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USE OF GENERALIZED HYPERGEOMETRIC FUNCTIONS
IN ANALYTIC STELLAR MODELS

by

Bader AL-SAQABI and Shyam L. KALLA

Abstract: The present paper deals with the technique
of integration theory of special functions applied to two
simple analytic stellar models. We consider two cases, one
with a non-linear dependence of the radial density and the
other with a generalized energy generation rate. The inte-
gration theory of the generalized hypergeometric functions
is applied to evaluate analitically the rate of nuclear en-
ergy generation. Some known results follow as particular
cases of our formulae established here.

§l. Introduction. The study of some problems in the theor)
of internal structure of stars [1,2J, motivates the inter-
est in obtaining simple analytic stellar models.

In this work we shall apply the techaique of inte-
gration theory of special functions [3,4J for treating
special solutions of the equations of stellar structure.

The model we are concerned is a spherically symmetriC
purely gaseous star, which is generating nuclear energy
and it is in quasi-static equilibrium [5J.

In general the stellar structure models leads to a
system of non-linear differential equations which can not
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be solved in a closed form. However under some restricted
conditions, such as the separation of the conditions of hy-
drostatic equilibrium mass conservation, and energy conser-
vation from the consideration of the mode of energy trans-
ports one can obtain analytic models. The advantage of such
analytic solution with energy conservation is to determine
the central conditions on the star which concern the equa-
tion of the state and the rate of energy generations.

In section 2, we shall have a first stellar model with
a radial density inside the star given by

v > -1 (1)

where Pc = p(O) is the central density of the star and R is
the radius of the star. In-equilibrium the average energy
production per unit mass at the radius ~, €(~), is assumed,
for the sake of simplicity, proportional to certain powers
of the density and temperature, that is

(2)

where T(~) is the temperature distribution function inside
the star defined later, Po and To are the reference density
and temperature respectively. And a and b are two real num-
bers.

The total net rate of nuclear energy generation which
is equal to the luminosity of the star,

L = 4n fR~2p(~)€(~)d~
o

(3)

will be evaluated for four different cases of the analytic
representations of the nuclear energy generation rate €(~).

In Section 3, we shall consider a second stellar mod-
el with a linear dependence of the radial density that is,

(4 )

and the rate of nuclear energy generation is given by
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(5)

where 1; >-- O.
The luminosity function L(It) defined by (3) will be

calculated in four different analytic forms of e(It).
The resultd given recently by Haubold and Mathai [5]

follows as particular cases of our generalized stellar mod-
els.

§2. Stellar model with a non-linear dependence of the radial
density. Fitst we shall evaluate the distribution of mass
M(It) of the star which is given by

M(It) = 4'1rt 1t2p (It) d«,
o

By using (1), we have

M(It) = 4'1rpc.fltlt2(1-~)Vdlt.
o

By invoking the integral representation for Gauss' hyper-
geometric function 2F1 [6] or simply the result [7, pp.30,
(3)J

(6)

we have
(7)

If M is the total mass of the star,that is M(R)
from (7) we get

M, then

p = M(v+3) (v+2) (v+l)
c. 811'R3

From the basic equation of the hydrostatic equilibrium be-
tween the gravitational force exerted on the mass and the
gas pressure force directed outward, we have

(8)
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P(It) = P(O) • f GM~It) P (IL) dIL10 IL
(9)

where G is the gravitational constant. Let

A(It) = rGM~It)p(IL)dlt.
Jo IL

From (1) and (7), A(IL) can be rewritten as
It

4 2 f IL \I • • It) dA ( IL) = 31TP c.G It (1 - R) 2 F 1 ( - \I , 3, 4 'R IL
o

By using (6) and the series representation of Gauss' hyper-
geometric function we can write A(IL) ·as follows

(10)

From the boundary condition peR) = 0, we have P(O)

and therefore (9) can be written as
A (R)

(11)

For linear dependence of the radial density inside the star,
P(It) can be written as,

(12)

which is in agreement with the equation (2.3) of [5]. By
virtue of the equation of state of the perfect gas

KP = lilT"""" p T ,
l.I u

(13)

where K is the Boltzman constant, l.I is the mean molecular
weight, Mu is the atomic weight unit and T is the tempera-
ture, the distribution function of the temperature inside
the star T(IL) can be written in the following form ((1) is
122



expressed as a series),

(14)

~ (~)k+2 F ( k ~ ] ~ (v)n ~ n
- L ~ 2 1 -v,2+ ;3+k;"'R") L -;:-r-(-ji)
k=o n=o n.

The expression for T(~) can be expressed as a rapidly
converging series of the form

(~ < 1) (15)

where
(16)

In the linear case (v = 1) equation (15) becomes

where the coefficients, can be easily determined:

1 , t and c~ = -0 for ~ ~ 4.

As usual we define the luminosity of the star L(R) as de-
fined by (3),

R
L (R) = 41T fa ~2 p (~) e:( ~) d~ ,

where the rate of the nuclear generation €(~) is given by
(2) .

~By using (1) and (2) and setting x = ~, we can re-
write L(R) in the following form:

(18)

where
(19)
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In order to evaluate (19), we shall consider the more
general integral of the form

I(v,a,b,d) = J\d(l-X)V(a+1) ( Ic. .xi)bdx; (20)
o i=o ~

In the general case, we can not evaluate (20) in a closed
form. However under some special cases the infinite series
of the integrand can be summed and that leads to evaluation
of I(v,a,b,d) in terms of generalized hypergeometric func-
tions.

Case 1.
I c .xi

i-o ~we have

We shall consider here thst x« 1; then the series
can be approximated by 2 c..xi for k < 00. Therefore

i= 1 ~

k . b(I c. .x~)
i= 1 ~

2 k b
(1+c.1x+C.2x + •• ·+c.kx )

b b b(1+a1x) (1+a2x) ••. (l+akx)

(21)

1 1where - a-' a'· .., -a- are the roots of the polynomial
1 2 2 k k.equation 1 + c.l x+ c.2x + + c.b x = 0 •

There seems to be an error in [5, pp.376]. The nurn-
1 1 1bers a1, a2, •.. , ak should be replaced by -a-' -a-' ... -it

h fh 1 ial . 12k.as t e roots 0 t e po ynom1a equat10n

o

The ordinary binomial expansion with factorial notation
can be used to write (21) as follows

(22)

where I a·1 < 1, j = 1,2, ... , k or b is a posi tive integer.
j

Substituting in (20), we obtain
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(23)

00

Further we have the beta integral,

From [8, pp.449,(15)] and [4] and by using (24), we can
write lk(v,a,b,d) in terms of the Lauricella function FV
as follows

r(va+v+1) (d+1) (k)
1k (v,a,b, d) = r (£i+va+v+2) FV (d+1, -b ,-b, ••• , -b; d+\la+\I+2

where lajl < 1 for j = 1,2, ...,k or b is a positive inte~r,
Re.(d+1) > 0 and \I(a+1) > -1. F~n) is defined in the series
representation in the following form

where [z -I < 1 for j = 1,2, ... ,n.
j

We mention some particular cases of (25).
(i) Let a

1
= a

2
= •.• = ak= a' , in this case the

function FV reduces to the Gauss hypergeometric
ZF1 and that (25) becomes

1 (\I a b d) = rf\la+V+1)~d+1) F (d+1 -kb"d+\la+\I+2"-a')
k ' " r d+va+v+ ) 2 1 " ,

Lauricella
function

(27)

(ii) For a1 = a2 ~ = ak = -1, (25) reduces to
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r(va+v+kb+11r(d+1)
lk(v,a,b,d) = rcd+va+v+~6+2) (Z8)

(iii) If k = Z, then the Lauricella function FV reduces to
the first Appell's function f1 [9], and (Z5) takes the fol-
lowing form,

~;'::;"''':'''-~~....:.J.. f 1(d+1 ,-b, -b;d+va+v+Z ;-a1, -aZ) (Z9)

la11 < 1, lazi < 1, Re(d+1) > 0, v(a+1) >-1.

co •

Case 2. Suppose the series expansion 2 ~,x~ has this form
,,(.=0 ~

co •

2 ~,x~ = (l-px)-q ,
,,(.=0 ~

where Ipl < 1, P and q are known. Substituting in (ZO), we
obtain, by using [6,9], the following result

= r{va+v+1)r{d+l)
1q (v, a, b, d) r Cd+va+v+2) /1 (bq ,d+ 1; d+va+v+Z;p) (30)

where Ipl < 1, Re(d+l) > 0 and v(a+l) > -1.

Case 3. Let
co

(,2 ~,,(.x,,(.)= (1-Zlx)-01(1-zzx)-02 •.. (1-zm)-Om (31)
~=o

for m finite, IZjl < 1; j = 1,Z, ... ,m or OJ a negative in-
teger; substituting (31) in (ZO), W~ 6et, by using the same
method as in Case 1, the following

- r(va+v+1) (d+1) (m) d b b b'10(y,a,b,d) - rcd+va+V+2) FV (+1,01, oZ,· .. , om'
(32)

d+va+v+Z;zl'ZZ" •• ,z~
where

R~(d+l) > 0 and v(a+1) > -1.

The integral representation of Lauricella's function
F~n) is as follows [8, pp.45Z,(57)],
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F~I1.)(tt,bl,bZ'·· .;C.;zl'zZ""'zl1.)

r(c.) (1 tt-l( c.-tt-l -b -b
= r(tt)r(c.-tt) J

o
u l-u) (1-uz1) l ... (l-uzl1.) 11.00

where Rec> Rett> 0; arg(l-zJt) < 1T; 1t=1,2, ... ,11..

Case 4. Let
00 •
(I c. .x..{.)
i=o ..{.

(l-ux)O
(1-vx)9

(33)

where luI < 1 and Ivl < 1.
Substituting (32) in (20) and by using [8,pp.450, (42)] I

we have

I('J,tt,b,d) (34)

for Re(d+1) > 0 and v(tt+1) > -1.

§3. Stellar .odel with generalized energy rate. In this sec-
tion we assume the radial density p is a ~inear function in
It, that is

(35)

and the rate of the nuclear generation function £(It) is
given by

(36)

where ~ > O.
Hence by virtue of (35) and (36), the luminosity of

the star defined by (3), becomes

(37)

where
(38)
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In order to evaluate I', we shall consider the more general
integral

(39)

We shall consider four different representation of the
series involved in the integrand. I' (a,b,d,~) is evaluated
in terms of the confluent hypergeometric functions of sever-
al variables.

Case 1. Recall (21) and apply the same technique as in case
1 of section 2 to obtain I'(a,b,d,~) in the following form,

(-b)1L ••• (-b)JtI.
1 J<.

00 00

(40)

The above equation can be written by using [4], in the fol-
lowing form,

I

I,,(a,b,d,O

= rca+2)r~d+l)
r (a+ +3)

(41)

~+1).. Pcct>v (d+l ,-b, •.• ,-b,a+d+3; -a1,· .. '-'\ ,~-),Po

where lajl < 1, j = 1,... ," or b is a positive integer,
Re(a+2) > 0 and Re(d+l) > 0, ct>bn)(a,l3l'··.,l3n_l;Y;Xl'··'Xn)
is the confluent hypergeometric function of several vari-
ables define as

00

l
(Y)m + +m m! ...mn!

1·· n

Ix11 < 1,... ,lxn_11 < 1; xn any finite value.
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Case 2. Consider case
00

L c .xJ.. = (1 - P x) - q •
J..=o -<.

Using 18, pp.451,(48)1 in (39), we obtain
1

'( bd f d a.+1 Pc. -bqI q a., , , ~) = x (1 - x) e xp ( ~-x) (1 - Px ) d x
o Po (42)

_ f(d+1~f(a.+2) Pc.
- r (a.++3) <1>1(d+ 1, bq ,a.+d+3; P '~Po)

for Re(d+1) > 0 and a. > -2. <1>1is the Humbert function de-
fined by

( ) _ . fey) (1 a-1 Y-a-1 -e uy
<1>1a,e;y;x,y - fCa)fCY-a) J

o
U (l-u) (l-ux) e du., (43)

Re(a) > 0 and Re(Y-a) > O.

Case 3. Recall (31) and substitute in (39), we get

[
1 d a.+1 -0 b _0 b P

18 (a.,b,d,~) = 0 x (l-x) (l-zlX) 1 ... (l-zmx) m exp(~pC.lt)dx (44)

Equation (44) can be expressed in terms of <l>V [4] and is given
by

18(a.,b,d,O

f(d+1~f!a.+2) ,j,(mf-1)(d+1 0 b 0 h·a.+d+3'z z ~ EJ:.) (45)r (a.+ + )..,V ' 1 , .• , m"" , 1"·' m' <, Po

where Iz.1 < 1, j 1, ..• ,m or O. is a negative integer,
j j

Re(d+1) > 0 and a. > -2.

Case 4. We consider the case when the series
be expressed as

00 ,r c. .x-<. can
J..-o -<.

A > 0, [p ] < 1.
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Hence, using (43), we obtain

~:;..-:~~~ ¢1(d+1,bq,a+d+3;p,E;,Pc.- A)Po (46)

for Re(d+1) > 0, a > -2, Ipl < 1.

As the results established here involve generalized
hypergeometric functions of several variables, special
values of the parameters will lead to a number of particular
cases.
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