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USE OF GENERALIZED HYPERGEOMETRIC FUNCTIONS
IN ANALYTIC STELLAR MODELS

by
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Abstract: The present paper deals with the technique
of integration theory of special functions applied to two
simple analytic stellar models. We consider two cases, one
with a non-linear dependence of the radial density and the
other with a generalized energy generation rate. The inte-
gration theory of the generalized hypergeometric functions
is applied to evaluate analitically the rate of nuclear en-
ergy generation. Some known results follow as particular
cases of our formulae established here.

§1. Introduction. The study of some problems in the theor)
of internal structure of stars [1,2], motivates the inter-
est in obtaining simple analytic stellar models.

In this work we shall apply the techmique of inte-
gration theory of special functions [3,4] for treating
special solutions of the equations of stellar structure.

The model we are concerned is a spherically symmetric
purely gaseous star, which is generating nuclear energy
and it is in quasi-static equilibrium [5].

In general the stellar structure models leads to a
system of non-linear differential equations which can not
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be solved in a closed form. However under some restricted
conditions, such as the separation of the conditions of hy-
drostatic equilibrium mass conservation, and energy conser-
vation from the consideration of the mode of energy trans-
ports one can obtain analytic models. The advantage of such
analytic solution with energy conservation is to determine
the central conditions on the star which concern the equa-
tion of the state and the rate of energy generations.

In section 2, we shall have a first stellar model with
a radial density inside the star given by

p(n) = p,(1-p%, v > -1 (M

where p, = p(0) is the central density of the star and R is
the radius of the star. In-equilibrium the average energy
production per unit mass at the radius x, e(n), is assumed,
for the sake of simplicity, proportional to certain powers
of the density and temperature, that is

b
JORENORSIC NG SN (2)

where T(n) is the temperature distribution function inside
the star defined later, o and To are the reference density
and temperature respectively. And a and b are two real num-

bers.
The total net rate of nuclear energy generation which

is equal to the luminosity of the star,
R 2
L = 4m f rp(n)e(n)dr (3)
(s

will be evaluated for four different cases of the analytic
representations of the nuclear energy generation rate e(x).
In Section 3, we shall consider a second stellar mod-

el with a linear dependence of the radial density that is,

p(n) = p,(1-0 , (4)

and the rate of nuclear energy generation is given by
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£(1) = £5pg,T,) (BN (20 exp (- 52822), (5)

where £ > 0.

The luminosity function L(1) defined by (3) will be
calculated in four different analytic forms of e(1).

The resuitd given recently by Haubold and Mathai [5]

follows as particular cases of our generalized stellar mod-
els.

§2. Stellar model with a non-linear dependence of the radial
density. First we shall evaluate the distribution of mass
M(n) of the star which is given by

M(n) = 4nrn2p(n) dn.
(o]

By using (1), we have
n
= 2.4 _ AV
M(n) = 41rpcfo)(. @ H) dn .
By invoking the integral representation for Gauss' hyper-

geometric function ,F [6] or simply the résult [7, pp.- 30,
(3)]

X x-1 -a _
J s dx =X xA2F1(a,A;A+1;1%), Re A> 0, (6)
o (x+y)® A
we have
M(n) = i"-} pcnzzF,(-v,s;tt;%), v > -1, (7

If M is the total mass of the star, that is M(R) = M, then
from (7) we get

_ M(v+3) (v+2) (v+1) (8)
¢ gwR>
From the basic equation of the hydrostatic equilibrium be-
tween the gravitational force exerted on the mass and the
gas pressure force directed outward, we have
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P(r) = P(0) f%}’i o (1) dr (9)
o]

where G is the gravitational constant. Let

A(n) = rG—fzmp (n)dnr.
o

From (1) and (7), A(1) can be rewritten as

n
A(n) = %vpiGI r(1 -%)“2F1(-v,3;4;7’§)da
(o]

By using (6) and the series representation of Gauss' hyper-

geometric function we can write A(n) -as follows

A = %«pi@éo W("’Zk_“)’f )2 JF, (v, 20534 k37 (10)

From the boundary condition P(R) = 0, we have P(0) = A(R)
and therefore (9) can be written as

4 2,52 [T(v+1
P(n) = 4o26R [r—?\j—:z-} 5Fp(-v,3,2;4,9+3;1)

o (11)
- kgoc%)‘“zzr,(-v.2+k;3+k;§§)]-

For linear dependence of the radial density inside the star,

P(n) can be written as,
P(n) = pleR?[s-24 (2 + 28GR - 91, (12)

which is in agreement with the equation (2.3) of [5]. By
virtue of the equation of state of the perfect gas
P= _%pT (13)
uﬂu !
where k is the Boltzman constant, p is the mean molecular
weight, Mu is the atomic weight unit and T is the tempera-

ture, the distribution function of the temperature inside
the star T(1) can be written in the following form ((1) is
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expressed as a series),

2
T(n) = MW SRIT (Ve )

2 Fa(-v,3,2;4;v+3;51)

(14)

Z (f)k+zzp1(-\;,2+k;3+k;%)] Z v )n(_)

The expression for T(1) can be expressed as a rapidly
converging series of the form

T(1) =Ty I e <) (15)
A=0

where 5
_ AmuMypo6R

2VPulRes®,. 3,2;4,v43;1 16
3 (v+2) (V1) > 3F2(-v v+3il) (16)

In the linear case (v =1) equation (15) becomes

S‘n GuMu
N

2 5 i
T(n) = 0 RO T e (@5
A4=0

where the coefficients, can be easily determined:

19 9 .
¢y = ¢4 = 1, ¢, =-%, C3=7% and c, =-0 for 4 > 4.

As usual we define the luminosity of the star L(R) as de-

fined by (3),
R

L(R) = 4nf azp(n)s(n)dn,
o

where the rate of the nuclear generation e(4) is given by
(2). N

By using (1) and (2) and setting x = g, We can Te-
write L(R) in the fcllowing form:

x
L(R) = e (0, Tg) (B)° (Tg)bpcnﬁ, (18)
where 1 o '
1= f x2(1-x)"(‘””('z chL)bdx (19)
o A=0
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In order to evaluate (19), we shall consider the more
general integral of the form
1 © .
1(v,a,b,d) = ! xd(1-x)v(a+1)( )) cix‘)bdx; (20)
o L=0
In the general case, we can not evaluate (20) in a closed
form. However under some special cases the infinite series
of the integrand can be summed and that leads to evaluation
of 1(v,a,b,d) in terms of generalized hypergeometric func-

tions.

Case 1 We shall consider here thst x <<1 then the series

foc .x* can be approximated by ? e .x* for k < ». Therefore
L=

we have
( § c,xi)b = (1+c x+cC x2+ +o,x")
=1 £ 1 2 A 21
= (1+a1x)b(1+a2x)b 46N (1+akx)b
where - Z%’ -E%,..., _ZL are the roots of the polynomial
equation 1 teogxtexTH. L ke X = 0.

There seems to be an error in [5, pp.376]. The num-

. s

bers Aysdyyeensy should be replaced by -ET’ Ez,... a,
as the roots of the polynomial equation

1 *eqx +c2x2+...+ckxk =0

The ordinary binomial expansion with factorial notation

can be used to write (21) as follows

0 = ,L ”-
() chL)b Z )nx( -agx) ! Z )az( -a,x) i
£L=0 n= =0
(22)
v (¥b)a r
) ——_T_k('ak ) % a
”‘k=0 /Lk.
where |a.| < 1, 4= 1,2,...,k or b is a positive integer.

Substituting in (20), we obtain
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T2 (b)y (B (B, a
LOsab,d) = ] ... ] a,:ﬁ%:...ii! (0 e

n1=0 ,Lk=0

il (23)
---(-ak) kL)xd+n1+n2+"‘+nk(1-x)v(a+1)dx.
Further we have the beta integral,
1
I xd+/Ll+/L2+...+7Lk_(1-x)\)(a+1) - I‘(\)a+v+1)I‘(d+1) (d+1)/Ll+/l2+.-+/Lk (24)

s [(d+vasve2) (d+vasve2), oy +ny,

From [8, pp.449,(15)] and [4] and by using (24), we can
write Ik(v,a,b,d) in terms of the Lauricella function FD
as follows

T'(va+v+1) (d+1)
1,0,8,6,8) = Fraoaror) F§®) (d#1,-b,-b,. .. ,-b;devarve2 ;

-al,-az,...,—ak) (25)

where |aj| <1 for § = 1,2,...,k or b is a positive integer,
Re(d+1) > 0 and v(a+1) > -1, Fén) is defined in the series
representation in the following form

2 @kl O D, Gk,

15 o= s Ry=0 (O +hyt. .. +k

an) (aib1)°*’bn;C,z1, ‘e ,Zn) =
n
z%...zﬁ"
o TN (26)
n

where |zj| <1 for § = 1,2,00nsM

We mention some particular cases of (25).
(i) Let a; = a, =...= a, = a' , in this case the Lauricella
function Fp reduces to the Gauss hypergeometric function
?F1 and that (25) becomes

_ T'(va+v+1) (d+1) bh- ie
Ik(v,a,b,d) = Tldvarv+d) 2F1(d+1, kb; d+va+v+2;-a') 27N
(ii) For a, = a, =...= a = -1, (25) reduces to
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_ T'(va+v+kb+1)T(d+1)
I,(v,a,b,d) = =Frgrgasrvekb+2) (28)

(iii) If R = 2, then the Lauricella function Fv reduces to
the first Appell's function F, [9], and (25) takes the fol-

lowing form,

_ I'(va+v+1)T(d+1) L " _
Ik(v,a,b,d) = T(drvarel) F1(d+1,-b,-b,d+va+v+2,-a1, az) (29)

|a1| <1, la,| <1, Re(d+1) > 0, v(a+1) > -1.

Case 2. Suppose the series expansion cixi has this form
L=0
) cixi = (1'Px)-q ’
4=0
where |p| < 1, p and q are known. Substituting in (20), we
obtain, by using [6,9], the following result

_ T(va+v+1)T(d+1 . !
1,0v,0,6,d) = SREN I oF, (ba,dv1;dvvarvez;p) (30)

where |p| < 1, Re(d+1) > 0 and v(a+1) > -1.

Case 3. Let

o

(1

A

et = (1-2,0 781 (1-2,0 782, . (1-2,) "Om (31)
o]

for m finite, |z.] < 1; § = 1,2,...,mor 61 a negative in-
teger; substituting (31) in (20), w: get, by using the same
method as in Case 1, the following

_ T'(va+v+1) (d+1) (m) "
Is(v,a,b,d) = T{dvan®d) FD (d+1,bo1,b62,...,b6m,
(32)

d+va+v+2;z1,zz,...,z”)
where
Re(d+1) > 0 and v(a+1) > -1,

The integral representation of Lauricella's function
an) is as follows [8, pp.452,(57)],
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an) (a;b1:b2," -;C;Z1,ZZ,. ..,Zn)

I'(e 1 a1 c-a-1 b b
= - (M-uzy)” suz )M
T(@T(c-a i)“ (1-uw (Truz)""1... (1-uz,)) " Mdu

where Re c¢> Rea> 0; arg(1-z,) < m; n=1,2,...,n.

Case 4. Let
bt ; 1-ux) b
(] ex = {ouwx)l 33
i=0 * (1-vx) 9 B
where |u| < 1 and |v| < 1.
Substituting (32) in (20) and by using [8,pp.450,(42)],
we have

0 1 1
I1(v,a,b,d) = §%§:3;+3££§+‘l F1(d+1,-6b,gb;d+va+v+2;u,v), (34)

for Re(d+1) > 0 and v(a+1) > -1.

§3. Stellar model with generalized energy rate. In this sec-
tion we assume the radial density p is a linear function in
n, that is

o(n) = 0, (1-2), (35)

and the rate of the nuclear generation function e(x1) is
given by

b
C0) = ¢ (9,Ty) LD exp (- £22D) (1) ()

where £ > 0.
Hence by virtue of (35) and (36), the luminosity of

the star defined by (3), becomes

PeyaTeyb o3 Py 1+
L(R) = 4me (o ,T,) (ﬁ)“(ﬁ) pRex(-E ST, (37)
where 1 3 i S m
' = I x2(1-0) % exp (€ ng)(‘z e X)) (38)
o o 4=o
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In order to evaluate I', we shall consider the more general

integral

1 © .
x(1-0" exp (£ £24) ( ] e X) bax (39)
o A=0

1'(a,b,d,t) = t;

We shall consider four different representation of the
series involved in the integrand. I'(a,b,d,£) is evaluated
in terms of the confluent hypergeometric functions of sever-

al variables.

Case 1. Recall (21) and apply the same technique as in case
1 of section 2 to obtain I'(a,b,d,&) in the following form,

- @ (-bYy, »s:(~D
1)(a,b,d,8) = ] ... ] ( )”‘1 (B
R1=0  Ap=0 A l..unyl e
1
y (_a1)nl. 3 (-ak)ak f xdmﬁ"‘Mk(]-x)“ﬂcg(pc/%)xdx
0

The above equation can be written by using [4], in the fol-

lowing form,

1,(a,b,d,6) 41

- %}l ¢g2+1) (d+1,-b,...,-bsa+d+3;-a,,. .. "%»E%ﬁ) ,

where Iajl <1, §=1,...,k or b is a positive integer,
Re(a+2) > 0 and Re(d+1) > O, ¢D")(a,81,...,Bn_1;y;x1,.-,xn)
is the confluent hypergeometric function of several vari-

ables define as

¢£n)(an81s°--’Bn_1;Y;x1)--'sxn)

o m
. } (g y+....+my (B 1) m o By 1Imy-q X:I...xn"

= 1 \
My see M, =0 (Y)m,+.,+m m...m !

lx,| < 1,...,|xn_1| < 1; x, any finite value.
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Case 2. Consider case

Lzocix = (1-px)°9,.

Using |8, pp.451,(48)| in (39), we obtain

1
I xd(1-x)“+1eXP(Ez—°-x)(1-pX)'qux
(o] (o]

_ T'(d+1)T(a+2 p

for Re(d+1) > 0 and a > -2. ¢1 is the Humbert function de-
fined by

1, (a,b,d,E)
(42)

1
6 (@,8373%,8) = TryoRmy f -0 (1w B, (43)

0

Re(a) > 0 and Re(Y-o) > 0.
Case 3. Recall (31) and substitute in (39), we get

1 S.b
1 (a,b,d,) = f -0 (120700 (12 0™ exp(625x) dx  (44)
(0]

Equation (44) can be expressed in terms of ¢, [4] and is given

by

13(a,b,d,5)
_ I'(d+1)Tr(a+2) ,(m+1 y A P
- L DI@D) 4™ (841,86, e ,bi 0043521, 0,2, E 59 D)

where |z.,| <1, §=1,...,mor Gj is a negative integer,
Re(d+1) > 0 and a > -2.

© »
Case 4. We consider the case when the series ,zocix‘ can
L—

be expressed as

5 cix‘ = M (1-p0)7 0.
£L=0

A >0, |p| < 1.
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Hence, using (43), we obtain

, _ I'(d+1)T(a+2 . Pe
Tya,b,d,6) = S bl o, (d1,bq,avde3ip, £ £E- ) (46)

for Re(d+1) > 0, a > -2, |p| < 1.

As the results established here involve generalized
hypergeometric functions of several variables, special
values of the parameters will lead to a number of particular

cases.
*
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