Revista Colombiana de Matemáticas Vol. XXIV (1990) págs. 41-49

UNIFORM ORDERED SPECTRAL DECOMPOSITIONS

by

T. V. PANCHAPAGESAN

Resumen. Introducimos la noción de UOSD-multiplicidad de una proyección P relativa a una medida espectral $E(\cdot)$ con la CGS-propiedad y la comparamos con la noción de multiplicidad introducida por Halmos [2]. También se dan varias caracterizaciones para que una medida espectral tenga la CGS-propiedad.

Abstract. We introduce the notion of UOSD-multiplicy of a projection P relative to a spectral measure $E(\cdot)$ with the CGS-property and compare it with the notion of multiplicy introduced by Halmos [2]. Also are given some characterizations for a spectral measure to have the CGS-property.

In our earlier work [4] we introduced the notion of ordered spectral decomposition (OSD, in abbreviation) of a Hilbert space relative to a spectral measure $E(\cdot)$ and defined the OSD-multiplicity of a projection P commuting with $E(\cdot)$. Here we introduce the concepts of uniform OSD and UOSDmultiplicity and compare the concept of multiplicity in Halmos [2] with the OSD and UOSD-multiplicities. Also we obtain various characterizations for a spectral measure to have the CGS-property.

Supported by the C.D.C.H. projects C-S-149, 150 of the Universidad de los Andes.

§1. Preliminaries. In this section we fix the terminology and notations and give some definitions and results from the literature which are needed in the sequel.

S denotes a σ -algebra of subsets of a set $\chi(\neq \phi)$. *H* is a (complex) Hilbert space and $E(\cdot)$ is a spectral measure on **S** with values in projections of *H*. The closed subspace generated by a subset X of *H* is denoted by [X]. For a vector $x \in H$, $Z(x) = [E(\sigma)x:\sigma \in S]$; $\sum_{\substack{i \in J \\ j \in J}} \Phi M_i$ denotes the orthogonal direct sum of the subspaces M_i of some Hilbert space.

W is the Von Neumann algebra generated by the range of $E(\cdot)$ and W' is the commutant of W. If W' = $\sum \Theta W' Q_n$ is the type I_n direct sum decomposition of W', then the central projections $Q_n \neq 0$ are unique (such that $W' Q_n$ is of type I_n) and in the sequel Q_n will denote these central projections. For $x \in H$, $[Wx] = [Ax:A \in W]$ and, sometimes, also denotes the orthogonal projection with the range [Wx]. For aprojection $P' \in W'$, C_p , denotes the central support of P'. Other terminology in Von Neumann algebras is standard and we follows Dixmier [1].

As was observed in [5] a projection P' in W' is abelian if and only if P' is a row projection in the sense of [2] and the column C(P') generated by P' as in [2] is the same as $C_{p'}$.

NOTATION 1.1. Let P be a projection in W. The multiplicity (respy. uniform multiplicity) of P in the sense of Halmos [2] will be referred to as its H-multiplicity (respy. UH-multiplicity) relative to $E(\cdot)$.

As was noted in [5] Theorem 64.4 of Halmos [2] can be interpreted as follows:

THEOREM 1.2. A non-zero projection F in W has UH-multiplicity n if and only if there exists an orthogonal family $\{E'_{\alpha}\}_{\alpha}$ j of abelian projections in W' such that card (J) = n, $C_{E'_{\alpha}} = F$ and $\sum_{\alpha \in J} E'_{\alpha} = F$. In other words, F has UH-multiplicity n if and only if W'F is of type I_n . Consequently, the following proposition is immediate.

PROPOSITION 1.3. A non-zero projection P in W has UH-multiplicity n if and only if P \leqslant Q_n .

DEFINITION 1.4. $E(\cdot)$ is said to have the CGS-property (i.e. countable generating set property) in H if there exists a countable set X in H such that $[E(\sigma)x:\sigma \in S, x \in X] = H$.

Let $\rho(x) = ||E(\cdot)x||^2$. Then $\rho(x)$ is a finite measure on S. We say that $\rho(x_2)$ is absolutely continuous with respect to $\rho(x_1)$ and write $\rho(x_2) \ll \rho(x_1)(\text{or } \rho(x_1) \gg \rho(x_2))$ if $\rho(x_1)(\sigma) = 0$ implies $\rho(x_2)(\sigma) = 0$.

DEFINITION 1.5. Let $\{x_{i}\}_{i < N}$, $N \in \mathbb{N} \cup \{\omega\}$, be a countable set of non-zero vectors in H such that (i) $H = \sum_{1}^{N} \bigoplus Z(x_{i})$ and (ii) $\rho(x_{1}) \gg \rho(x_{2}) \gg \ldots$ Then we say that $H = \sum_{1}^{N} \bigoplus Z(x_{i})$ is an OSD of H relative to $E(\cdot)$

The cardinal number $N \in \mathbb{N} \cup \{\omega\}$ in the above definition is uniquely fixed by $E(\cdot)$ and is called the OSD-multiplicity of $E(\cdot)$. If P is a projection commuting with $E(\cdot)$ and $PE(\cdot)$ has the CGS-property in H, then the OSD-multiplicity of $PE(\cdot)$ is called the OSD-multiplicity of P. Besides, it has been shown in [4] that $E(\cdot)$ has the CGS-property in H if and only if H has an OSD relative to $E(\cdot)$.

§2. UOSD-multiplicity of projections. We introduce the concepts of UOSDs and UOSD-multiplicity relative to a spectral measure $E(\cdot)$ with the CGS-property in H and show that for a projection P in W the UOSD-multiplicity and the UH-multiplicity are one and the same when P is countably decomposable in W.

DEFINICION 2.1. An OSD $H = \sum_{1}^{N} \oplus Z(x_{i})$ relative to $E(\cdot)$ is said to be a uniform OSD (UOSD, in abbreviation) of H if $\rho(x_{1}) \equiv \rho(x_{2}) \equiv \ldots$, where $\mu \equiv \nu$ if $\mu \ll \nu$ and $\nu \ll \mu$.

The following proposition is immediate from Theorem 1. (ii) of [4].

PROPOSITION 2.2. If H has a UOSD relative to $E(\cdot)$, then all the OSDs of H relative to $E(\cdot)$ are UOSDs.

DEFINITION 2.3. If *H* has a *UOSD* relative to $E(\cdot)$ then the *UOSD*-multiplicity of $E(\cdot)$ is defined to be the same as its *OSD*-multiplicity. If *P* is a projection of *H* commuting with $E(\cdot)$ and if *PE(\cdot)* has *UOSD*-multiplicity *n*, then we say that *P* has *UOSD*-multiplicity *n* relative to $E(\cdot)$.

The following simple example shows that, in general, the OSD-multiplicity and H-multiplicity of a projection Prelative to $E(\cdot)$ are not the same even though H is finite dimensional.

EXAMPLE 2.4. Let $H = \mathbb{C}^5$, $S = \{\phi, \{\lambda_1\}, \{\lambda_2\}, \{\lambda_1, \lambda_2\}\}, \lambda_1$, $\lambda_2 \in \mathbb{C}, \lambda_1 \neq \lambda_2$ and $E(\cdot)$ be a spectral measure on S given by $E(\{\lambda_1\})H = [e_1, e_2]$ and $E(\{\lambda_2\})H = [e_3, e_4, e_5]$, where $e_1 = (1, 0, 0, 0, 0, 0), e_2 = (0, 1, 0, 0, 0), \text{ etc. Since any maximal orthogonal family of row projections (in the sense of Halmos [2]) <math>\{E_{\alpha}'\}$ in W' with $C_{E_{\alpha}'} = I$ consists of just two members, the H-multiplicity of I is 2. On the other hand, if $x_1 = e_1 + e_3$, $x_2 = e_2 + e_4$ and $x_3 = e_5$, then $H = \frac{3}{1} \oplus Z(x_{\dot{L}})$ is an OSD of H since $\rho(x_1) \equiv \rho(x_2) \gg \rho(x_3)$. Thus the OSD-multiplicity of I is 3.

The following result is well-known in the theory of Von Neumann algebras, and its proof is indicated also on page 108 of [2]. Using this result we compare the UH-multiplicity and UOSD-multiplicity of a projection.

LEMMA 2.5. Let P' be an abelian projection in W'. If the central support C_p , of P' is countably decomposable in W, then P' is cyclic.

THEOREM 2.6. Let P be a countably decomposable nonzero projection in W'. Then P has UH-multiplicity $N \leq \omega$ if

44

and only if P has UOSD-multiplicity N (relative to $E(\cdot)$). Proof. Suppose the UH-multiplicity of P is $N \leq \omega$. Then by Theorem 1.2 there exists an orthogonal family $\{P'_j\}_{j \in J}$ of abelian projections in W' such that card. $J = N, CP'_j = P$ and $P = \sum_{j \in J} P'_j$. Let $J = \{1, 2, ..., N\}$. By Lemma 2.5 there exists $x_j \in P'_j$ H such that $P'_j = [Wx_j], j \in J$. Thus PH = $\sum_{j \in J} [Wx_j] = \sum_{j=1}^{N} \oplus Z(x_j)$. Besides, by Theorem 66.2 of [2], $C(\rho(x_j) = C[Wx_j] = CP'_j = P$ for all j. Therefore, by Theorem 65.2 of [2], $\rho(x_j) \equiv \rho(x_j)$, for $j, j' \in J$. Hence the condition is necessary.

Conversely, if P has UOSD-multiplicity N, then clearly $N \leq \omega$. Let $PH = \sum_{i=1}^{N} \mathbf{e}Z(x_{i})$ be an OSD of PH relative to $PE(\cdot)$. Then by Proposition 2.2, $\rho(x_{1}) \equiv \rho(x_{2}) \equiv \ldots$ Consequently, by Theorem 66.2 of [2] we conclude that $C[\omega x_{1}] = C[\omega x_{2}] =$ $\ldots = Q(say)$. Clearly, $P = \sum_{i=1}^{N} [\omega x_{i}] \leq Q$. As $P \in W$, $[\omega x_{i}] \leq$ $C[\omega x_{i}] = P$ so that Q = P. Since each $[\omega x_{i}]$ is an abelian projection in W' by Theorem 60.2 of [2], from Theorem 1.2 it follows that P has UH-multiplicity N.

§3. Some characterizations of the CGS-property. In terms of the existence of OSDs and OSRs of H the CGS-property of a spectral measure $E(\cdot)$ is characterized in [4]. The following Theorem gives some more charecterizations of this property.

THEOREM 3.1. Let $E(\cdot)$ be a spectral measure on S with values in projections of H. Then the following statements are equivalent.

(i) Every projection of UH-multiplicity N in W is countably decomposable in W and $n \leq \omega$.

(ii) The projections Q_n are countably decomposable in W and $Q_n = 0$ for $n > \omega$.

(iii) Every projection in W is countably decomposable in W and has H-multiplicity $n \leq \omega$.

(iv) Every projection of UH-multiplicity in W is countably decomposable in W'.

(v) The projections Q_n are countably decomposable in W'.

(vi) Every projection in W is countably decomposable in W'. (vii) Every non-zero projection of UH-multiplicity in W has UOSD-multiplicity (and hence they are equal). (viii) $E(\cdot)$ has the CGS-property in H.

Proof. (i) \Rightarrow (ii) Let $Q_n \neq 0$. Then by Proposition 1. 3, Q_n has UH-multiplicity n. Therefore, (ii) is immediate from (i). (ii) \Rightarrow (iii) If P is a non-zero projection in W, then by (ii) $P = \sum Q_n P$. Being Q_n countably decomposable in W, it follows that the same is true for P. Then the H-multiplicity of P = min $\{n: PQ_n \neq 0\} \leq \omega$ by Theorem 64.2 of [2] and by Proposition 1.3. (iii) \Rightarrow (iv) Let P be a non-zero projection of UH-multiplicity n. By (iii), $n \leq \omega$. By Theorem 1.2 there exists an orthogonal family $\{E_i^{\prime}\}_{i=1}^{n}$ of abelian projections in \mathcal{W}_{i}^{\prime} such that $P = \sum_{i=1}^{n} E_{i}$ and $CE_{i} = P$ for all *i*. Now by (iii) and Lemma 2.5 there exist vectors x_j in PH such that $[Wx_j] = E'_j$. If x = $\{x_{j}\}_{1}^{n}$, then clearly PH = $[W_{\chi}]$ so that by Lemma 3.3.9 of [3] P is countably decomposable in W'. $(iv) \Rightarrow (v)$ This is immediate, since Q_n has UH-multiplicity n by Proposition 1.3. $(v) \Rightarrow (vi)$ Let P be a non-zero projection in W'. Then $\sum_{n} PQ_n$ and by (v) Q_n are countably decomposable in W'. $n \leq dimH$ To prove that P is countably decomposable in W', it suffices to show that $Q_n = 0$ for $n > \omega_0$. If $Q_n \neq 0$, as Q_n has UH-multiplicity n by Proposition 1.3, there exists an orthogonal family $\{E'_{\alpha}\}_{\alpha \in J_{n}}$ of abelian projections in \mathcal{W}' such that card. $J_n = n$, $Q_n = \sum_{\substack{\alpha \in J_n \\ \alpha \in J_n}} E'_{\alpha}$ and $C_{E'} = Q_n$. As Q_n is countably decomposable in W', it follows that J_n is countable so that $n \leq \omega$. Consequently, $Q_n = 0$ for $n > \omega \cdot \infty$ is allowed access $(vi) \Rightarrow (vii)$ Let P be a non-zero projection of UH-multiplicity n. By (vi) P is countably decomposable in W' and hence in W. By Proposition 1.3, there exists a unique Q_n such that $P \leq Q_n$. As in the proof of $(v) \Rightarrow (vi)$ we note that $Q_k = 0$ for $k > \omega_0$ and hence $n \le \omega$. Consequently, by Theorem 2.6, (vii) holds. (vii) \Rightarrow (viii) By Proposition 1.3 Q_n has UH-multiplicity n

46

if $Q_n \neq 0$. Then by (vii), $n \leq \omega$ if $Q_n \neq 0$ and hence $Q_n = 0$ for $n > \omega$. Again by (vii) as Q_n has UOSD-multiplicity n for $n \in J_0 = \{n: Q_n \neq 0\}$ there exists an orthonormal set $\{x_{nj}\}_{j=1}^n$ in $Q_n H$ such that $Q_n H = [E(\sigma)x_{nj}: \sigma \in S, j = 1, 2, ..., n]$. Therefore, $H = [E(\sigma)x_{nj}, n \in J_0, j = 1, 2, ..., n]$ and hence (viii) holds. (viii) \Rightarrow (i) By (viii) and by Lemma 3.3.9 of [3] W' is countably decomposable and hence W is countably decomposable. Besides, evidently for every projection P of UH-multiplicity n in W, $n \leq \omega$. Thus (i) holds.

\$4. COMPARISON BETWEEN OSD-MULTIPLICITY AND #-MULTIPLICITY. Example 2.4 is just a particular case of the following more general result.

THEOREM 4.1. Suppose $E(\cdot)$ has the CGS-property in H. Let P be a non-zero projection in W with the H-multiplicity n and with the OSD-multiplicity (relative to $E(\cdot)$)N. Then: (i) $n \leq N$.

(ii) n = N if and only if P has UH-multiplicity n. (iii) n = N if and only if P has UOSD-multiplicity n (relative to $E(\cdot)$).

Proof. By Theorem 62.4 of [2] there exists a non-zero projection Q in W such that $Q \leq P$ and such that Q has UH-multiplicity n. Besides, by Theorem 3.1, Q is countably decomposable in W and $n \leq \omega$. Therefore, by Theorem 2.6 Q has the UOSD-multiplicity n relative to $E(\cdot)$. Consequently, by Theorem 5 of [4] the total multiplicity of Q is n and therefore, $n \leq N$.

(ii) Suppose n = N. We discuss the following two cases. Caso 1. n is finite.

By hypothesis, there exists a maximal orthogonal family $\{E'_{i}\}_{1}^{n}$ of abelian projections in W' such that $C_{E_{i}} = P$ for all *i*. If P does not have *UH*-multiplicity then by Theorem 2.2 $P \neq \int_{1}^{n} E'_{i}$. Now, by Theorem 3.1 (iii) and Lemma 2.5 there

exist vectors $x_{i} \in PH$ such that $E'_{i} = [Wx_{i}], i = 1, 2, ..., n$. Then by Theorems 66.2 and 65.2 of [2] we have $\rho(x_{1}) \equiv \rho(x_{2})$ $\equiv ... \equiv \rho(x_{n})$. Let $E' = \sum_{i=1}^{n} E'_{i}$. Clearly, $E' \in W'$ and $E'H = \sum_{i=1}^{n} \mathbb{E}[x_{i}]$ is a UOSD of E'H relative to $E(\cdot)E'$. If $x \in (P-E')H$ and $x \neq 0$, then $[Wx] = Z(x) \perp E'H$ and $C_{[Wx]} \leq P = C_{[Wx_{1}]}$. Consequently, by Theorem 65.2 of [2] we conclude that $\rho(x) \ll \rho(x_{1})$. On the other hand, by Theorem 1 of [4] there exists an OSD: $(P-E')H = \sum_{n=1}^{k} \oplus Z(x_{i}), \ k \in \mathbb{N} \cup \{\omega\}$, of (P-E')H relative to $E(\cdot)(P-E')$ so that $PH = \sum_{i=1}^{k} \oplus Z(x_{i})$ is an OSD of PH relative to $E(\cdot)P$. Thus k = N and P has OSD-multiplicity N > n. This contradiction proves that P has UH-multiplicity n.

Caso 2. n is infinite.

Due to Theorem 3.1, $n = \omega$ and $Q_k = 0$ for $k > \omega$. Since $P = \sum_{\substack{k \in U \\ k \in d \text{ im}H}} PQ = \sum_{\substack{k \in \omega \\ k \in \omega}} PQ_k$ and since the H-multiplicity of P is ω and is given by min{ $k:PQ_k \neq 0$ }, we have $pQ_k = 0$ for $k \neq \omega$. Thus $P \leq Q_{\omega}$ and hence P has UH-multiplicity ω by Proposition 1.3.

REFERENCES

Dixmier, J., Les Algébres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris (1969).
 Halmos, P.R., Introduction to Hilbert space and the The-

- [2] Halmos, P.R., Introduction to Hilbert space and the Theory of spectral multiplicity, Chelsea, New York (1957).
- [3] Panchapagesan, T.V., "Introduction to von Neumann algebras", Lecture Notes. To be published in Notas de Matemática, Facultad de Ciencias, Universidad de los Andes, Venezuela.
 [4] Panchapagesan, T.V., "Invariantes unitarias de los opera-
- [4] Panchapagesan, T.V., "Invariantes unitarias de los operadores normales en espacios de Hilbert separables", Primeras Jornadas de Análisis, Departamento de Matemáticas, Facultad de Ciencias, Universidad de los Andes, Venezuela, pp. 45-63, (1987)
- Andes, Venezuela, pp. 45-63, (1987) [5] Panchapagesan, T.V., Multiplicity Theory of Projections in Abelian von Neumann Algebras, Revista Colombiana de Matemáticas. Vol.XXII (1988) pp. 37-48.

Departamento de Matemáticas Facultad de Ciencias Universidad de Los Andes Mérida - Venezuela

(Recibido en Julio de 1988)

where the state of the state of a second state of the sta