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SEPARATION PROPERTIES AND N-POINT
TOPOLOGICAL EXTENSIONS

by

Victor S. ALBIS and Sonia SABOGAL

§O. Introduction. A topological extension of a topological
space (X,1) is a topological space (X*,1*) containing (X,~
as a dense subspace. Two topological extensions (X*,1*),
and (X~,1~) of (X,1) are said to be equivalent if there is
a homeomorphism h:(X*,1*) + (X~,1~) such that hlX = idX'
Given a positive integer n, we say that (X*,1*) is an n-Po~
ex,ten~ionof (X,1) if (X*,~*) is a topological extension of

*(X,1), and X \ X has exactly n elements. If, furthermore
* *(X ,1) is a Ti-space (i.e. it satisfies the separation axiom

Ti) we talk about an n-point T~-extension. The statements of
the separation axioms that we will use here are those appear-
ing in [8, 91-103]. A topological extension is not necessar-
ily a compact space; however, most of the research on n-point
extensions has dealt, up to now, with compactifications
([2] ,[6],[7],[9J), maybe because "compactness" is an essen-
tial ingredient in the proofs of many important theorems in
mathematics. Not less important is the fact of being Haus-
doff, since it guarantees, for example, the uniqueness of
the limit point of a convergent filter. The principal aim
of this paper is to explore the n-point Hausdorff extensions
(independently of their compactness), in particular, the
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n-poi.nt Trextensiones (i = 3,4) of a topological space.
In Section §1, we make some precisions on notation,

and introduce a new concept, that of clustering set of a
filter, which will be of some use in this paper. In the
following sections, we establish necessary and sufficient
condition~ for the existence of l1-point Ti-extensions of
T ·-spaces. On the way, we remark some connections between~ '.

our results, compactness,' and T i-closed spaces. In theorem
3.3, we show the existence of at least! non-equivalent
n-point Tz-extensions of R, which we think is an interest-
ing result by itself.

§l. Preliminaries. If ~ is a filter base on a set X, we
-Xshall denote by ~ the filter generated by~. If (X,1) is

a topological space and x is a point in X, we shall denote
by Ux the filter of neighborhoods of x with respect to the
topology 1.

If (X*,1*) is a topological extension of (X,1), and,* is a filter on X*,the t~ace 06 ,* (on X) is the set
* * * *t« (1 ) = {F n X; F &:"}.

If 1and 9 are filters on a set X, we say that" is
6il1e~ than 9 if ~ S; 1. It is an easy matter to verify
that/this is an order relation on the set of all filters
on the set X. Moreover, given two filters g and" on X,we
shall denote by 'jfv 9 the l.u.b. of these filters with res-
pect to the order given above. It is not diff'icult to show
,that 1vr; = tr n c. FEr, Ge:lfL Of course this l.u.b.
may be the trivial filter f(X), consisting of all subsets
of X.

The following definition will prove to be useful in
our discussion:

DEFINITION 1.1. Let" be a filter on a topological
space (X,1), and let A be subset of X. If
( 1) A ¢." and
(2) for each neighborhood B of A (i.e. such that there is

an open set G of (X,1) verifying As; G s; B), and each
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Fe:: 1, then Bn F i 0, we say that A is a c.lu-6telt-<.ng-6U
06 the MUelt 1.

In [1] we have shown that the notions of cluster point
and clustering set are quite independent. Indeed, there are fi 1-
ters which admit clustering sets but no clusterpoints, and vice-
versa, and filters which admit either both or none of them.

LEMMA 1.1. Let (X,1) be a topolog-<.c.al -6pac.e, and let
11 and 12 be two d-<'-6t-<.nc.t6-<'ltelt-6 on X. 16 none 06 them
adm-<.t-6 c.lu-6telt-<.ng-6et-6then 11y 12 = T(X).

Proof. Since 1', cf 12we suppose, without loss of gen-
erality, the existence of a set A in 11\ 12, Thus, since

12 has no clustering sets and A ~ 1'2' it follows that there
is a neighborhood B of A, and a set F e: 12 such that BnF cf 0.
But this means that 0 li: 11v 12, whence the claim. A

Fromnow on, all filters considered will be non-trivial

filters.

*§2. To and Tl n-point extensions. From now on, X will denote
the set X U{w1, ••• ,wn}, where Wj </; X, , .$ i « n , Since each
finite set in a T1-space is closed, each cofinite set is open.
In particular, if (X*,1*) is an n-point T1-extension of

* * . * *(X,1), X is open in 1 and so 1S 1 . Therefore, when (X ,1 )
is a T,-extens'on of (X,1) for x e: X, U* is a neighborhood

* *of x in 1 if, and only if, U n X is a neighborhood of x in 1.
This may be expressed as follows:

11.* {(I,1 }
14x = UUA; Ue:: !.Lx' AS {W" ... ,wn} .

From this it follows that the topology 1* of an n-point T-<.-
extension (' .$ -<.~ 5) is completely determined once we know

*Tr('lJwb), Iz = 1, ... , n , The following lemma expresses this fact

more precisely.

( ,)

LEMMA 2.1. Two n-po-<.nt T1-exten-6-<.on-6 (x*,1*) and
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(Xl' 1~) 06 (1 topolog.ic.a.l ~p(1c.e (X,1), whvl.e X
lit

= X U {wl'
lit

••• Wn}' and Xl = X U {a1 ;. ••• , an}' aJr.e equ.iva.lent .i6, and

only .i6, TJr.('U~.) = TJr.('ll(1')' 1 ~ j ~ n , .in ~ome cnde«,
j j lit lit lit lit

Proof. If there is a homeomorphism h: (X ,1 )+ (X1,"1)
such that hlx = .idX, we may assume without loss of general-
ity that h(wj) = aj' for j = 1,... ,n. Then it is an easy

lit litmatter to show that TJr.('llWj) = TJr.('llaj)' Conversely, let us
suppose that the preceding equality holds for all j = 1,.•,n.
Defining h:XlIt

... X~ by hex) = x if x ~ X, h(wj) = aj' for
j = 1,...n, to show that h is bicontinuous for the given
topologies, it suffices to prove that for every x E Xlit

lit lit lit lit -1 lit(resp. y E Xl)' 'llh(x) = h('llx) (resp. ~h-l(y) = h ('lly))'

But this is clear from (1) is case x~X (resp. y -= Xl)' In
lit litorder to prove that h(Uw') = 'Ua;, we remark that for any

• lit .j lit 11 lit lit
ne ighbo rhoo d UWj· of Wj' a n (X," ) we get h(Uw,;) ::2 hCCUw'j,nx

lit lit J lit
U{Wj}) = h(Uw·nX) Uh(wj') .. (U(1.nX) U{a.}, where U(1j' isa

. j. lit! j . litne1ghborhood of aj 1n (XlIt,1 ), S1nce, by hypothesls, TJr.~Wj=
lit *. lit.TJr.'U(1j" But clearly (U(1j n x) U{aj} &: 'U;i., wh ich proves the

. * * . j* litre lat ion h(Uw') s "lla" Conversely, Lf Ua·E'Uaj·, we get
* * j j * j *

U(1j :;;!*(Uaj nx: U{(1j} h(Uaj nx: U{h(wj)} = hCCUwjnX)n{wj}

E h('llw')' In a complete similar way we prove that
h-l(U~j.) = U~ .••

j j

The following example shows that the above lemma is
no longer valid if .i = O.

lit *EXAMPLE 2.1. If X = {1, 2, 3}, Xl = {1, 2, 3,4}, X2
* *{1,2,3,4,S}, and ,. = U, X, {1},{1,3}}, '1 = {~, Xl' { n,{1,3} ,

{1,4},{1,3,4}}, and ,; = {~,X;,{1},{l,S},{l,3,S}}, it is
readily verified that (Xl,1~) and (X2,1;) are both l-point

lit *To-extensions of (X,1). Also, TJr.(~4) = TJr.(US)' But these
two extensiones cannot be equivalent, since the only pos-
sible bijection h between X~ and X; such that hlX = .idX'

is given by hex) = x, for x = 1,2,3, and h(4) = S. But, on
the other hand, for this bijection we have h({l,3}) =

* *{1,3} ~ 12, and {1,3} E: 11,
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LEMMA 2.2. Le~ (X,1) be a ~opolog~eal ~pace, and le~
;1' '2'" ·,'n be open Ml~eM on X. Le~

(2) 1* = 1 U{A U {W/l1, ••• ,Wk~}i A E 1n 1#/l1 n ... n 1/l~

l~~~n, kj e:: {l, ... ,n}, ~~j"k}.

Then (X*,1*) ~~ an n-po~n~ ex~en6~on 06 (x,1). fu~~he~mo~e,
*T~(1.lw/l) = 'i/l (k = 1, ... ,n), and ~6 (X,1) cs a. To-~pace, :then

(X*,1*) ~ a To-~pace.
Proof. In the first place, it is easy to verify that

'1* is indeed a topology on X*, satisfying 1*IX:= {G* n X; G*
E 1*} = 1. Moreover, X is dense in (X*,'!*).Thus (X*,'!*)

is an n-point extensd on of (X,'!).Let now u~~ e:: 1.l~~, 1 ~ ~
~ n. Then, for some ~, there is A e: '1 n 1kl n ... n 1k~ n ...

n 1/l~ such that w~ Ii: A U {wk , ••• ,w~, ••• ,Wk~} 5 Uw~. Thus
* *A ...Uw~ n X, and A E: 1~. Therefore, Uw~ n X E:"~, and

T~("~~) S; .,~. Conversely, if f~ c: '1~, there is G~ c: 1n 1~
such that G~ 51~, since 1~is open. Hence G~ U {W~} '=

*f~ U {W~} E Uw~, and consequently f~ = (f~ U {w,6}) n X E T~~w~).

Finally, if (X,1) is a To-space, let us take two distinct
*points x and y in X . If both of them lie in X, they are

clearly separated as in any To-space. If it happens that
x EX, but Y = w~, for some ~ =l, ... ,n, then, for any

*G e: 1 5 1 such that x e:: G, we have w~ ¢ G. If x = w~,
tj = W j (~, j), by taking any A e: '1 n"~, we obtain an open
neighborhood A U {w~} of w~ not containing Wj' ,

As the following example shows, the openness of the
filters 11"" ,1n is not sufficient to guarantee that

* *(X ,1 ) is a T1-extension.

EXAMPLE 2.2. Let X = (O,lJ, with the usual topology
*1, X = ~,1], and 1 the filter of neighborhoods of 1 in

(X,1). Clearly, (X,') is a T1-space, and 1 is an open fil-
ter on X. However, if ,* = 1U {G U {O}i G E 1n 1}, then
(X*,1*) is, by virtue of lemma 2.2. a l-point To-extension

1 T· * *of (X, ), which is not a l-extenslon. Indeed, in (X ,1 )
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the point 1 belong to every neighborhood of O.

THEOREM 2.1. Let (X,1) be a T1-~pace, and '1" .. ,1n
be open 6ilte~ on X. Then the~e i~ an n-point T1 -exten~ion
(X*,1*) wUh h('U~I<.) = 'PI<. (1 (I<. c a) i6, and only i6, no 11<.
con~i~t~ 06 neighbo~hood~ 06 a ~in9le point x E X. Mo~e-
ove~, thi~ exten~ion i~ unique.

Proof. Because of Lemma 2.2, it suffices to show that
(X*,1*), (1* defined by (2)) is, under the conditions of
the theorem, a T1-space, since the uniqueness follows from
Lerna 2.1. Let, thus, x and y be two distinct points in X*.
If these points are both in X; they can be separated in X*
as in any T1-space, since 151*. If x e:: X, but y = wI<.(for
some I<. = 1, •.• ,n), then any neighborhood Gx E 1of x satis-
fies wI<.~ Gx. On the other hand, since by hypothesis, not
all the elements of FI<. are neighborhoods of x ~ X, there
exists an element F I<. IE: J n 11<. such that x ¢ Fl<..Therefore,
FI<. U {wI<.}is an open neighborhood of wI<.in X*, not contain-
ing x, whence the result in this case. Finally, if x = wI<.,
and y = Wj (1<.#]), then, for any Ae:: Jnll<., and any
B -= 1 n 'fIj, we clearIy have Wj .;.A'U {wl<.},and wI<.¢ B U {w j}.
Thus (X*,1*) is indeed a T1-space.

Conversely, if (X*,1 ) is an n-point T1-extension of
(X,1) satisfying h(U~I<.) = FI<. (1 ~ 1<.10 n), and 11<. = 'tIx, for
some I<. (1 ~ 1<." n), and some x 4i!: X, it is clear that then

* *(X ,1 ) cannot be a T1-space. •

§3. n-point T2-extensions. In this section we characterize
the T2-extensions of T2-spaces. More precisely, we have the
following.

* *THEOREM 3.1. Let (X,1) be a T2-~pace and let (X ,1 )
be an n-point T1-exten~~on 06 (X,1). Then (X*,1*) ~ a
T2-exten~ion i6, and only i6, 60~ each i -= {1, ... ,n},

*T~(UWi) ~ an open 6ilte~ on X, Without clu~te~ point~ in
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* *X, and TIt(UW.i) v TIt(UWj) = 1>(X), 60IL ea eh: paiIL c, i . 1.:;; c,
i « n , i, j.

* *Proof. Let us suppose that (X ,1 ) is a TZ-space.
Each TIL(U~Iz) is an open filter on X, without cluster points
in X, since U~1z is open ([4, Obs.Z, p.SS3]), and obviously
it converges to wlz, so that its only cluster point is wlz,

* *because (X ,1 ) is TZ' Now, if i # j, so that wi# Wj' it
is easlily seen that T!t(U~.) v T!t('ll~.) = 'P(X), since (X* ,1*)

.(. j *is supposed to be a TZ-space. Conversely, if the TIL(UWIz)

FIz, (1 ~ Iz"n) satisfy the given conditions, we define .r;
by (Z). As in the proof of Theorem Z.1, it is not difficult
to show that (X*,1*) is TZ-extension of (X,J) such that
the traces of the neighborhoods of the wiz in (X*,1*) are
precisely the 11z. But then Theorem Z.l also implies that

* *11 = '1. •

Using Lemma 1.' we obtain the following

COROLLARY 3.1.1. 16 11,1z, ... ,'n aILe open 6ilte~ on

X, Without c.lu.!>teIL point.!> nOlL ctU-!>telUng sexs in X, then

(X*,1*), de6ined by (Z), i.!> an n-point Tz-exten.!>ionvelU61J-

*ing T!t('1Jwlz) =FIz, lz=l, ... ,n ••

The next two examples show that Theorem 3.1 is no
longer valid if i = 0, or i 1 :

* * .EXAMPLE 3.1. The spaces (X,1) and (X1,1,) In Example
2. I are both To-spaces, the second one being a '-point ex-
tension of the first. Clearly the filter of neighborhoods

* *of 4 in (X ,11) is the set

*{Xl' {1,4} ,{1 ,Z,4}, {1,3,4}} ,

but its trace, {X, {l},{1,Z},{1,3}}, admits 1 as a cluster
point (moreover, as a limit point).

EXAMPLE 3.2. Let X = (0,lJ, 1 its usual topology,
* * }X [0,1] and J = J U {A U {O}: A &: X, X 'A finite. Then

it is easy to verify that (X*,J*) is a l-point T1-extension
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1/2 is a cluster point of the filter

In order to state our next theorem we will suppose
'"that X := XU (w1, ...,wn), where (w1, ... ,wn) represents a

linearly ordered set if n ~ 1.

THEOREM 3.2. Let (X,1) be a T2-~pace and let t be the
6amily 06 all open 6ilte~~ on X, without clu~te~ paint~ in
X. Let ~in) be the 6amily 06 all equivalence cla~~e~ 06
n-point T2-exten~ion~ 06 (X,1). Then the mapping ~ 6~om
~~n) into $n = $X ••• X$ (n time~), which ~end~ the cla~~ 06
(x* ,1"') into (T~(tl~ ), ... , TIL('ll~)) i~ a one-to-one. mapping

I n
which i~ not onto i6 n > 1. 16 n = 1, $ i~ a bijection.

Proof. By Lemma 2.1 and Theorem 3.1, ~ is a well-
defined one-to-one mapping. This mapping is -onto if n =

(Easy~). In order to verify that ~ is not an onto mapping,
it suffices to take F = (1, ... ,1), where" is a proper open
filter on X, without cluster points in X.

Indeed, if there were an n-point T2-extension (X*,1*)
* * '"of (X,1), such that ~(X ,1 ) = F, we would have T~(UWk) =

1k, for every k E {l,._,n}, which in turn would imply that
., = ., v1 = ~(X), by Theorem 3.1. But this is impossible. 1

THEOREM 3.3. FOIL each po~itive integeIL n, the topo-
logical ~pace R 06 the ~eal numbeIL~, with it~ u~ual topo-
logy, admit~ at lea~t r mutually non-equivalent n-point
Ti-exten~ion~ (i = 1,2).

Proof. Let 1 stand for the usual topology on R. Let
A = (A) N' where A = Ix £R;x > n}. Clearly, ) is ann nE ' n
open f iIter base, and" = 'If is an open f i Iter on R, which
is not an open ultrafilter, since neither the open set
A = n~ (n,n~1) nor its complement, I = R\.A, belong to '1
[3, Prop. 1,2, p.640]. Now, if xER, there is always a
positive integer n such that n > x; hence taking B = 0-~n
we obtain an open neighborhood G = (x~B,x+B) of x satisfy-
ing G n A = 0. This means that '1 has no cluster points.n

7'2.



Let us consider next the open set V = U,,(a ,b ), where11~~, 11 11
o < al1< bl1, bl1~ al1+1, and ~i~al1= +00. Under these condi-
tion we have V n AI1 # 0 for each AI1 12:)., and consequently
~ v1 1 ~(R). Furthermore, it is easy to prove that ~ v1
is an open filter, finer than 1. By Zorn's Lemma, there is
at least one open ul trafil ter ~V containing 'fiR v 1', without
cluster points in R, since 1has none. Of course, ~V has
no limit points. Let now V' be another open set of R, con-

U I ,structed the same way as V: V' = ",,(a~,b'), 0 <a <b ,
I I I I1E~, 11 11 11

bl1~ al1+l' and lim a +00. For this V' there is another11....00 11
open ultrafilter lV' without limit or cluster points.
Further, ~V 1 ~V" since otherwise we would have
(if v 'f) v (VR v1) = 'P(R), a contradiction. Now, the family
of all distinct sequences intervals (a ,b ) satisfying the11 11
above conditions has cardinality 1. Moreover, gv v~V,=t(R)
since both are open ultrafilters [3,Prop.1.1, 640]. The
theorem now follows from Theorem 3.1 .•

It is worth to remark, using results due to K.D. Ma-
gill [6J, that R admits at least l. l1-point T Z-extensions,
of which, up to equivalence, just one is compact, if 11= 1,Z.
If 11 > Z, none of these l1-point TZ-extensions is compact.

An interesting question is the following. When isthe
family ¢ in Theorem 3.Z non-empty? To answer this ques-
tion, let us recall first that a T~-space is T~-clo~ed if
it is closed in any T .-space containing it as a subspace .

..(.

In particular, it is known that a TZ-space is TZ-closed if
and only if, every open filter on the space has at least
one cluster point [8,Theo. 17.29, 145]. Thus, ¢ ~~ 11011-
empty ~6, al1d OI1£.Y .i6, (X,1) u 110t TZ-e£.o~ed. Hence, from
Theorem 3.Z, we get the following.

THEOREM 3.4. Let (X,J) be a TZ-~pace. Thel1 (X,J) ~~
TZ-e£.o~ed ~6, al1d ol1£.y~6, (X,J) doe~ 110t adm~t 1-po~l1t
T2-extel1~~ol1~. •

This also means that a topological space (X,J) admits
l1-point T .cextensions (Z ~ ~ ~ 5) only when it is not T 2-

closed.
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Since a space is compact if, and only if, every filter
on the space has a cluster point [S, Theo. 16.9, 122], we
have the following result:

COROLLARY 3.4.1. In a topotogieat ~paee admit~ an
n-point Ti-exten~ion (i ~ 2), then it i~ nat eompaet. !

Moreover, since the Alexandroff compactificacion of
a non-compact space (X,J) is a T1-space (resp. a T2-space)
if, and only if, it is a T1-space (resp. a locally compact
TZ-space) [S,Theo. 1S.3 and 1S.6, 14S-149J, we may conclude,
using Theorem 3.1 (n = 1), the following:

COROLLARY 3.4.2. A non-eompaet toealty compaet T2-
~pace cannot be Trclo~ed. !

COROLLARY 3.4.3. In (X,J) i~ a non-eompaet T2-~paee,
then the noltowing ~tatement~ a~e equivalent:
(a) The Alexand~onn compaetinieation (X*,1*) on (X,1) i~

a T2-~paee.
(b) (X,1) i~ loeaUy compact.
(c) T~(~:) ha~ no elu~te~ point~ in X. !

§4. T3 and T4 n-point extensions. Let us pass now to examine
the n-point Ti-extensions of Ti-spaces, for i = 3,4. To
begin with, the following example shows that for n = 1, the
construction given by (2), where 1 is an open filter on X,
without cluster points in X, does not necessarily produces
Ti-extensions from Ti-spaces, i = 3,4.

EXAMPLE 4.1. Let X = (0,1J and J its usual topology.
Also let 1='atX, whe re js > {(0,E)"-{1/n; nEN};O<E::;1}.
Then (X,1) is a T4 -space, and it is an easy matter to verify
that" is an open filter on X, without cluster points in X.
Let us next take (X*,J*), where X* [0,1J, and 1* = 1 U
{G UfO}; G E :Tn"}. Since (X,J) is a TZ-space, we already

* *know that (X ,1 ) is a 1-point T2-extension. However, it
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is not a T3-space, because the point 0 and the set F =
{1 hI; Yle:N} cannot be separated by open sets in (X* ,J*) .

Let us recall next that a filter on a topological
space is said to be ~egula~ if it is both an open and a
closed filter (i.e. if it admits an open base, and a closed
base). This notion allows us to prove the following result,
analogous to Theorem 3.1.

THEOREM 4.1. Let (X,1) be a T3-~pace, aYld let 1"
"2"" ,1Yl' be ~egula~ 6-ilte~~ o n X, w-ithout clu~te~ po-irtU
-iYl X, aYld ~uch that 1-i v1j = ~(X), 6o~ eve~y pa-i~ -i, j,
1 ~ c. j ~ n , -i " i . TheYl the~e -i~ aYl Yl-po-iYlt T 3-e.xteM-iOYl

* *' *(X ,5 ) 06 (X,5) ~uch that h(t!w,) = 1k, 1.(, k ~ n . ThL~ ex-
teYl~-ioYl -i~ uYl-ique up to equ-ivaleYlce..

* *Proof. By Theorem 2.', we already know that (X ,1 ),
*where J is defined by (2), is, up to equivalence, the

unique Yl-point T1-extension of (X,J) satisfying T~(~;k) =

Fk; 1 ~ k ;:;;n , Thus to prove the theorem it suffices to show
* * *that (X ,1 ) is a regular space. Indeed, let x ~ X, and

F* be a closed set in (X*,J*) not containing x. Then
X '(F* 0 X) = (X"-F*) n X e: J; = 5, which means that F*nX is
closed in (X,J). By hypothesis, (X,J) is a regular space.
Thus, if x e: X we may find an open neighborhood Gx of x,

and an open set A e: J, satisfying F* n X SA, and An Gx " 0.
If F* S X, the result is clear. If F* ¢ X, we may write
F* = (F* n X) U {wk , ... ,wk~}, for some s . Since x is not a
cluster point of none of the filters 1k" there existopen-<-
neighborhoods Gx,-i of x, and open sets A-i c In 1k-i such
that Gx,-in A-i 0. Hence the disjoint open sets H =Gxn Gx,1

n ... n Gx ~ and J = (A U A J U ... U A~ 1 t.: {wk, , ... , Wk~} separate
* 'x and c . Next, let us suppose that x = Wj' for some j. If

* * * * *"F S X, we have X "-F = (X"-F ) U{w",,,,wn.} e: J. But this
implies that X'-F* e: rnl1n ... n '[fn.' In particular, X"-F*
e:~". Therefore, there is a closed set Fj. e: 1j· (since 1j

j * * *is regular), such that Fj S X \ F ; whence F S X Fje:J cJ .

Again, since 1'j is regular, there exist Aj EJn1j such that
Aj S Fj. Now, it is easy to verify that Aj U {wj} and Y'-Fj
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* * *are disjoint open sets in (X ,J ) separating wj' and f .
* * *Finally, if f t;x, we may write f = (f IlX) U{wkl, ••• ,Wk.6}'

for some .6, and k.<. of j for all .<. e: {l ,... ,.6}. But then
*,,*- * *X F - (X"f) U{Wj'WS1""'wSt} E 1, where {Wj,WS1""

",wSt} = {w1,···,wn}"{Wkl"",Wk.6}.

* Therefore X, f* e: 1 n 'Ij n 'Sl n .•• n 1St' In particular,
X"f E1j. Arquing as in the last case, we may findaclosed
set fj in (X,1), belonging to lj' and an open set Aj e: 1nlj,

* *such that fj S X"f , and Aj S fj. Hence f n X S X"- fj II!: 'J
51*, and Aj n (X,,",fj) = 0. On the other hand. since j of k.<.
for all .<. e: {1 ••••• .6}, we have 'Pj vlk.<. = 1'(X). This implies
the existence. for every .<. E {1, ...•.6}. of open sets Gj,'<'
e:1n1k.<., and G.<.E1n1k.<. such that Gj,.<.nG.<. = 0. Taking
H = (AjnGj•1 n ... nGj,.6) U{wj}, and J = (X <, fj) UG1 U.1

••

U G.6 U{wkl"",Wk.6}' we obtain two disjoint open sets in
(X*.'J*)separating x and f*. •

The foregoing theorem is also valid if we replace in
it T3 for T4• This follows from the following

LEMMA 4.1. 16 (X*,1*) .<..& an n-po.<.nt Trexten.6.<.on 06
a T4-.6pace (X,J), then (X*,1*) .<..& a T4-.6pace.

Proof. Let us first consider the case of a l-point
extension. Given two disjoint closed sets P* and Q*. in
(X*.1*), there are two possible cases. The first case oc-
curs when both P* and Q* are contained in X, in which case
the result follows from the fact that (X.1) is a T4-space •

.by hypothesis. In the second case, without loss of gener-
ali tym we may assume that wl is in p*, but Q* S X. Thus the
sets P* n X and Q* are disjoint closed sets in (X,J). for
which there are disjoint open sets A.B E 1 satisfying

* n * , *,,*,P X 5 A, and Q S B. However, by hypothesIs. eX .J ) IS
a T3-space, and since wl belongs to P*. but not to Q*. it
is possible to find open sets A* and B* in (X*.1*) such

* * * * *that w1 II!: A , Q s B • and A n B = 0. It follows now that
the disj oint open sets A UA* and B n B* separate. in (X*.1*),

* * ,the closed sets P and Q . The general case wIll follow
readily be recurrence on n. A
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The proofs of the next theorems follows the pattern
of those of Theorems 3.1 and 3.2.

THEOREM 4.2. Let (X,1) be a Ti-~pace (i = 3,4) and
let (X*,1*) be an n-point T1-exten~ion 06 (X,1). Then
(X*,1*) i~ a Ti-exten~ion i6, and only i6, 60~ each k E

{1, ••• ,n}, the 6ilte~ T~(~~k) on X i~ ~egula~, without
clu~te~ point~ in X, and h(U~j) Vh(1J~k) = 'P(X), 6M each
pai~ t .k, 1 ~ i . k ~ n , j f. k. !

THEOREM 4.3. Let (X,T) be a T3-~pace, n the 6amily
06 all ~egula~ 6ilte~~ on X, without clu~te~ point~ in X.
Let ::~n) the 6amily 06 all equivalence claMe~ 06 n-point
T3-exten¢ion~ 06 (X,1). Then the mapping 6Mm ::~n) bl.to
nn = nx ...xn, which ~end~ the cla~~ 06 (X*,J*) into

* *(T~(UW1), ...,T~(1Jwn)) i~ a one-to-one mapping which i~ not
onto i6 n > 1. 16 n = 1, th~ mapping i~ a bijection. !

Since a T3-space is Trclosed if, and only if, every
regular filter on the space has at least one cluster point
[5, Satz 2, 285], we are able to state the following result

THEOREM 4.4. A T3-~pace i~ T3-clo~ed i6, and only i6,
it doe~ not admit 1-point T3-exten~ion~. !

Next we give another sufficient condition, based on
the notion of filters without clustering sets, in order to
get 1-point T3-extensiones of T3-spaces:

THEOREM 4.5. Let (X,1) be a T3-~pace, and let 1be
an open 6ilte~ on X, without clu~te~ point~ no~ clu~te~-
ing ~et~. Then the~e i~ a 1-point T3-exten~ion 06 (X,1)

*~uch that T~(Uw) =,. Thi~ exten~ion i~ unique up to equi-
valence.

Proof. Since (X*,1*), where 1* is defined by (2) sat-
isfies T~(U:) = 1, it suffices to prove that under the con-
ditions of the theorem, this extension is regular. Indeed,

* * . * *let x ~ X , and let f be a closed set In (X ,1 ) such that
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* * *x ¢ F . If F ~ X, the result follows readily. If F gX,
then F* = (F* n X) u {w}, and we can find open sets Gx and A

*in (X,J) such that x lL Gx'. F n X s A, and An Gx = 0. On the
other hand, since x is not a cl~ster point of 1, there are
G~, and Bin eX,J) satisfying x e: G', B e:1, and Gx'n B = 0., x·
Therefore, the open sets Gx n Gx' and A U B U {w} separate x

* * *and F in (X ,J ). Let us supose now that x = w, so that
F* s X is closed in (X,1). Under thesecircunstances,
* - *F "=1. Otherwise, we may find G lL 'J n f such that G ~ F ,

* * * *and consequently Gn(X '-F) = 0, and (GU{w})n (X '-F) =
{w}; but this implies that {w} e: J*, which cannot be, since
X is dense in (x*,r*). Now, by hypothesis, F* is not a
clustering set of 1, so there are open sets Band G in (X,J)

*such that G E F, F S B, and BnG = 0. But then Band
G U {w} separate x and F* in (X* ,J*). •

Because of Lemma 4.1, we have an analogous result for
T4-extensions of T4-spaces. On the other hand, the following
example shows that the converse of the above theorem does
not hold in general.

EXAMPLE 4.2. Let X = (0,1], J its usual topology,
X* = [0, lJ, J* its usual topology. Clearly, (X* ,1*) is a
l-point T3-extension of (X,J), but the set A = {lin; n
1,2, ... } is a clustering set of the filter T!t(U~).

As a curious consequence of the above, we obtain the
following:

COROLLARY 4.5.1. Let (X,J) be a T3-~pace. 16 f ~~an
open 6~lte!t on X, w~thout clu~te!t po~nt~ noll.clu~te!t~ng
~et~ ~n X, then '1 ~~ a !tegula!t 6~lte!t w~thout clu~te!t po~nt
po~nt~ ~n X. •

Finally, Theorem 4.5 can be extended to n-point T3-

extensions of T3-spaces. Indeed, if 11,... ,'1n are distinct
open filters on X, without cluster points nor clustering
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sets, then they are regular filters on X, because of Coro-
llary 4.5.1. But also Lemma 1.1 tellsus that Fi v s , =1'(X),

since they have no clustering sets. Therefore we are in the
conditions of Theorem 4.1, and the proposed generalization
follows.
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