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TANGENT MAPPINGS AND CONVERGENT SEQUENCES
IN THE LIPSCHITZ CATEGORY

par

Daniel M. HYMAN

Abstract. The standard definition of a derivative in lin-
ear spaces is extended to a definition of tangency in the Lips-
chitz category, without any assumed algebraic structure on the
underlying spaces. Tangency is characterized topologically, that
is, solely in terms of continuity, without using any algebraic
concepts or other analytical concepts. The mappings in the Lips-
chitz category are characterized as the class of functions that
preserve topologically convergent sequences of finite variation.

1. Preliminaries. In this paper all spaces will be metric
spaces, and d will usually denote the metric. If two spaces
are present simultaneously, the context will resolve any
ambiguity resulting from a multiple usage of d. R will de-
note the real line, and TOP will denote the topological cat-
egory, restricted to metric spaces.

We recall that a function 6:X -+ Y satisfies a U.p~Ju;tz

eond~~on (called by some authors a un~6o~rn L~p.6eh~tz eon-
d~t~on) if there exists a real number M such that

d(Hx),Hy)) ~ Md(x,y) for all x,y c X.

The function 6 is said to satisfy a loe~l L~p.6eh~tz eond~-
t~on if there exists an open cover ~ of X such that 61U sat-
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isfies a Lipschitz condition for each U £~. The Lipschitz
category LIP consists of all metric spaces and mappings tlmt
satisfy a local Lipschitz condition. The set of all mappings
in LIP from X into Y will be denoted by LIP(X;Y). If X = Y,
this will often be abbreviated to LIP(X).

Sequences will be denoted by lower-case boldface let-
ters; individual terms of a sequence will be denoted by the
corresponding subscripted plain letters, so that x is a
sequence whose general term is xn' y is a sequence whose
first term is Y1' and so on.

2. Tangents 1n LIP. The usual definition of the derivative
in linear spaces extends readily to a notion of tangency
between any two mappings in LIP.

2.1. DEFINITION. 6,9 c LIP(X;Y) are tdngent at p EX
(in symbols, 6 ~ 9) if for every € > 0 there exists a neigh-
borhood U of p such that

d(6(x),9(X)) ~ ed(x,p) for all x E U. (2.1.1)

We observe that (2.1. 11 i.mplies that tangent functions
agree at p, and that tangency at p is an equivalence relatirnl
in LIP (X; Y).

Although this definition can be applied to arbitrary
(discontinuous) functions to give a definition of tangency
for all functions from X into Y, some of the elementary prop-
ositions, such as the Chain Rule, will fail outside of LIP.
For example, let 6(x) = /fiT and 9(x) = Ix13/2 in R. Then 9
is tangent to the constant function 0 at x = 0, but the com-
posite function 96 is not tangent to 06 = o.

2.2. THE CHAIN RULE. 16 61,62 E LIP(X;Y) d~e tdngent
dt x £ X dnd ~6 91,92 E LIP(Y;Z) d~e tdngent dt y = 61(x) •
62(x), then the compo~~te mdpp~n9~

9161,9262:X" Z
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a~e ~angen~ a~ x.
Proof. By transitivity, it is sufficient to verify

the two relations 9,6, ~ 9,62 and 9,62 ~ 9262 separately.
In each case, we assume that £ > 0 is given. To verify the
first relation, since 9,l!!!: LIP there exists a neighborhood
V of Y in Y and a real number M > 0 such that

d(9,(Y'),9,(Y")) ~ Md(y',Y") for all y',tj" e: V,

and since 6, ~ 62 at x. there exists a neighborhood U of x
in X such that

d(6,(u),62(u)) ~ (£/M)d(u,x) for all u -= U.

n -, - ,Let W U 6, (V) n 62 (V). Then W is a neighborhood of x,
and for any u E W

which establishes the relation 9,6, ~ 9,62.
To verify that 9,62 ~ 9262' since 62 e: LIP there

exists a neighborhood U of x in X and a real number M > 0
such that

d(62(x') ,62(x")) ~ Md(x' ,x") for all x' ,x" e: U,

and since 9, ~ 92 at y = 62(x), there exists a neighborhood
V of y in Y such that

d(9,(V),92(v)) ~ (£/M)d(v,y) for all ve: V.

Then for any point u in the nei ghbo rhood u n 6;' (V) of x,

Our first result (Theorem 2.5) will be a characteriza-
tion of tangency in terms of convergent sequences. The theo-
rem states intuitively that tangent functions map sequences
which converge "slowly" to the point of tangency onto se-
quences which converge "rapidly" towards each other.

If a sequence x c)nverges to x £ X, we will say that
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x is ~ummabte at x if Ld(xn,x) < ~, and e~~entiat at x if
Ld(xn,x) = ~. If x is an isolated point of X, there are no
essential sequences at x. But if x is an accumulation point
of X, essential sequences at x always exist. For if x con-
verges to x and xn ' p for all n, let Kn be the smallest
integer such that Kn ~ l/d(xn,p) and let w be the sequence

where xn appears Kn times. Then W is essential at x.

2.4. LEMMA. Let x be an e~~entiat ~equence at p L X.
Then 60~ any ~eat numbe~ 0 ~ ~ < t, the~e exi~t~ a 6inite
~ub~equence Y" ""Yk 06 x ~uch that ~ ~ Lj~kd(Yj'p) ~ t.

Proof. Remove from x all terms x such that d(x ,p»n n
t-~ , and call the resulting subsequence y. Since only fin-
itely many terms of x have been removed, Y is essential;this
implies the existence of an index k such that ~ ~ Lj~kd(Yj'p).
If k is chosen to be the smallest such index, then, since
d(Yk'P) ~ t-~, this sum is bounded above by t. ,

2.5. THEOREM. 6,g E LIP(X,Y) a~e tangent at an accumu-
tat~on po~nt p L X i6 and onty ~6 eve~y e6~entiat ~equence
x at p ha~ an e~~entiat ~ub~equence y ~uch that

(2.5.1)

Proof. Suppose first that 6 ~ g, and let x be an es~
sential sequence at p. For each n there exists a neighbord-
hood Un of p such that

d(6Cx) ,g(x)) ~ (l/n)d(x,p) for all x E Un' (2.5.2)

Let un be the subsequence of x ofelements in Un' Since un con-
tains all but finitely many terms of x, un is essential. By
2.4 we can extract from (1, a finite sequence

such that
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Inductively, for n > 1, extract from u~ a finite sequence

IJn 1 ' IJn2 ' ••• , IJnmn

such that IJn1 follows IJ 1 in x, and such thatn- ,mn-1

(2.5.3)

From 2.5.2,
d(HIJ ·),g(1J .» ~ (l/n)d(lJnj"p),nj· nj

so that
(2.5.4)

The juxtaposed sequence IJ = 1J11J21J3'" is then a subsequence
of x. 2.5.3 implies that IJ is essential, and 2.5.4 implies
2.5.1.

Conversely, suppose that 6 and 9 are not tangent. If
6(p) I g(p), the result holds trivially, sa assume 6(p) =

g(p). For some m > 0 there exists a convergent sequence x at
p such that

(2.5.5)

The strict inequality in 2.5.5 implies that xn 1 p for all n.
Let W be the sequence defined in 2.3. Then W is essential,
and 2.5.5 implies that 2.5.1 does not hold for any essential
subsequence of w. ,

As an application of this theorem, we will obtain the
following result. In TOP, it is possible for a function to
be invertible despite a vanishing derivative at an accumul-
ation point (for example, IJ = x3). This cannot happen in LIP.

2.6. TBBORBM. 16 6:X + Y ~~ t4ngent to a con~tan% 6unc-

t.ion at an 4ccwnula.t.ion po.int p c x, then 6 Ls not .inveJLt.ible.

Proof. If 6 is tangent at p to a constant function c,
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then there exists an essential sequence x at p such that
6(x) is summable at c(p) = 6 (p) in Y. Since mappings in LIP
preserve summable sequences, if 6-1 were to exist it would
IMp 6(x) onto a summable sequence. But 6-16(X) = x , so 6-1

does not exist. ,

Let us say that a function 6:R ~ R is ~mooth in LIP
if its pointwise derivative 6'(x) exists for all x E Rand
6' E LIP(R). There is a particularly simple characterization
(2.9) of tangency for the class of smooth functions. First,
we say that a sequence x that converges to x C:X is ~quaJt.e-
~ummable at x if Id2(x ,x) < 00.n

2.7. LEMMA. EveJt.y e~~ent~al ~equence ~n a metJt.~c. ~pa.c.e
X co nta~n~ an eu ent~al ~qualle-~ ummab.te ~ub~ equenc.e.

Proof. Let x be an essential sequence at x eX. By
2.4, we can extract from x a finite subsequence

such that
1 ~ Io d(Y1"x) ~ 2.

j~m1 j

Inductively, for n > 1, extract from x a finite sequence

such that Yn1 follows Yn-1,mn-1 in x, and such that

(2.7.1)

We then have

(2.7.2)

The juxtaposed sequence y = Y1Y2Y3 ••• is then a subsequence
of x. The first inequality in 2.7.1 implies that Y is essen-
tial, and 2.7.2 implies that Y is square-summable. ,
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2.8. LEMMA. SUpp06e ~h~~ 6:R + R ~ 6moo~h in LIP.
Then ~04 any poin~ a ER ~he4e exi6~ a ~e4t numbe4 M and a
neighb04dhood U 06 a in R 6u~h ~ha~

l6(x)-6(a)-6'(a) (x-a)1" M(x-a)2 604 aU x&: U (2.8.1)

P~oof.Since 6' c LIP(R), there exist a real number
M > 0 and an open interval U Zit a such that 16' (u)- 6' (v) I ~
Mlu-vl for all u,v &: U. Let x be any point in U. If x = a,
then both sides of 2.8.1 reduce to 0, so assume x # 4. The
Mean Value Theorem yields a point z -= U with Iz-al < Ix-al
such that 6(x)-6(a) = 6' (z)(x-a). Now write

l6(x)-6(a)-6' (a) (x-«) I., 16'(z) (x-a)-6' (a) (x-u) 1
= 16'(z)-6''(a)Ilx-a'
~ Mlz-allx-al
< M(x-a)2. ,

We can now characterize tangency within the class of
smooth functions in LIP(R).

2 9. THEOREM. 16 6,g:R + R a4e ~moo~h in LIP, ~hen
6 ~ 9 a~ P £ R i6 and only i6

Proo~. If 6 and 9 satisfy 2.9.1, then 2.7 implies that
6 ~ g. Conversely, assume that 6 ~ g. It is sufficient to
verify that 2.9.1 holds in the case where 9 is the linear
tangent of 6. But this follows from 2.8. ,

REMARK. For arbitrary (non-smooth) functions in LIP (R),
the existence of a linear tangent does not by itself imply
that 2.9.1 holds. For example, the function 6(x) = Ix13/2
is tangent to the constant function 9 = 0 at x • 0, but 6
and 9 do not satisfy 2.9.1. Notice that 6 is not smooth in
LIP.
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3. Convergence in LIP. In the proof of Theorem 2.6, we noted
that mappings in LIP preserve summable sequences. Although
the converse is not true, it is possible to relax the condi-
tion of summability to obtain a class of sequences whose
preservation does characterize the mappings in LIP. We recall
that the va~~at~on of a sequence x is Vex) = Id(xrt+"xn), and
say that a sequence x in X conv~~g~ in LIP to x, or is LIP-
conv~~g~nt to x, if x has finite variation and converges top-
ogically to x. The main result of this section is

3.1. THEOREM. 6 £ LIP(X,Y) ~6 and onLy ~6 6o~ ~v~~y
LIP-conv~~g~nt ~~qu~nc~ x at x, 6(x) ~~ LIP-conv~~g~nt at
6(x) •

With the inclusion of the class of LIP-convergent se-
quences, LIP takes on an identity of i~s own, instead of
being just a subcollection of topological mappings. For
example, if 6 £ LIP and ~ is a sequence associated with 6.
it is possible to consider the convergence of ~ in LIP. In
particular. if 6:R + R is periodic with period 2~ and ~ =

~(x) is the Fourier series of 6 at x, then it is well~
that ~ converges topologically to 6(x). But it is also true
that ~ converges in LIP. For if an' bn are the Fourier coef-
ficients of 6, then

which is known to be finite ([1,p.243]).
Sequences of finite variation correspond in LIP to

Cauchy sequences in TOP. in that both are "preconvergent"
in their respective categories. Every sequence of finite
variation is a Cauchy sequence. Conversely, every Cauchy
sequence contains a subsequence of finite variation; conse-
quently every topologically convergent sequence contains a
LIP-convergent subsequence. As a result, the two categories
share a common notion of an accumulation point and a~
notion of completeness. (X is defined to be complete in LIP
if every sequence of finite variation converges).
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It is not difficult to show that the results on tan-
gency in the previous section hold if topological conver-
gence is replaced by LIP-convergence. One must be careful,
however, about recasting 2.1 into its familiar limit-o£-
ratios form: 6 ~ 9 does not imply that for every LIP-con-
vergent sequence % at p with xn :I p for all n, the sequence
with general term dC6Cxn),gCxn))/dCxn,p) is LIP-convergent
to 0 in R ..The functions

6(x) if x:J 0

if x = 0

and 9 = 0 provide a counterexample. The reason for this is
that the concept of tangency under study here is only a mea-
sure of proximity, not a measure of variation. t would be
interesting to find a concept of tangency that takes varia-
tion into account.

Proof of Theorem 3.1. It is easy to see that all map-
pings in LIP preserve LIP-convergent sequences. The conve~e
is harder. Assume that 6 does not satisfy a local Lipschitz
condition. Then there exists a point x E X such that 6 does
not satisfy a Lipschitz condition on any neighborhood U of
x. We will construct a LIP-convergent sequence x at x in X
such that 6Cx) is LIP-divergent in Y. For each positive in-

n+ 2teger n, let Mn = 2 and let

U = {Y E X I dCy, x ) < 1/2n+3}n

Then there exist Yn,zn E Un such that
n+ 2dC6CYn),6Czn)) > MndCyn,zn) = 2 dCyn,zn)' (3.1.1)

Since Yn and zn are in Un' the Triangle Inequality yields

dC ) < 1/2n+2yn,zn

Let Kn be the smallest even integer such that

KndCyn,zn) ~1/2n+1. (3.1.2)
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Kn is finite since Yn ~ zn (by the strict inequality in
3.1.1), and the minimality of K ensures that

so that
\

Knd(yn,zn) (Kn-2)d(yn,zn)+2d(yn,zn)

< 1/2n+1 + 2(1/2n+2)

1/2n.

(3.1.3)

Now define the finite sequence

where Yn and zn alternate, each appearing Kn/2 times, so
that ~n has exactly Kn terms. The distance between any two
adjacent terms of ~n is d(yn,zn)' so that the variation of
6n is

(3.1.4)

The juxtaposed sequence ~ = ~162~3 ••• converges topologi-
cally to x, by the definition of Un. To verify that ~ has
fin1te variation, that is,

(3.1.5)

we divide the subscripts k into two classes:
(1) the set of all k such that 6k and 6k+1 both lie in some

~n' and
(2) the set of all k such that 6k ~ 4n but 6k+1 E ~n+1·

The inequality 3.1.4 implies that 3.1.5, when restric-
ted to the subscripts k in class (1), is finite. For the
subscripts k in class (2), we have

d(6k+1,6/i) = d(Yn+1,zn) < lIZn+Z,

since Yn+1 and zn both lie in Un. Therefore 3.1.5, when res-
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tricted to the subscripts k in class (Z), is also finite,
and it follows that 4 converges in LIP.

The image of 4 under 6, however, diverges in LIP. To
see this, consider the finite sequence

The terms ~(Yn) and 6(zn) each appear KnlZ times; therefore
the variation of this sequence is

V(6(4n)) ~ (KnIZ)d(6(yn),6Czn))

> (KnIZ)Zn+zd(Yn'Zn)
n+lKnZ dey n'zn)

(by 3.1.1)

(by 3..1.Z),

and since V(6(4)) ~ LV(6(4n), 6(~)diverges in LIP. &

4. Tangency and Non-Retractab111ty. Theorem Z.5 character-
ized tangency in terms of summability. In this section, we
will characterize tangency topologically, that is, solely
in terms of continuity, without using any algebraic or
other analytical concepts.

In TOP, the following result is an immediate conse-
quence of the pertinent definitions.

4.1. If X is the union of two closed subsets A and B,
and 6:X + Y is any function such that both 61A and 61B are
continuous, then 6 if continuous.

In LIP, however, 4.1 is false.

4.2. EXAMPLE. In the plane RZ, let X A U B, where

A = {(x,Y) I Y = xZ}

and
B = {(x,y) I Y oj ,
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and let 6:X+X be the function

6(x,y) = (0,0) if (x,Y) ~ A,
= (x,y) if (x,y) ~ B.

Then 6 is continuous in LIP on A and B separately, but 6 is
not continuous on X, since there is no M such that

as x + o. ,

This example shows, intuitively, that the curve y = x2

is so close to its tangent line that it cannot be pulled
away onto the point of tangency. This "closeness of fit" of
tangent curves is generally true throughout LIP and will be
shown to characterize tangency (Theorem 4.6). This theorem,
which has no counterpart in TOP (as shown by 4.2), demos-
trates a fundamental difference between the two categories.

We recall the standard definition that a ~et~act~on
of a space X onto a subset A is a mapping ~:X + A such that
~IA is the identity on A. Given 6,g E LIP(X;Y), denote their
graphs in XxV by G6 and Gg• If P E X, we s~y that G6 is ~e-
t~actabte 6~om Gg at p if there exists (in LIP) a retraction
~:G6 UGg + Gg such that ~(G6) = (p,6(p)). If G6 is retrac-
table from Gg at p , then the retraction ~:G6 UGg + Gg is
unique and is given by

~(x,y) = (p,6(p)) if (x,y) E G6,

= (x,y) if (x,y) EGg.

A necessary condition for ~ to exist is that 6(x) , g(x) if
x , p. This condition is also sufficient in TOP (by 4.1),
but it is not sufficient in LIP, as shown by examples 4.2
and 4.4.

Since LIP is metric-sensitive, care must be taken in
choosing a metric on XxV. It will be computationally con-
venient to use the "sum" metric:
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which is compatible in LIP to the usual "Pythagorean" metric.

4.3. LEMMA. 16 6 and 9 a~e tangent at an accumulat~on
po~nt p E X, then G6 ~~ not ~et~actable 6~om Gg at p.

Proof. For any M > 0 and neighborhood U of p in X,
there exists a point x e:: U such that d(6C~),g(~)) < (1/M)d(p,~)
If a retraction ~ E LIP were to exist, then

d(~(~,6(~)),~(~,g(~))) = d((p,6(p)),(~,g(~)))
~ d(p,~)
> Md(6C~),g(~))
= Md((~,6(~),(~,g(~))·

Since M is arbitrary, ~.; LIP. ,

If 6 and 9 are not tangent at p, it is still possible
that G6 is not retractable from Gg at p. As already noted,
this will happen if 6(~)= g(~) for some ~ , p. But even if
6(~)P g(~) for all ~ , p, it is still possible that G6 is
not retractable from Gg•

4.4. EXAMPLE. Let X be the space obtained by removing
from R the points 1/nn for all nonzero integer n . Let Y =R,
and define 6:X ~ Y by

6C~) = x s In I l Zx ) if x , 0
= 0 if x = o.

Then 6 is not tangent to the constant function 9 = 0 at x= 0

and 6(x) , 0 for all x , 0, but G6 is not retractable from
G9 at O.

The following lemma gives a sufficient condition for
~6 to be retractable from Gg•

4.5. LEMMA. Let 6,g E LIP(X, Y) and let p be an accumul.-
at~on po~nt 06 X. 16 the~e ex~t~ m > 0 ~uch that
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d(6(x),g(x)) ~ md(x,p) 6o~ all x £ X, then G6 i~ ~et~actable
6~om Gg at p.

Proof. The result is trivial if 6(p) ; g(p), since in
this case G6 and Gg are disjoint closed (and therefore open)
subsets of G6 UGg• So assume that Hp) .. g(p). Let G- G6UGg,
and let q .. (p,6(p)) .. (p,g(p)) E G. We must show that the
function .~ en G defined by

~(x,y) .. q if (x,y) ~ G
6

,
.. (x,y) if (x,y) EGg'

belongs to LIP. Since G6-{q} and Gg-{q} are open in
G6 UGg-{q}, this reduces to showing that ~ satisfies a Lips-
chitz condition on some neighborhood of q in G.

Since 6,g E LIP, there exists a neighborhood U of p
in X such that

d(6(x'),6(x")) ~ M6d(x',x") and d(g(x'),g(x")) ~ Mi(x',x")

for all x',x" E U. We can asswne thatM6 ~ 1, since if
M6 > 1 we can replace the original metric d on X by the
compatible metric d' = M6d.

We will show that ~ satisfies a Lipsehitz condition
on the set V .. G n (UxY). Let a, b e:: V. It is sufficient to
consider the case in which a E G6 and b £ Gg• Then there
exist x,y E U such that a = (x,6(x)) and b = (y,g(y)). To
reduce the number of parentheses in the following cal cuI a-

.tion, let us write 6x ..6(x) and gy .. g(y). Recall also that
we are using the "sum" metric in XxY. Then

d(~(b),~(a)) ..d(~(y,gy),~(x,6x))
..d((y,gy),(p,gp))
..d(y,p) + d(gy,gp)
~ (1 + Mg)d(y,p)
.;((1+Mg)/m)d(6y,gy)
~ ((l+Mg)/m)(d(6Y,6x)+d(gy,6x))
~ ((l+Mg)/m)(d(y,x)+d(gy,6x)) (since M6 ' 1)
.. ((1+Mg)/mJd((y,9Y),(x.,6x))
• ((l+Mg)/m)d(b,a). •

116



We can now characterize tangency in terms of continuity
or, more specifically, in terms of non-retractability. Let us
call a set SeX an accumulaZion ~eZ of p E X if PES and
p is an accumulation point of S.

4.6. THEOREM. 6 and 9 a~e tangent at an accumulation
po~nt p E X ~6 and only ~6 60~ eve~y accumulat ~on ~et S 06
p, G61S ~~ not ~eZ~actable 6~om Ggis at p.

Proof. If 6 and 9 are tangent at p in X, then they are
tangent at p on any subset S of X. If S is an accumulation
set of p, then 4.3, applied to S, implies that G61S is not
retractable from GglS at p.

Conversely, if 6 and 9 are not tangent at p, there
exists m > 0 such that the set

S = {x E X I d(6(x),g(x)) ~ md(x,p)}

is an accumulation set of p. Then 4.5, applied to S, implies
that G61S is retractable from Gg1s at p. A
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