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UNIFORM ORDERED SPECTRAL DECOMPOSITIONS
by

T. V. PANCHAPAGESAN

Resumen. Introducimos la nocién de UOSD-multiplicidad de una
proyeccidn P relativa a una medida espectral E(*) con la CGS-pro-
piedad y la comparamos con la nocién de multiplicidad introduci-
da por Halmos [2|. También se dan varias caracterizaciones para
que una medida espectral tenga la CGS-propiedad.

Abstract. We introduce the notion of UOSD-multiplicy of a
projection P relative to a spectral measure E(*) with the CGS-
property and compare it with the notion of multiplicy introduced
by Halmos [2]. Also are given some characterizations for a spec-
tral measure to have the CGS-property.

In our earlier work [4] we introduced the notion of
ordered spectral decomposition (0SD, in abbreviation) of a
Hilbert space relative to a spectral measure E(+) and de-
fined the 0SD-multiplicity of a projection P commuting with
E(+). Here we introduce the concepts of uniform 0SD and UOSD-
multiplicity and compare the concept of multiplicity in Hal-
mos [2] with the 0SD and UOSD-multiplicities. Also we obtain
various characterizations for a spectral measure to have the

CGS-property.

Supported by the C.D.C.H. projects C-S-149, 150 of the Universidad de
los Andes.
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§1. Preliminaries. In this section we fix the terminology
and notations and give some definitions and results from the
literature which are needed in the sequel.

S denotes a o-algebra of subsets of a set X(#¢). H is
a (complex) Hilbert space and E(+) is a spectral measure on
S with values in projections of H. The closed subspace gen-
erated by a subset X of H is denoted by [X]. For a vector
x = H, Z(x) = [E(0)x:0 = S];_EJeMi denotes the orthogonal
direct sum of the subspaces ﬁj of some Hilbert space.

W is the Von Neumann algebra generated by the range of
E(+) and W' is the commutant of Ww. If W' = ZQW'Qn is the type
In direct sum decomposition of W', then the central projec-
tions Qn(# 0) are unique (such that w'Qn is of type In) and
in the sequel Qn will denote these central projections. For
x € H, [Wx] = [Ax:A = w] and, sometimes, also denotes the
orthogonal projection with the range [wx]. For aprojection
P' e w', Cp, denotes the central support of P'. Other termi-
nology in Von Neumann algebras is standard and we follows
Dixmier [1].

As was observed in [5] a projection P' in W' is abe-
lian if and only if P' is a row projection in the sense of
[2] and the column C(P') generated by P' as in [2] is the

same as Cp'

NOTATION 1.1. Let P be a projection in W. The multipli-
city (respy. uniform multiplicity) of P in the sense of Hal-
mos [2] will be referred to as its H-multiplicity (respy. UH-

multiplicity) relative to E(-).
As was noted in [5] Theorem 64.4 of Halmos [2] can be

interpreted as follows:

THEOREM 1.2. A non-zero projection F in W has UH-mul-
tiplicity n 4§ and only Lf there exists an ornthogonal family
{E&}a ; 0f abelian projections 4in W' such that cand (J) = n,

Cgr = Fand J E' = F . In other wornds, F has UH-multiplici-
o €]Ot

ty n Lf and only Lf§ W'F 48 of Lype In
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Consequently, the following proposition is immediate.

PROPOSITION 1.3. A non-zero projection P in W has UH-
multiplicity n if and only £ P < Q, .

DEFINITION 1.4. E(+) is said to have the CGS-property
(L.e. countable generating set property) in H if there exists
a countable set X in H such that [E(o)x:ic e S, x € X] = H

Let p(x) = “E(°)x“2. Then p(x) is a finite measure on
S. We say that p(xz) is absolutely continuous with respect
to p(x1) and write p(xz) << p(x1)(or p(x1) >> p(xz)) if
p(x1)(o) = 0 implies p(xz)(o) = 0.

DEFINITION 1.5. Let {XL}L<N’ Ne NU{w}, be a counta-
ble set of non-zero vectors in H such that (i) H =¥ ﬁ}(xi)
and (ii) p(x1) >> p(xz) >> ... Then we say that H = %el(xi)
is an 0SD of H relative to E(*)

The cardinal number N KU {w} in the above defini-
tion is uniquely fixed by E(+) and is called the 0SD-multi-
plicity of E(+). If P is a projection commuting with E(-)
and PE(+) has the CGS-property in H, then the 0SD-multiplic-
ity of PE(+) is called the 0SP-multiplicity of P. Besides,
it has been shown in [4] that E(+) has the CGS-property in H
if and only if H has an 0SD relative to E(-)

§2. UOSD-multiplicity of projections. We introduce the con-
cepts of UOSDs and UOSD-multiplicity relative to a spectral
measure E(+) with the CGS-property in H and show that for a
projection P in W the U0SPD-multiplicity and the UH-multiplic-
ity are one and the same when P is countably decomposable

in W.

N . !
DEFINICION 2.1. An 0SD H = §02(xi) relative to E(+) is
said to be a uniform 0SD (U0OSD, in abbreviation) of H if
p(xy) = p(xy) = ..., where u = Vv if w < v and v << p
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The following proposition is immediate from Theorem 1.
(ii) of [4].

PROPOSITION 2.2. 14§ H has a UOSD relative to E(+), then
all the 0SDs of H nelative to E(+) anre UOSDS.

DEFINITION 2.3. If H has a U0SD relative to E(+) then
the UOSD-multiplicity of E(*) is defined to be the same as
its 0SD-multiplicity. If P is a projection of H commuting
with E(¢) and if PE(+) has UOSD-multiplicity n, then we say
that P has U0SD-multiplicity n relative to E(°).

The following simple example shows that, in general,
the 0SD-multiplicity and H-multiplicity of a projection P
relative to E(*) are not the same even though H is finite

dimensional.

EXAMPLE 2.4. Let H = €°,8 = {¢,{2;}, {0}, {0;,0,}},1q,
Ay = T,y # A, and E(+) be a spectral measure on S given by
E({x;HH = [e1,e2] and E({x,HH = [23,24,e5] , where e =
(1,0,0,0,0,), e, = (0,1,0,0,0,), etc. Since any maximal or-
thogonal family of row projections (in the sense of Halmos
(2 {E}} in W' with Cgy = T consists of just two members,
the H-multiplicity of T is 2. On the other hand, if x; = ¢4
tez, Xy = eyte, and Xz = eg, then H = %ol(xé) is an 08D of H
since p(x1) = p(xz) > p(x3) . Thus the 0SP-multiplicity of
I is 3.

The following result is well-known in the theory of
Von Neumann algebras, and its proof is indicated also on page
108 of [2]. Using this result we compare the UH-multiplicity
and UOSD-multiplicity of a projection.

LEMMA 2.5. Let P' be an abelfian profection 4in W'. Ig
Zhe central support Cp, of P' 4is countably decomposable 4in
W, then P' is cyclic.

THEOREM 2.6. Let P be a countably decomposable non-
zero projection in W'. Then P has UH-multiplicity N g w 4§
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and only 4if P has UOSD-multiplicity N (relative Zo E(-)).
Proo§. Suppose the UH-multiplicity of P is N < w.

Then by Theorem 1.2 there exists an orthogonal famlly {P}jEJ

of abelian projections in W' such that card. J = N, Cp; =P

and P = jng} . Let J = {1,2,...,N} . By Lemma 2.5 there

exists x; € PyH such that Py = [ij], j=J . Thus PH =

fZJ EWx.] =j§1° Z(xj). Besides, by Theorem 66.2 of [2],

C(D(x AT C[wxj] = Cp; = P for all j. Therefore, by Theorem

65.2 of [2], p(x ) = p(xj.) for §,4' € J. Hence the condition

is necessary.

Conversely, hf P has UOSD-multiplicity N, then clearly
N < w- Let PH = gol(xi) be an 0SD of PH relative to PE(-+).

Then by Proposition 2.2, p(xT) = p(xz) = ... Consequently,
by Theorem 66.2 of [2] we conclude that Clyx,] = Clwx,] =
= Q(say). Clearly, P = )j[wx 1} B¢ . As Pew, [Wx;] <

Clwxg] = P so that ¢ = P, §8nce ddéh [in] is an abelian pro-
jection in W' by Theorem 60.2 of [2], from Theorem 1.2 it
follows that P has UH-multiplicity N.

§3. Some characterizations of the CGS-property. In terms of
the existence of 0SDs and 0SRs of H the CGS-property of a
spectral measure E(+) is characterized in [4]. The following
Theorem gives some more charecterizations of this property.

THEOREM 3.1. Llet E(*) be a spectral measure on S with
values in projections of H. Then the gfolLowing statements
ane equivalent.

(i) Every projection of UH-multiplicity N in W 48 countably
decomposable in W and n < w.

(ii) The projections Qn are countably decomposable in W and
Qi 0 for n > w.

(iii) Eveny projection in W 448 countably decomposable in W

and has H-multiplicity n £ w.

(iv) Eveny projection of UH-multiplicity 4in W L8 countably

decomposable in W'.

(v) The projections Q, are countably decomposable in W'.

45



(vi) Every projection 4in W 48 countably decomposable 4in W'.
(vii) Every non-zerno projection of UH-multiplicity £n W has
UOSD-multiplicity (and hence they are equat).

(viii) E(*) has the CGS-propenty 4in H.

Proof. (i) = (ii) Let 2, # 0. Then by Proposition 1.
3, Q, has UH-multiplicity n. Therefore, (ii) is immediate
from (i).
(ii) = (iii) If P is a non-zero projection in W, then by
(ii) P = § ¢ P. Being Q, countably decomposable in W, it
follows tﬁ§% the same is true for P. Then the H-multiplicity
of P = min {n:PQ, # 0} < w by Theorem 64.2 of [2] and by
Proposition 1.3.
(iii) = (iv) Let P be a non-zero projection of UH-multiplic-
ity n. By (iii), n <« w. By Theorem 1.2 there exists an or-
thoganal family {E{}? of abelian projections in W' such that
P = ;Ek and Cg; = P for all 4. Now by (iii) and Lemma 2.5
there exist vectors x, in PH such that [wx,] = E; . If x =
{xi}? , then clearly PH = [Wy] so that by Lemma 3.3.9 of [3]
P is countably decomposable in W'.
(iv) = (v) This is immediate, since Qn has UH-multiplicity
n by Proposition 1.3.
(v) = (vi) Let P be a non-zero projection in W'. Then
P = 2 PQ, and by (v) Q, are countably decomposable in W',
To p?g%gwthat P is countably decomposable in W', it suffices
to show that Q, = 0 for n > w,. If Q, # 0, as Q, has UH-mul-
tiplicity n by Proposition 1.3, there exists an orthogonal
.family {E'}aeJn of abelian projections in W' such that card.

o
J. = n, Q = ;_ E, and Cgy = Q,. As Q, is countably decom-

n a
posable in w?f ?t follows that Jn is countable so that

n & w. Consequently, @, = 0 for n > w.

(vi) = (vii) Let P be a non-zero projection of UH-multiplic-
ity n. By (vi) P is countably decomposable in W' and hence
in W. By Proposition 1.3, there exists a unique Qn such that
P < Qn' As in the proof of (v) = (vi) we note that Qk= 0

for k > Wy and hence n < w. Consequently, by Theorem 2.6,

(vii) holds.
(vii) = (viii) By Proposition 1.3 ¢, has UH-multiplicity n
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if 2, # 0. Then by (vii), n € w if Q, # 0 and hence Q, = 0
for n > w. Again by (vii) as Qn has U0SD-multiplicity n for

ne Jo = {n:Qn # 0} there exists an orthonormal set {an}?=1
in QnH such that QnH = [E(o)xnj:o S8, =1,2,...,n]. There-
fore, H = [E(O)xnj’” €J,,§= 1,2,...,n] and hence (viii)

holds.

(viii) = (i) By (viii) and by Lemma 3.3.9 of [3] W' is
countably decomposable and hence W is countably decomposable.
Besides, evidently for every projection P of UH-multiplicity
nin W, n €« w. Thus (i) holds.

§4. COMPARISON BETWEEN OSD-MULTIPLICITY AND H-MULTIPLICITY.
Example 2.4 is just a particular case of the following more

general result.

THEOREM 4.1. Suppose E(+) has the CGS-property 4in H.
Let P be a nor-zerno projection in W with the H-multiplicity
n and with the 0SD-multiplicity (relative to E(+))N. Then:
(1) n < N.

(ii) n = N 4§ and only 4§ P has UH-multiplicity n.
(iii) n = N 4{f and only 4§ P has UOSD-multiplicity n (reka-
tive to E(+)).

Proog. By Theorem 62.4 of [2] there exists a non-zero
projection Q in W such that Q < P and such that Q has UH-mul-
tiplicity n. Besides, by Theorem 3.1, Q is countably decom-
posable in W and n < w. Therefore, by Therorem 2.6 Q has the
UOSD-multiplicity n relative to E(+). Consequently, by Theo-
rem 5 of [4] the total multiplicity of Q is n and therefore,
n g N.

(ii) Suppose n = N. We discuss the following two cases.

Caso 1. n is finite.

By hypothesis, there exists a maximal orthogonal fami-
ly {Ek}? of abelian projections in W' such that Cg, = P for
all 4. If P does not have UH-multiplicity then by Theorem
2.2 P # ?Ek . Now, by Theorem 3.1 (iii) and Lemma 2.5 there
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exist vectors x, € PH such that Ei = [wxi], L=1,2,...,n
Then by Theorems 66.2 2nd 65.2 of [2] we have p(x1) = p(xy)
=...= p(xn). Let E' = gEL . Clearly, E' e W' and E'H = ?oZ(x‘.)
is a UOSD of E'H relative to E(-)E'. If x = (P-E')H and x #0,
then [wx] = Z(x)LE'H and Cr, 1 < P = C[wx,] - Consequently,
by Theorem 65.2 of [2] we conclude that p(x) << p(xq). On
the other hand by Theorem 1 of [4] there exists an 0SD:
(P-E'")H = 213 Z(x ), L€ NlJ{w}, of (P-E')H relative to
E(-)(P-E') so that PH = ;ez(x .) is an 0SD of PH relative to
E(+)P. Thus & = N and P has 0SD-multiplicity N > n. This con-
tradiction proves that P has UH-multiplicity n.

Caso 2. n is infinite.

Due to Theorem 3.1, n = » and Qk = 0 for k > w. Since
P = PQ Z PQ, and since the H-multiplicity of P is w

and 15 given by min{¢: PQ, # 0}, we have pQ, = 0 for ¢ # w-
Thus P « Qw and hence P has UH-multiplicity w by Proposi-

tion 1.3.
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