
Rev~ta Colombiana de Matemdtiea~
Vol. XXIV (1990) pagJ.>. 41-49

UNIFORM ORDERED SPECTRAL DECOMPOSITIONS

by

T. V. PANCHAPAGESAN

Resumen. Introducimos la nOClon de UOSO-multiplicidad de una
proyeccion P relativa a una medida espectral [Co) con la CGS-pro-
piedad y la comparamos con la nocion de mUltiplicidad introduci-
da por Halmos [2]. Tambien se dan varias cqracterizaciones para
que una medida espectral tenga la CGS-propiedad.

Abstract. We introduce the notion of UOSO-multiplicy of a
projection P relative to a spectral measure [Co) with the CGS-
property and compare it with the notion of multiplicy introduced
by Halmos [2]. Also are given some characterizations for a spec-
tral measure to have the CGS-property.

In our earlier work [4] we introduced the notion of
ordered spectral decomposition COSO, in abbreviation) of a
Hilbert space relative to a spectral measure [Co) and de-
fined the OSO-multiplicity of a projection P commuting with
[( 0). Here we introduce the concepts of uniform OSO and UOSV-

multiplicity and compare the concept of multiplicity in Hal-
mos [2] with the OSV and UOSV-multiplicities. Also we obtain
various characterizations for a spectral measure to have the
CGS-property.

Supported by the C.D.C.H. projects C-5-149, 150 of the Universidad de
los Andes.
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§1. Preliminaries. In this section we fix the terminology
and notations and give some definitions and results from the
literature which are needed in the sequel.

S denotes a a-algebra of subsets of a set x(f¢). H is
a (complex) Hilbert space and E(') is a spectral measure on
S with values in projections of H. The closed subspace gen-
erated by a subset X of H is denoted by [X]. For a vector
x e: H, Z(x) = [E(a)x:a e: S]; l: eM. denotes the orthogonal

.i.E] -<- C

direct sum of the subspaces M.<. of some Hilbert space.
W is the Von Neumann algebra generated by the range of

E(·) and W' is the commutant of W. If W' = LEIlW'Q is the typen
In direct sum decomposition of W', then the central projec-
tions Qn(f 0) are unique (such that W'Q is of type I ) andn n
in the sequel Q will denote these central projections. Forn
x e: H, [Wx] = [Ax:A e: W] and, sometimes, also denotes the
orthogonal projection with the range [W~. For aprojection
p' e: W', Cp' denotes the central support of pl. Other termi-
nology in Von Neumann algebras is standard and we follows
Dixmier [1].

As was observed in [5J a projection pI in W' is abe-
lian if and only if pI is a row projection in the sense of
[2] and the column C(P') generated by P' as in [2] is the
same as

NOTATION 1.1. Let P be a projection in W. The multipli-
city (respy. uniform multiplicity) of P in the sense of Hal-
mos [2] will be referred to as its H-mul tiplici ty (respy. UH-
multiplicity) relative to E(·).

As was noted in [5] Theorem 64.4 of Halmos [2] can be
interpreted as follows:

THEOREM 1.2. A non-ze~o p~oject.<.on F .<.nW ha~ UH-mul-
t.<.pl.<.c.<.tyn '<'6 and only '<'6 the~e ex.<.~t~ an o~thogonal 6am.<.ly
{E~}a J 06 abel.<.an p~oject.<.on~ .<.nW' ~uch that ca~d (]) = n,
CEa' = F and L E' = F . In o t.he». uion.ds , F ha~ UH-mult.<.pl.-tc.<.-

(i.E:] ex
ty n '<'6 and only '<'6 W'F .<.~ 06 type In
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Consequently, the following proposition is immediate.

PROPOSITION 1.3. A non-ze~o p~ojee~ion P in W ha~ UH-
mul~ipliei~y n i6 and only i6 P ~ Qn .

DEFINITION 1.4. E(·) is said to have the CGS-p~ope~~y
(i.e. eoun~able gene~a~ing ~e~ p~ope~~y) in H if there exists
a countable set X in H such that [E(a)x:a E S, x E XJ = H .

Let p(x) = ~E(')x~Z. Then p(x) is a finite measure on
S. We say that p(xZ) is absolutely continuous with respect
to p(x,) and write p(xZ) « p(x,)(or p(x,) » p(xZ)) if
p(x,)(a) = a impli es p(x Z) (a) = o.

DEFINITION 1.5. Let {x.}. N' N E :N U {w}, be a co nt a-~ ~< ~
ble set of non-zero vectors in H such that (i) H = L liZ(x.)

1 ~ ~
and (ii) p(x,) » p(xZ) » ... Then we say that H = reZ(xi)
is an OSV of H relative to E(·)

The cardinal number N E :N U {w} in the above defini-
tion is uniquely fixed by E(·) and is called the OSV-multi-
plicity of E(·). If P is a projection commuting with E(·)
and PE(·) has the CGS-property in H, then the OSV-multiplic-
ity of PE(') is called the OSV-multiplicity of P. Besides,
it has been shown in [4J that E(·) has the CGS-property in H
if and only if H has an OSV relative to E(') .

§2. UOSV-multiplicity of projections. We introduce the con-
cepts of UOSVs and UOSV-multiplicity relative to a spectral
measure E(') with the CGS-property in H and show that for a
projection P in W the UOSV-multiplicity and the UH-multiplic-
ity are one and the same when P is countably decomposable
in W.

DEFINICION 2.1. An OSV H = ~liZ(X') relative to E(') is
1 ~

said to be a uniform OSV (UOSV, in abbreviation) of H if
p(x,):: p(xZ):: ..., where 1.1:: \! if 1.1« \! and \!« 1.1
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The following proposition is immediate from Theorem' .
(ii) of [4].

PROPOSITION 2.2. 16 H ha~ a UOSV ~elative to E(.), then
all the OSV~ 06 H ~elative to E(·) ane uosv~.

DEFINITION 2.3. If H has a UOSV relative to E(·) then
the UOSV-multiplicity of E(·) is defined to be the same as
its OSV-multiplicity. If P is a projection of H commuting
with E(·) and if PE(·) has UOSV-multiplicity n , then we say
that P has UOSV-multiplicity n relative to E(·).

The following simple example shows that, in general,
the OSV-multiplicity and H-multiplicity of a projection P
relative to E(·) are not the same even though H is finite
dimensional.

5EXAMPLE 2.4. Let H = a: ,S = {<P,O,},OZ},O"AZ}},A"
AZ E [,A, # AZ and E(·) be a spectral measure on S given by
E({A,})H = [e"eZ] and E(OZ})H = [e3,e4,eSJ , where e, =

(',0,0,0,0,), eZ = (0,',0,0,0,)' etc. Since any maximal or-
thogonal family of row projections (in the sense of Halmos
[ZJ) {E~} in WI with CE& = 1 consists of just two members,
the H,multiplicity of 1 is Z. On the other hand, if x, = e,
+e3, Xz = eZ+e4 and x3 = eS' then H = t eZ(xi) is an OSV of H

1

since p(x,) :: p(xZ) » p(x3) • Thus the OSV-multiplicity of
1 is 3.

The following result is well-known in the theory of
Von Neumann algebras, and its proof is indicated also onpage
,08 of [Z]. Using this result we compare the UH-mul tiplici ty
and UOSV-multiplicity of a projection.

LEMMA 2.5. Let P' be an abelian p~oje~tion in W'. 16
the ~ent~al ~uppont Cp' 06 pI i~ ~ountably de~ompo~able in
W, then pI i~ ~y~li~.

THEOREM 2.6. Let P be a ~ountably de~ompo~able non-
z e ao p~oje~tion in W'. Then P hu UH-multipli~ity N ~ w i6
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and only i6 P hac UOSV-multipliQity N (~elative to E(o)).
P~oo6. Suppose the UH-multiplicity of P is N ~ w.

Then by Theorem 1.2 there exists an orthogonal family {Pj}j£J
of abelian projections in W' such that card. J = N,Cpj = P
and P = jkJPj . Let J = {l,Z, ... ,N} . By Lemma Z.5 there
exists Xj £ PjH such that Pj = [wxj], j E J . Thus PH =

.}: [Wx.J = .~ lJ Z (x .). Besides, by Theorem 66. Z of [Z],
j«J j j=l j
C(p(Xj) = C[WXj] CPj = P for all j. Therefore, by Theorem
65.Z of [Z], p(Xj) _ p(Xj') for j,j' E J. Hence the condition
is necessary.

Conversely, if P has UOSV-multiplicity N, then clearly
N

N ~ w. Let PH = ~.Z(Xi) be an OSV of PH relative to PE(o).
Then by Proposition Z.Z, P(x1) = p(xZ) = ... Consequently,
by Theorem 66.2 of [Z] we cNnclude that C[Wx1J = C[WxzJ =

••• = Q.(cay). Clearly, P= r[Wx.] ~ Q.. As PEW, [Wx;J ~
1 -<- "-

C[WXi] = P so that Q. = P. Since each [Wxi] is an abelian pro-
jection in W' by Theorem 60.Z of [Z], from Theorem 1.Z it
follows that P has UH-multiplicity N.

§3. Some characterizations of the CGS-property. In terms of
the existence of OSVs and OSRs of H the CGS-property of a
spectral measure f(o) is characterized in [4J. The following
Theorem gives some more charecterizations of this property.

THEOREM 301. Let E(o) be a CpeQt~al meacu~e on S with
valuec in p~ojeQtionc 06 H. Then the 60llowing ctatementc
aile equivalent.
(i) fvelly pllojeQtion 06 UH-multipliQity N in W ic Qountably
deQompocable in Wand n ~ w.
(ii) The PllojeQtion~ Q.n aile Qountably deQompocable in Wand
Q.n = 0 60ll n > w.
(iii) fvelly pllojeQtion in W ic Qountably deQompocable in W
and hac H-multipliQity n ~ w.
(iv) fvelly pllojeQtion 06 UH-multipliQity in W ic Qountably
deQompocable in W'.
(v) The pllojeQtionc Q.n aile Qountably deQompocable in W'.

45



(vi) Evehy phojeetioyt in W i~ eouyttably deeompo~able iyt W'.
(vii) Evehy ytoyt-zehO phojeetioyt 06 UH-multiplieity iyt W ha~
UGSV-multiplieity (aytd heytee they ahe equall.
(viii) E(o) ha~ the CGS-phopehty iyt H.

Pho06. (i) ~ (ii) Let Qyt t- O. Then by Proposition 1.
3, Qyt has UH-multiplicity yt. Therefore, (ii) is immediate
from (i).
(ii) ~ (iii) If P is a non-zero projection in W, then by
(ii) P = L Q P. Being Qyt countably decomposable in W, it

fl~ ytfollows that the same is true for P. Then the H-multiplicity
of P = min {yt:PQyt t- O} ~ w by Theorem 64.2 of [2] and by
Proposition 1.3.
(iii) ~ (iv) Let P be a non-zero projection of UH-multiplic-
ity yt. By (iii), yt ~ w. By Theorem 1.2 there exists an or-
thogonal family {E1'}yt of abelian projections in W' such thatyt 1

P = LEi and CEi = P for all i. Now by (iii) and Lemma 2.5
1there exist vectors x· in PH such that [Wx.J = E~ . If x~ ~ ~

{Xi}~ , then clearly PH = [WxJ so ~hat by Lemma 3.3.9 of [~
P is countably decomposable in W' .
(iv) ~ (v) This is immediate, since Qyt has UH-multiplicity
yt by Proposition 1.3.
(v) ~ (vi) Let P be a non-zero projection in W'. Then
P = L PQ and by (v) Q are countably decomposable in W~.

n~dimH yt ytTo prove that P is countably decomposable in W', it suffices
to show that Qyt = 0 for yt > woo If Qyt t- 0, as Qyt has UH-mul-
tiplicity n by Proposition 1.3, there exists an orthogonal

.family {E~}a€Jyt of abelian projections in W' such that card.
J. = yt, Q. = I E' and CE' = Qyt' As Qyt is countably decom-

" "aeJ aposable in W', 1t follows that Jyt is countable so that
yt ~ w. Consequently, Qn = 0 for yt > w·
(vi) ~ (vii) Let P be a non-zero projection of UH-multiplic-
ity n. By (vi) P is countably decomposable in W' and hence
in W. By Proposition 1.3, there exists a unique Qyt such that
P ~ Qyt' As in the proof of (v) ~ (vi) we note that Qk= 0
for k > wand hence yt ~ w. Consequently, by Theorem 2.6,o
(vii) holds.
(vii) ~ (viii) By Proposition 1.3 Qyt has UH-multiplicity yt
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if Q i O. Then by (vii), n ~ w if Q i a and hence Q = a
n n n

for n > w. Again by (vii) as Qn has UOSV-multiplicity n for
n E Jo = {n:Qn i a} there exists an orthonormal set {Xnj}j=l

in QnH such that QnH = [E(a)xnj:a E S,J = 1,2, ...,n]. There-
fore, H [E(a)x ',ne: J ,j = 1,2, ... ,n] and hence (viii)

nj 0
holds.
(viii) ~ (i) By (viii) and by Lemma 3.3.9 of [3] WI is
countably decomposable and'hence W is countably decomposable.
Besides, evidently for every projection P of UH-multiplicity
n in W, n ~ w. Thus (i) holds.

§4. COMPARISON BETWEEN OSV-MUlTIPlICITY AND H-MUlTIPlICITY.
Example 2.4 is just a particular case of the following more
general result.

THEOREM 4.1. Suppo~e E(o) ha~ the CGS-p~ope~ty in H.
Let P be a nor.-ze~o p~ojeetion ~n W with the H-multiplieity

n and with the OSV-multiplieity (~elative to E(·)lN. Then:

(i) n ~ N.

(ii) n = N i6 and only i6 P ha~ UH-multiplieity n.
(iii) n = N i6 and only i6 P ha~ UOSV-multiplieity n (~ela-

ti veto E(0 ) ) •

P~oo6. By Theorem 62.4 of [2J there exists a non-zero
projection Q in W such that Q ~ P and such that Q has UH-mul-
tiplicity n. Besides, by Theorem 3.1, Q is countably decom-
posable in Wand n ~ w· Therefore, by Therorem 2.6 Q has the
UOSV-multiplicity n relative to E(o). Consequently, by Theo-
rem 5 of [4] the total multiplicity of Q is n and therefore,
n ~ N.

(ii) Suppose n N. We discuss the following two cases.

Caso 1. n is finite.
By hypothesis, there exists a maximal orthogonal fami-

ly {Ei}~ of abelian projections in W' such that CEi = P for
all ~. If P does not have UH-multiplicity then by Theorem

n2.2 P i IE~ . Now, by Theorem 3.1 (iii) and Lemma 2.5 there
1 .{.
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exist vectors xi E PH such that El = [Wxi], i = ',2, ... ,n •

Then by Theorems 66.2 _and 65.2 of [2J we have p(x,) ~ P(x2)
~ ...~ p(x ). Let E' = EE'. . Clearly, E' E W' and E'H = f.ZCx.)n 1 .{. 1 .{.

is a UOSV of E'H relative to ECo)E'. If x E (P-E')H and x # 0,

then [Wx] = Z(xl.L.E'H and C[wx] ~ P = C[Wx
1
] • Consequently,

by Theorem 65.2 of [2] we conclude that p(x) « p(x,). On
the other hand, by Theorem' of [4] there exists an OSV:

R.
(P-E')H =) ~Z(x.), R.E:NU{w}, of (P-E')H relative ton~' .(. ~
E(o)(P-E') so that PH = f$Z(xi) is an OSV of PH relative to
E(o)P. Thus ~ = Nand P has OSV-multiplicity N > n. This con-
tradiction proves that P has UH-multiplicity n.

Caso 2. n is infinite.
Due to

P = l. PQ
R.,d.i.mH.and IS gIven

Thus P ~ Qw
tion 1.3.

Theorem 3.', n = wand Q" = 0 for " > w. Since
= L PQR. and since the H-multiplicity of P is w
S~wmin{R.:PQR.# O}, we have pQR. = 0 for R.# w·
and hence P has UH-multiplicity w by Proposi-

,
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