being clear. Now let $m\geqslant 1$ and assume the proposition true for every non-zero compact polynomial of degree $\leqslant m-1$. If $P_0=\ldots=P_{m-1}=0$, the proposition is clear. Let us suppose the contrary and fix $\lambda \in \mathbb{K}$ with $0<|\lambda|<1$. Then

$$\lambda^m P(x) - P(\lambda x) = (\lambda^m - e) P_0(x) + \ldots + (\lambda^m - \lambda^{m-1}) P_{m-1}(x)$$

for all $x \in E$ and, moreover, $\lambda^m - e \neq 0, \ldots, \lambda^m - \lambda^{m-1} \neq 0$ (here e denotes the identity element of \mathbb{K}). Therefore the mapping $x \in E \mapsto \lambda^m P(x) - P(\lambda x) \subseteq F$ is a non-zero compact polynomial of degree $\leq m-1$ and the induction hypothesis ensures that P_0, \ldots, P_{m-1} are compact polynomials. Thus $P_m = P - (P_0 + \ldots + P_{m-1})$ is also a compact polynomial.

As in the linear case we obtain

PROPOSITION 2. $p_c(E;F)$ is a closed vector subspace of p(E;F) if F is a Banach space.

COROLLARY 1. If K is a local field, F is a Banach space, and $(P_k)_{k\in\mathbb{N}}$ is a sequence of polynomials of finite rank converging to $P \in p(E;F)$, then $P \in p_c(E;F)$ (by a polynomial of finite rank we mean a continuous polynomial whose image generates a finite dimensional vector space).

Proof. By Proposition 2 it suffices to prove that each P_k is compact. Let G_k be the finite dimensional vector subspace of F generated by $P_k(E)$; G_k is a locally compact normed space (with the norm induced by F). Then $P_k(B)$ is contained in some λT_k , where T_k denotes the compact unit ball of G_k . Consequently, P_k is a compact polynomial.

Our purpose is to establish

PROPOSITION 3. Let K be complete under a discrete valuation, and let E and F be Banach spaces over K. If $P = p_c(E;F)$, there exists a sequence of polynomials of finite rank which converges to P.

Before we prove Proposition 3 let us state an auxiliary lemma ([6], Proposition 2).

LEMMA. Let L be a complete non-trivially valued ultrametric field whose absolute value is discret, and let E be a Banach space over L satisfying condition (N) below: (N) For each $x \in E$, $\|x\|$ belongs to $\{\overline{|\lambda|}; \lambda \in L, \lambda \neq 0\}$. If V is a closed vector subspace of E, there exists a continuous projection $p:E \to E$ having V as image such that $\|p\| \leqslant 1$.

Proof of Proposition 3. We first claim that every compact r-homogeneous polynomial can be approximated by r-homogeneous polynomials of finite rank (r = 1, 2, ...,). Indeed, let $P = p_c(^{\hbar}E;F)$ and assume additionally that F satisfies condition (N). Given $\varepsilon > 0$ we can find $y_1, ..., y_n$ in F such that

$$P(B) \subset \bigcup_{i=1}^{n} \overline{B}(y_{i}, \varepsilon).$$

Let V be the finite dimensional vector subspace of F generated by $\{y_1, \ldots, y_n\}$. By the Lemma there exists a continuous projection $p:F \to F$ whose image is V with $\|p\| \le 1$. Then $P' = p \cdot P$ is an r-homogeneous polynomial of finite rank such that $\|P - P'\| \le \varepsilon$.

Now, if F is arbitrary, there exists a non-Archimedean norm $\| \| \|$ in F which is equivalent to the given norm of F and such that $F^* = (F, \| \| \|)$ satisfies condition (N) (it suf-

fices to take $||x|| = \inf\{|\lambda|; \lambda \in \mathbb{K}, \lambda \neq 0, ||x|| \leq |\lambda|\}$). By what we have seen above the compact r-homogeneous polynomial IdoP can be approximated by r-homogeneous polynomials of finite rank from E into F^* , where Id: $F \rightarrow F^*$ denotes the identity mapping. As a direct consequence our claim is verified.

Finally let $P \in p_c(E;F)$, $P \neq 0$, $P = P_0 + ... + P_m$ (where P_j is j-homogeneous, j = 0, ..., m, and $P_m \neq 0$). The proposition being clear if m = 0, let us assume m > 1. By Proposition 1 $P_j \in p_c(jE;F)$ for j = 1,...,m. Hence there exists a sequence $(Q_k^j)_{k \in \mathbb{N}}$ of j-homogeneous polynomials of finite rank such that $P_j = \lim_{k \to \infty} Q_k^j (j = 1,...,m)$. Let $Q_k = P_0 + \sum_{j=1}^{n} Q_k^j$ for $k \in \mathbb{N}$. Clearly $(Q_k)_{k \in \mathbb{N}}$ is a sequence of polynomials of finite rank and $P = \lim_{k \to \infty} Q_k$, as was to be shown.

COROLLARY 2. Let IK be a local field, and let E and F be Banach spaces over IK. If P = p(E; F), then $P = p_{c}(E; F)$ if and only if P is a limit of a sequence of polynomials of finite rank.

Proof. Immediate from Corollary 1 and Proposition 3 since every local field is complete and discretely valued.

r-homoreneous polynomial can be approximated by r-ho REFERENCES | A STELLMONVIOR SUCESSION

[1] Aron, R., Schottenloher, M., Compact holomorphic map-pings on Banach spaces and the approximation propenty, J. Func. Analysis 21 (1976), 7-30.

[2] Enflo, P., A counterexample to the approximation problem in Banach spaces, Acta Math. 130 (1973), 309-317.

[3] Krishnamachari, N.S., Tensor product of compact operators on non-archimedean Banach spaces, Indian J. Pure Appl. Math. 15 (1984), 623-624.

[4] Pombo, D.P.Jr., Polynomials in topological vector spaces over valued fields, Rend. Circ. Mat. Palermo, to appear .

[5] Ramis, J.P., Sous-ensembles analytiques d'une variété banachique complexe, Ergebnisse der Math. 53

(1970), Springer-Verlag.
[6] Serre, J.P., Endomorphismes completement continus des espaces de Banach p-adiques, Publications Math. I.H.E.S. 12 (1962), 69-85.

Instituto de Matemática Universidade Federal do Rio de Janeiro Caixa Postal 68530, 21945 Rio de Janeiro, RJ.Brasil

(Recibido en febrero de 1988, versión final en noviembre de 1988)

* *