# UNIFORM ORDERED SPECTRAL DECOMPOSITIONS 

by

## T. V. PANCHAPAGESAN


#### Abstract

Resumen. Introducimos la noción de UOSD-multiplicidad de una proyección $P$ relativa a una medida espectral $E(\cdot)$ con la CGS-propiedad y la comparamos con la noción de multiplicidad introducida por Halmos [2]. También se dan varias caracterizaciones para que una medida espectral tenga la CGS-propiedad.


#### Abstract

We introduce the notion of UOSD-multiplicy of a projection $P$ relative to a spectral measure $E(\cdot)$ with the CGSproperty and compare it with the notion of multiplicy introduced by Halmos [2]. Also are given some characterizations for a spectral measure to have the CGS-property.


In our earlier work [4] we introduced the notion of ordered spectral decomposition (OSD, in abbreviation) of a Hilbert space relative to a spectral measure $E(\cdot)$ and defined the OSD-multiplicity of a projection $P$ commuting with $E(\cdot)$. Here we introduce the concepts of uniform OSD and UOSDmultiplicity and compare the concept of multiplicity in Halmos [2] with the OSD and UOSD-multiplicities. Also we obtain various characterizations for a spectral measure to have the CGS-property.

[^0]§1. Preliminaries. In this section we fix the terminology and notations and give some definitions and results from the literature which are needed in the sequel.
$S$ denotes a $\sigma$-algebra of subsets of a set $\chi(\neq \phi)$. H is a (complex) Hilbert space and $E(\cdot)$ is a spectral measure on $S$ with values in projections of $H$. The closed subspace generated by a subset $X$ of $H$ is denoted by $[X]$. For a vector $x \in H, Z(x)=[E(\sigma) x: \sigma \in S] ; \sum_{i \in J} \oplus_{i} M_{i}$ denotes the orthogonal direct sum of the subspaces $M_{i}$ of some Hilbert space.
$\omega$ is the Von Neumann algebra generated by the range of $E(\cdot)$ and $\omega^{\prime}$ is the commutant of $\omega$. If $\omega^{\prime}=\sum \oplus \omega^{\prime} 2_{n}$ is the type $I_{n}$ direct sum decomposition of $W^{\prime}$, then the central projections $2_{n}(\neq 0)$ are unique (such that $W^{\prime} Q_{n}$ is of type $I_{n}$ ) and in the sequel $2_{n}$ will denote these central projections. For $x \in H,[\omega x]=[A x: A \in \omega]$ and, sometimes, also denotes the orthogonal projection with the range $[\omega x]$. For aprojection $P^{\prime} \in W^{\prime}, C_{p}$ denotes the central support of $P^{\prime}$. Other terminology in Von Neumann algebras is standard and we follows Dixmier [1].

As was observed in [5] a projection $P^{\prime}$ in $W^{\prime}$ is abelian if and only if $P^{\prime}$ is a row projection in the sense of [2] and the column $\mathcal{C}\left(P^{\prime}\right)$ generated by $P^{\prime}$ as in [2] is the same as $C_{p}$. .

NOTATION 1.1. Let $P$ be a projection in $\boldsymbol{W}$. The multiplicity (respy. uniform multiplicity) of $P$ in the sense of Halmos [2] will be referred to as its $H$-multiplicity (respy. UHmultiplicity) relative to $E(\cdot)$.

As was noted in [5] Theorem 64.4 of Halmos [2] can be interpreted as follows:

THEOREM 1.2. A non-zero projection $F$ in $w$ has $U H$-multiplicity $n$ if and only if there exists an orthogonal family $\left\{E_{\alpha}^{\prime}\right\}_{\alpha}$ of abelian projections in $W^{\prime}$ such that card $(J)=n$, $C_{E_{\alpha}^{\prime}}^{\prime}=F$ and $\sum_{\alpha} J_{\alpha}^{\prime}=F$. In other words, $F$ has UH-multiplicity $n$ if and only if $W^{\prime} F$ is of type $I_{n}$.

Consequently, the following proposition is immediate.

PROPOSITION 1.3. A non-zero projection $P$ in $W$ has $U H-$ multiplicity $n$ if and only if $P \leqslant 2 n$.

DEFINITION 1.4. $E(\cdot)$ is said to have the CGS-property (i.e. countable generating set property) in $H$ if there exists a countable set $X$ in $H$ such that $[E(\sigma) x: \sigma \in S, x \in X]=H$.

Let $\rho(x)=\|E(\cdot) x\|^{2}$. Then $\rho(x)$ is a finite measure on $S$. We say that $\rho\left(x_{2}\right)$ is absolutely continuous with respect to $\rho\left(x_{1}\right)$ and write $\rho\left(x_{2}\right) \ll \rho\left(x_{1}\right)$ (or $\rho\left(x_{1}\right) \gg \rho\left(x_{2}\right)$ ) if $\rho\left(x_{1}\right)(\sigma)=0$ imp1ies $\rho\left(x_{2}\right)(\sigma)=0$.

DEFINITION 1.5. Let $\left\{x_{i}\right\}_{i<N}, N \in \mathbb{N} U\{\omega\}$, be a countable set of non-zero vectors in $H$ such that (i) $H=\sum_{1}^{N} \oplus Z\left(x_{i}\right)$ and (ii) $\rho\left(x_{1}\right) \gg \rho\left(x_{2}\right) \gg \ldots$ Then we say that $H^{1}=\sum_{1}^{N} \oplus Z\left(x_{i}\right)$ is an OSD of $H$ relative to $E(\cdot)$

The cardinal number $N \in \mathbb{N} U\{\omega\}$ in the above definition is uniquely fixed by $E(\cdot)$ and is called the OSD-multiplicity of $E(\cdot)$. If $P$ is a projection commuting with $E(\cdot)$ and $P E(\cdot)$ has the CGS-property in $H$, then the OSD-multip1icity of $P E(\cdot)$ is called the OSD-multiplicity of P. Besides, it has been shown in [4] that $E(\cdot)$ has the CGS-property in $H$ if and only if $H$ has an OSD relative to $E(\cdot)$.
§2. UOSD-multiplicity of projections. We introduce the concepts of UOSDs and UOSD-multiplicity relative to a spectral measure $E(\cdot)$ with the CGS-property in $H$ and show that for a projection $P$ in $W$ the UOSD-multiplicity and the $U H$-multiplicity are one and the same when $P$ is countably decomposable in $\omega$.

DEFINICION 2.1. An OSD $H=\sum_{1}^{N} \oplus Z\left(x_{i}\right)$ relative to $E(\cdot)$ is said to be a uniform OSD (UOSD, in abbreviation) of $H$ if $\rho\left(x_{1}\right) \equiv \rho\left(x_{2}\right) \equiv \ldots$, where $\mu \equiv \nu$ if $\mu \ll \nu$ and $\nu \ll \mu$.

The following proposition is immediate from Theorem 1. (ii) of [4].

PROPOSITION 2.2. If $H$ has a UOSD relative to $E(\cdot)$, then all the OSDs of $H$ relative to $E(\cdot)$ are UOSDS.

DEFINITION 2.3. If $H$ has a UOSD relative to $E(\cdot)$ then the UOSD-multiplicity of $E(\cdot)$ is defined to be the same as its OSD-multiplicity. If $P$ is a projection of $H$ commuting with $E(\cdot)$ and if $P E(\cdot)$ has $\operatorname{COSD}$-multip1icity $n$, then we say that $P$ has UOSD-multiplicity $n$ relative to $E(\cdot)$.

The following simple example shows that, in general, the OSD-multiplicity and $H$-multiplicity of a projection $P$ relative to $E(\cdot)$ are not the same even though $H$ is finite dimensional.

EXAMPLE 2.4. Let $H=\mathbb{C}^{5}, \boldsymbol{S}=\left\{\phi,\left\{\lambda_{1}\right\},\left\{\lambda_{2}\right\},\left\{\lambda_{1}, \lambda_{2}\right\}\right\}, \lambda_{1}$, $\lambda_{2} \in \mathbb{C}, \lambda_{1} \neq \lambda_{2}$ and $E(\cdot)$ be a spectral measure on $S$ given by $E\left(\left\{\lambda_{1}\right\}\right) H=\left[e_{1}, e_{2}\right]$ and $E\left(\left\{\lambda_{2}\right\}\right) H=\left[e_{3}, e_{4}, e_{5}\right]$, where $e_{1}=$ $(1,0,0,0,0),, e_{2}=(0,1,0,0,0$,$) , etc. Since any maximal or-$ thogonal family of row projections (in the sense of Halmos [2]) $\left\{E_{\alpha}^{\prime}\right\}$ in $W$ with $C_{E_{\alpha}^{\prime}}^{\prime}=I$ consists of just two members, the $H$-multiplicity of $I$ is 2 . On the other hand, if $x_{1}=e_{1}$ $+e_{3}, x_{2}=e_{2}+e_{4}$ and $x_{3}=e_{5}$, then $H=\sum_{1}^{3} \oplus Z\left(x_{i}\right)$ is an OSD of $H$ since $\rho\left(x_{1}\right) \equiv \rho\left(x_{2}\right) \gg \rho\left(x_{3}\right)$. Thus the OSD-multiplicity of 1 is 3.

The following result is well-known in the theory of Von Neumann algebras, and its proof is indicated also on page 108 of [2]. Using this result we compare the $U H$-multiplicity and UOSD-multiplicity of a projection.

LEMMA 2.5. Let $P^{\prime}$ be an abelian projection in $W^{\prime}$. If the central support $C_{P}$, of $P^{\prime}$ is countably decomposable in $\omega$, then $P^{\prime}$ is cyclic.

THEOREM 2.6. Let $P$ be a countably decomposable nonzero projection in $\omega^{\prime}$. Then $P$ has UH-multiplicity $N \leqslant \omega$ if
and only if $P$ has UOSD-multiplicity $N$ (relative to $E(\cdot))$. Proof. Suppose the $U H$-multiplicity of $P$ is $N \leqslant \omega$. Then by Theorem 1.2 there exists an orthogonal family $\left\{P_{j}^{\prime}\right\}{ }_{j \in J}$ of abelian projections in $W^{\prime}$ such that card. $J=N, C P_{j}^{\prime}=P$ and $P={ }_{j} \sum_{E} P_{j}^{\prime}$. Let $J=\{1,2, \ldots, N\}$. By Lemma 2.5 there exists $x_{j} \in P_{N}^{j} H$ such that $P_{j}^{\prime}=\left[\omega x_{j}\right], j \in J$. Thus $P H=$ $\sum_{j \in J}\left[\omega x_{j}\right]={ }_{j=1}^{\sum_{i}} \oplus Z\left(x_{j}\right)$. Besides, by Theorem 66.2 of [2], $C\left(\rho\left(x_{j}\right)=C\left[\omega x_{j}\right]=C_{P_{j}}=P\right.$ for all $j$. Therefore, by Theorem 65.2 of [2], $\rho\left(x_{j}\right) \equiv \rho\left(x_{j},\right)$ for $j, j^{\prime} \in J$. Hence the condition is necessary.

Conversely, if $P$ has UOSD-multiplicity $N$, then clearly $N \leqslant \omega$. Let $P H=\sum_{1}^{N}\left(A_{i}\right)$ be an OSD of PH relative to $P E(\cdot)$. Then by Proposition $2.2, \rho\left(x_{1}\right) \equiv \rho\left(x_{2}\right) \equiv \ldots$ Consequently, by Theorem 66.2 of $[2]$ we conclude that $c\left[\omega x_{1}\right]=c\left[\omega x_{2}\right]=$ $\ldots=2($ say $)$. Clearly, $P=\sum_{1}^{N}\left[\omega x_{i}\right] \leqslant 2$. As $p \in \omega,\left[\omega x_{i}\right] \leqslant$ $C\left[\omega x_{i}\right]=P$ so that $2=P$. Since each $\left[\omega x_{i}\right]$ is an abelian projection in $W^{\prime}$ by Theorem 60.2 of [2], from Theorem 1.2 it follows that $P$ has $U H$-multiplicity $N$.
§3. Some characterizations of the CGS-property. In terms of the existence of OSDS and OSRs of $H$ the CGS-property of a spectral measure $E(\cdot)$ is characterized in [4]. The following Theorem gives some more charecterizations of this property.

THEOREM 3.1. Let $E(\cdot)$ be a spectral measure on $S$ with values in projections of H . Then the following statements are equivalent.
(i) Every projection of $U H$-multiplicity $N$ in $W$ is countably decomposable in $\omega$ and $n \leqslant \omega$.
(ii) The projections $2_{n}$ are countably decomposable in $\omega$ and $2_{n}=0$ for $n>\omega$.
(iii) Every projection in $W$ is countably decomposable in $W$ and has $H$-multiplicity $n \leqslant \omega$.
(iv) Every projection of UH-multiplicity in $W$ is countably decomposable in $W^{\prime}$.
(v) The projections $2_{n}$ are countably decomposable in $W^{\prime}$.
(vi) Every projection in $W$ is countably decomposable in $W^{\prime}$. (vii) Every non-zero projection of UH -multiplicity in $\omega$ has UOSD-multiplicity (and hence they are equal).
(viii) $E(\cdot)$ has the CGS-property in $H$.

Proo6. (i) $\Rightarrow$ (ii) Let $2 n \neq 0$. Then by Proposition 1. 3 , $2_{n}$ has $U H$-multiplicity $n$. Therefore, (ii) is immediate from (i).
(ii) $\Rightarrow$ (iii) If $P$ is a non-zero projection in $W$, then by
(ii) $P=\sum_{n \leqslant \omega} 2_{n} P$. Being $2_{n}$ countably decomposable in $W$, it follows that the same is true for $P$. Then the $H$-multiplicity of $P=\min \left\{n: P Q_{n} \neq 0\right\} \leqslant \omega$ by Theorem 64.2 of [2] and by Proposition 1.3.
(iii) $\Rightarrow$ (iv) Let $P$ be a non-zero projection of $U H$-multiplicity $n$. By (iii), $n \leqslant \omega$. By Theorem 1.2 there exists an orthogonal family $\left\{E_{i}\right\}_{1}^{n}$ of abelian projections in $W^{\prime}$ such that $P=\sum_{1}^{n} E_{i}$ and $C E_{i}=P$ for all $i$. Now by (iii) and Lemma 2.5 there exist vectors $x_{i}$ in $P H$ such that $\left[\omega x_{i}\right]=E_{i}^{\prime}$. If $x=$ $\left\{x_{i}\right\}_{1}^{n}$, then clearly $\mathrm{PH}=\left[\omega_{x}\right]$ so that by Lemma 3.3 .9 of [3] $P$ is countably decomposable in $W^{\prime}$.
(iv) $\Rightarrow$ (v) This is immediate, since $2_{n}$ has $U H$-multiplicity $n$ by Proposition 1.3.
$(v) \Rightarrow$ (vi) Let $P$ be a non-zero projection in $W^{\prime}$. Then $P=\sum_{n \leqslant \operatorname{dimH}} P Q_{n}$ and by (v) $2_{n}$ are countably decomposable in $W^{\prime}$. To prove that $P$ is countably decomposable in $W^{\prime}$, it suffices to show that $2_{n}=0$ for $n>\omega_{0}$. If $2_{n} \neq 0$, as $2_{n}$ has $U H$-multiplicity $n$ by Proposition 1.3, there exists an orthogonal family $\left\{E_{\alpha}^{\prime}\right\}_{\alpha \in J_{n}}$ of abelian projections in $W^{\prime}$ such that card. $J_{n}=n, 2_{n}=\sum_{\alpha \in J_{n}}^{n} E_{\alpha}^{\prime}$ and $C_{E^{\prime}}=2_{n}$. As $2_{n}$ is countably decomposable in $W^{\prime}$, it follows that $J_{n}$ is countable so that $n \leqslant \omega$. Consequently, $2_{n}=0$ for $n>\omega$. (vi) $\Rightarrow$ (vii) Let $P$ be a non-zero projection of $U H$-multiplicity $n$. By (vi) $P$ is countably decomposable in $W^{\prime}$ and hence in $\omega$. By Proposition 1.3 , there exists a unique $2_{n}$ such that $P \leqslant 2_{n}$. As in the proof of $(v) \Rightarrow(v i)$ we note that $Q_{k}=0$ for $k>\omega_{0}$ and hence $n \leqslant \omega$. Consequently, by Theorem 2.6, (vii) holds.
(vii) $\Rightarrow$ (viii) By Proposition $1.32_{n}$ has UH-multiplicity $n$
if $2_{n} \neq 0$. Then by (vii), $n \leqslant \omega$ if $2_{n} \neq 0$ and hence $2_{n}=0$ for $n>\omega$. Again by (vii) as $2_{n}$ has UOSD-multiplicity $n$ for $n \in J_{0}=\left\{n: Q_{n} \neq 0\right\}$ there exists an orthonormal set $\left\{x_{n j}\right\}_{j=1}^{n}$ in $2_{n} H$ such that $2_{n} H=\left[E(\sigma) x_{n j}: \sigma \in S, j=1,2, \ldots, n\right]$. Therefore, $H=\left[E(\sigma) x_{n j}, n \in J_{0}, j=1,2, \ldots, n\right]$ and hence (viii) holds.
(viii) $\Rightarrow$ (i) By (viii) and by Lemma 3.3.9 of [3] $W^{\prime}$ is countably decomposable and hence $\omega$ is countably decomposable. Besides, evidently for every projection $P$ of $U H$-multiplicity $n$ in $\omega, n \leqslant \omega$. Thus (i) holds.
§4. COMPARISON BETWEEN OSD-MULTIPLICITY AND H-MULTIPLICITY. Example 2.4 is just a particular case of the following more general result.

THEOREM 4.1. Suppose $E(\cdot)$ has the CGS-property in $H$. Let $P$ be a nor-zero projection in w with the H-multiplicity $n$ and with the OSD-multiplicity (relative to $E(\cdot)) N$. Then: (i) $n \leqslant N$.
(ii) $n=N$ if and only if $P$ has UH-multiplicity $n$.
(iii) $n=N$ if and only if $P$ has UOSD-multiplicity $n$ (relative to $E(\cdot))$.

Proof. By Theorem 62.4 of [2] there exists a non-zero projection 2 in $W$ such that $2 \leqslant P$ and such that 2 has $U H-m u l-$ tiplicity $n$. Besides, by Theorem 3.1 , 2 is countably decomposable in $\omega$ and $n \leqslant \omega$. Therefore, by Therorem 2.62 has the UOSD-multiplicity $n$ relative to $E(\cdot)$. Consequently, by Theorem 5 of [4] the total multiplicity of 2 is $n$ and therefore, $n \leqslant N$.
(ii) Suppose $n=N$. We discuss the following two cases.

Caso 1. $n$ is finite.
By hypothesis, there exists a maximal orthogonal fami1y $\left\{E_{i}^{\prime}\right\}_{1}^{n}$ of abelian projections in $W^{\prime}$ such that $C_{E_{i}}=P$ for a11 $i$. If $P$ does not have $U H$-multiplicity then by Theorem $2.2 P \neq \sum_{1}^{n} E_{i}^{\prime}$. Now, by Theorem 3.1 (iii) and Lemma 2.5 there
exist vectors $x_{i} \in P H$ such that $E_{i}^{\prime}=\left[\omega x_{i}\right], i=1,2, \ldots, n$. Then by Theorems 66.2 and 65.2 of [2] we have $\rho\left(x_{1}\right) \equiv \rho\left(x_{2}\right)$ $\equiv \ldots \equiv \rho\left(x_{n}\right)$. Let $E^{\prime}=\sum_{1}^{n} E_{i}^{\prime}$. Clearly, $E^{\prime} \in W^{\prime}$ and $E^{\prime} H=\sum_{1}^{n} Z Z\left(x_{i}\right)$ is a UOSD of $E^{\prime} H$ relative to $E(\cdot) E$. If $x \in(P-E ') H$ and $x \neq 0$, then $[\omega x]=Z(x) \perp E ' H$ and $C[\omega x] \leqslant P=C\left[\omega x_{1}\right]$. Consequently, by Theorem 65.2 of [2] we conclude that $\rho(x) \ll \rho\left(x_{1}\right)$. On the other hand, by Theorem 1 of [4] there exists an OSD: $\left(P-E^{\prime}\right) H=\sum_{n=1}^{\ell} \oplus Z\left(x_{i}\right), \ell \in \mathbb{N} U\{\omega\}$, of $\left(P-E^{\prime}\right) H$ relative to $E(\cdot)\left(P-E^{\prime}\right)^{n+1}$ so that $P H=\sum_{1}^{l} \oplus Z\left(x_{i}\right)$ is an OSD of $P H$ relative to $E(\cdot) P$. Thus $\ell=N$ and $P$ has $O S D$-multiplicity $N>n$. This contradiction proves that $P$ has $U H$-multiplicity $n$.

Caso 2. n is infinite.
Due to Theorem 3.1, $n=\omega$ and $Q_{k}=0$ for $k>\omega$. Since $P=\sum_{\ell \leqslant d i m H} P Q=\sum_{\ell \leqslant \omega} P Q_{\ell}$ and since the $H$-multiplicity of $P$ is $\omega$ and 1 l given by $\min \left\{\ell: P Q_{\ell} \neq 0\right\}$, we have $p Q_{\ell}=0$ for $\ell \neq \omega$. Thus $P \leqslant 2_{\omega}$ and hence $P$ has $U H$-multiplicity $\omega$ by Proposition 1.3.

## REFERENCES

[1] Dixmier, J., Les Algébres d'opérateurs dans e'espace Hilbertien, Gauthier-Villars, Paris (1969).
[2] Halmos, P.R., Introduction to Hilbert space and the Theory of spectral multiplicity, Chelsea, New York (1957).
[3] Panchapagesan, T.V., "Introduction to von Neumann algebras", Lecture Notes. To be published in Notas de Matemática, Facultad de Ciencias, Universidad de los Andes, Venezuela.
[4] Panchapagesan, T.V., "Invariantes unitarias de los operadores normales en espacios de Hilbert separables", Primeras Jornadas de Análisis, Departamento de Matemáticas, Facultad de Ciencias, Universidad de los Andes, Venezuela, pp. 45-63, (1987)
[5] Panchapagesan, T.V., Multiplicity'Theory of Projections in Abelian von Neumann Algebras, Revista Colombiana de Matemáticas. Vol.XXII (1988) pp. 37-48.

Departamento de Matemáticas
Facultad de Ciencias
Universidad de Los Andes
Mérida - Venezuela
(Recibido en Julio de 1988)


[^0]:    Supported by the C.D.C.H. projects C-S-149, 150 of the Universidad de los Andes.

