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SEPARATION PROPERTIES AND N-POINT
TOPOLOGICAL EXTENSIONS

by

Victor S. ALBIS and Sonia SABOGAL

§0. Introduction. A topological extension of a topological
space (X,J) is a topological space (X*,T*) containing (X,9)
as a dense subspace. Two topological extensions (X*,I*),

and (X:,T*) of (X,J) are said to be equivalent if there is

a homeomorphism h:(X*,9%) » (X g 1) such that h]X = idy.
Given a positive 1nteger n, we say that (X T ) is an n-point
extension of (X,7) if (X ,T ) is a topological extension of
(X,9), and X*\ X has exactly n elements. If, furthermore
(X*,T*) is a T4-space (i.e. it satisfies the separation axiom
T;) we talk about an n-point Ti-extension. The statements of
the separation axioms that we will use here are those appear-
ing in [8, 91-103]. A topological extension is not necessar-
ily a compact space; however, most of the research on n-point
extensions has dealt, up to now, with compactifications
([2],[6],[7],[9]), maybe because '"compactness'" is an essen-
tial ingredient in the proofs of many important theorems in
mathematics. Not less important is the fact of being Haus-
doff, since it guarantees, for example, the uniqueness of
the limit point of a convergent filter. The principal aim

of this paper is to explore the n-point Hausdorff extensions

(independently of their compactness), in particular, the
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n-point T, -extensiones (£ =3,4) of a topological space.

In Section §1, we make some precisions on notation,
and introduce a new concept, that of clustering set of a
filter, which will be of some use in this paper. In the
following sections, we establish necessary and sufficient
conditions for the existence of n-point T, -extensions of
T -spaces. On the way, we remark some connections between
our results, compactness, and T -closed spaces. In theorem
3.3, we show the existence of at least I non-equivalent
n-point Tz-extensions of R, which we think is an interest-

ing result by itself.

§1. Preliminaries. If @ is a filter base on a set X, we
shall denote by &° the filter generated by 8. If (X,J) is
a topological space and x is a point in X, we shall denote
by Uy the filter of neighborhoods of x with respect to the
topology 9.

If (X*,i*) is a topological extension of (X,9), and
T* is a filter on X*,the trhace of ﬂ* (on X) is the set
Ta(F) = (FFnx; FF e 5%).

If ¥ and § are filters on a set X, we say that ¥ is
§<nen than ¢ if § = F. It is an easy matter to verify
that 'this is an order relation on the set of all filters
on the set X. Moreover, given two filters § and ¥ on X,we
shall denote by FVv ¢ the 1.u.b. of these filters with res-
pect to the order given above. It is not difficult to show
‘that Fv§ = {FNG; F= ¥, 6 = g}. Of course this 1l.u.b.
may be the trivial filter P(X), consisting of all subsets
of X.

The following definition will prove to be useful in

our discussion:

DEFINITION 1.1. Let ¥ be a filter on a topological
space (X,7), and let A be subset of X. If
(1) A ¢F, and
(2) for each neighborhood B of A (i.e. such that there is
an open set G of (X,J) verifying A= G ¢ B), and each
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Fe F, then BNF # @, we say that A is a clusterning set
0f the gilten F.

In [1] we have shown that the notions of cluster point
and clustering set are quite independent. Indeed, there are fil-
ters which admit clustering sets but no cluster points, and vice-
versa, and filters which admit either both or none of them.

LEMMA 1.1. Let (X,J) be a topological space, and Let
Fy and F, be two distinct §ilLtens on X. 1§ none of them
admits clustening sets then FqvF, = P(X).

Proof. Since F1 # fz we suppose, without loss of genr
erality, the existence of a set A in F1\ ?2. Thus, since
fz has no clustering sets and A ¢:F2, it follows that there
is a neighborhood B of A, and a set F = 72 such that BNF #0.
But this means that @ = F1v ¥,, whence the claim. A

From now on, all filters considered will be non-trivial

filters.

§2. To and T1 n-point extensions. From now on, x* will denote
the set X U{w1,...,wn}, where w; ¢ X, 1 £ § ¢ n. Since each
finite set in a T1—space is closed, each cofinite set is open.
In particular, if (X*,I*) is an n-point T,-extension of
(X,3), X is open in 7* and so G — 5*. Therefore, when (X*,J*)
is a T1-e§tension of (X,J)*for x e X, U* is a neighborhood
of x in 7 if, and only if, U N X is a neighborhood of x in 7.

This may be expressed as follows:

W= {uuA uetd, Ac lug,...ul) (M

From this it follows that the topology 7* of an n-point T,-
extension (1 < 4 £ 5) is completely determined once we know
Tr(ﬂ;k), k=1,...,n. The following lemma expresses this fact

more precisely.

LEMMA 2.1. Two n-point Tq-extensdons (X*,Y*) and
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(X1, Tt 1) 0f a topotog&cal space (X,J), whene x* = x U{wg,
W }, and X1 = XU{ay,...,a,}, are equivalent if, and
onty 45, Tn(uwj) = Tn(ua ), 1<4<n, in some ondan

Proof. If there 1s a homeomorphism h: (X 7%y (X )
such that hlX = {dy, we may assume without loss of general-
ity that h(w ) = aj, for §=1,...,n. Then it is an easy
matter to show that Tn(uwj) Tn(u;j). Conversely, let us
suppose that the preceding equality holds for all j =1,..,n.
Defining h:X* > X] by h(x) = x if x « X, h(wj) = a;, for
§=1,...n, to show that h is bicontinuous for the given
topologles, 1t sufflces to prove that for every x € x*
(resp. y = X]), Up(yy = RCUD  (resp. Up-10,) = 71U,
But this is clear from (1) is case x« X (resp. y « X ) In
order to prove that h(Uw ) = ua , we remark that for any
neighborhood ij of w in (X , T ) we get h(uw,) = h((uginx
U{wj}) h(uwjf1x) Uh(w ) = (Ua nx) U{aj} where Uaj 1sa
neighborhood of aj in (X* J*), since, by hypothesis, Tnuw
Tnua . But clearly (Ua nx) U{a.} < uaj, which proves the
relatlon h(Uw ) C'lla_ Conversely, if Uaj -:uaj, we get
uaj = (Uz; ﬂX) U{a } = h(ua nX) U{h(w;)} = h((uwjnx)n{w}
(5 h(uw ). In a complete s1mllar way we prove that
RT(UE)) = Uy A

The following example shows that the above lemma is

no longer valid if £ = 0.

; EXAMPLE 2.1. If X = {1,2,3}, x1-{1234} X5 =
{1,2,3,4,5}, and J = {G X,{1},{1,3}}, = {4, X ), 410,51,
{1,4},{1,3,4}}, and J {ﬂ,x {1},1{1, 5} {1,3, 5}}, it is
readily verified that (X1,J ) and (XZ,I ) are both 1-point
To-extensions of (X,J). Also, Tn(u ) = TnCu ). But these
two extensiones cannot be equ1valent, since the only pos-
sible bijection h between X? and X; such that h|X = 4dy,
is given by h(x) = x, for x = 1,2,3, and h(4) = 5. But, on
the other hand, for this bijection we have h({1,3}) =
{1,3} ¢ 75, and {1,3} « 77.
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LEMMA 2.2. Let (X,J) be a topological space, and Let
*1, $2,...,F, be open filtens on X. Let

*
(2) 3" = FU{AU{wpy,...,we }; A= TNFp N ... 0nFp,
1548 gn, kj {100 om), - i § '€ kY

Than (X*,7*) s an n-point extension of (X,7). Funtheamonre,
T/L(‘ka) =¥, (k=1,...,n), and if (X,T) 48 a To-space, then
(X*,9%) is a Ty-space.
Proof. In the first place, it is easy to verify that

7* is indeed a topology on X*, satisfying J*IX:={G*I1X; ¢*
« 7%} = . Moreover, X is dense in (X*,T*). Thus (X*,7%)
is an n-point extension of (X,J). Let now U;A E‘u;A, 15
sn. Then, for some t, there is A= T nFp n... nPryn

ﬂ?kt such that wy, « AU{wp ,..., A"' sWeyl S Uwy. Thus

A e uwé NX, and A « F,. Therefore, uwA nx =¥, and
Tﬂ(UwA) s F,. Conversely, if F, « ¥,, there is G, = TN,
such that GA*S ¥,, since ¥, is open. Hence G U {ws} <

Fo Ulw,} = Uw,, and consequently F = (Fy U{w, ) N X = Ta(Yy,).
Finally, if (X,J) 1s aT o-Space, let us take two distinct
points x and y in x* If both of them lie in X, they are
clearly separated as in any T -space. If it happens that

x € X, but y = wy, for some 4 =1,...,n, then, for any

G e Jc< J° such that x = G, we have w, 6. If x = wy,

y = w; (s # §), by taking any A = 7n¥,, we obtain an open
neighborhood A U{w,} of wy not containing W A

As the following example shows, the openness of the
f11ters f1,...,fn
(X I ) is a T -extension.

is not sufficient to guarantee that

EXAMPLE 2.2. Let X = (0,1], with the usual topology
7, x* =[0,1], and F the filter of neighborhoods of 1 in
(X,9). Clearly, (X,J) is a T1-space, and ¥ is an open fil-
ter on X. However, if 7* = TU{GU{0}; 6« InF}, then
(x*,7*) is, by virtue of lemma 2.2. a 1-point To-extension

of (X,J), which is not a T1-extension. Indeed, in (X*,I*)
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the point 1 belong to every neighborhood of 0.

THEOREM 2.1. Let (X,J) be a T,-space, and FireeesFn
be apen g§iltens on X. Then there 44 an n-point T1 -extensdion
(x*,7*) with TnCuwk) = Fr, (1 <k<n) if, and onty if, no ¥,
consists o4 neighborhoods of a single point x « X. More-

overn, this éxtension L8 unique.

Proof. Because of Lemma 2.2, it suffices to show that
(x*,7*), (7" defined by (2)) is, under the conditions of
the theorem, a Tl space, since the uniqueness follows from
Lema 2.1. Let, thus, x and y be two distinct points in .
If these points are both in X, they can be separated in %2
as in any T,-space, since J'g,J*. If x = X, but y = wy (for
some k = 1,...,n), then any neighborhood G, e« J of x satis-
fies wp & Gy. On the other hand, since by hypothesis, not
all the elements of F, are neighborhoods of x « X, there
exists an element Fj Jr1?k such that x € Fk Therefore,
Fp U{w,} is an open neighborhood of wp in x*, not contain-
ing x, whence the result in this case. Finally, if x = wp,
and y = w; (k #4§), then, for any A< JnF,, and any
Be 5[1? , we clearly have w; ¢ A U{wp}, and w, ¢ B U{w 8
Thus (X J ) is indeed a T —space

Conversely, if (X ,J7) is an n-point T]-extension of
(X,7) satisfying Ta(Up,) = F, (1sk<n), and Fjp = Uy, for
some k (1 sksgn), and some x & X, it is clear that then
(X*,I*) cannot be a T1—space. A

§3. n-point Tz-extensions. In this section we characterize
the T,-extensions of T,-spaces. More precisely, we have the

following.

THEOREM 3.1. Let (X,J) be a T,-4pace and Let (X*,J*)
be an n-point Ti-extension of (X,9). Then (X*,5%) 4is a
Tz-eitenéion i§, and only 4if, for each i< {1,...,n},
Ta(lUy;) 44 an open filter on X, without cluster points in
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X, and Tr(ly,) VTaUy) = P(X), for each pain 4,4, 1<4,
fsn, L#7.

Proof. Let us suppose that (X* J*) is a T,-space.
Each Tn(uwk) 1s an open filter on X, without cluster points
in X, since ka is open ([4, Obs.2, p.553]), and obviously
it converges to wp,, so that its only cluster point is wp,
because (X T* ) is T,. Now, if £ # j, so that w;# wj it
is easlily seen that Tn(uw ) an(qu)-?(X),51nce(X J )
is supposed to be a T;-space. Conversely, if the Tn(uwk) »
Fk, (1 sk <n) satisfy the given conditions, we define J*
by (2). As in the proof of Theorem 2.1, it is not difficult
to show that (X*,J*) is T2—extension of (X,J) such that
the traces of the neighborhoods of the wp in (X*,J*) are
precisely the ¥j,. But then Theorem 2.1 also implies that

*

*
J1 =T . A
Using Lemma 1.1 we obtain the following

COROLLARY 3.1.1. 1§ F¢,%2,...,F, are open filters on
X, without clusten points non cLusterning sets in X, Zhen
(X*,J*), defined by (2), 44 an n-point Tp-extension verify-
ing Tn(U;k) o FppiB = lpgaccitte A

The next two examples show that Theorem 3.1 is no

longer valid if £ = 0, or £ = 1:

EXAMPLE 3.1. The spaces (X,J) and (X?,J?) in Example
2.1 are both To—spaces, the second one being a 1-point ex-
tension of the first. Clearly the filter of neighborhoods
of 4 in (X",7]) is the set

{x],11,4,11,2,43,11,3,4}},

but its trace, {X, {1},{1,2},{1,3}}, admits 1 as a cluster

point (moreover, as a limit point).

EXAMPLE 3.2. Let X = (0,1], J its usual topology,
[0,1] and J" = JU{AU{0}: A « X, X\A finite}. Then

it is easy to verify that (x*,7%) is a 1-point T1-extension
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of (X,J), and that x = 1/2 is a cluster point of the filter
TA(UY).

In order to state our next theorem we will suppose
*
that X° := X U(wy,...,w,), where (w1""’wn) represents a
linearly ordered set if n > 1.

THEOREM 3.2. Let (X,J) be a T,-space and Let & be the
family of all open filtens on X, without clustern poinits 4Ain
X. Let E}") be the family of all equivalence classes o0f
n-point Tp-extensions of (X,J). Then the mapping ¢ from
Egﬂ into ®" = ox...x® [(n times), which sends the class of
(X*,J*) into (Tn(u;l),...,Tn(u;n)) i4 a one-to-one mapping
which 45 not onto £f§ n > 1. I§ n =1, & is a bijection.

Proof. By Lemma 2.1 and Theorem 3.1, ¢ is a well-
defined one-to-one mapping. This mapping is‘onto if n = 1
(Easy!). In order to verify that ¢ is not an onto mapping,
it suffices to take F = (¥,...,F), where F is a proper open
filter on X, without cluster points in X.

Indeed, if there were an n-point Tz—extension (X*,J*)
of (X,J), such that ¢(X*,5*) = F, we would have Tn(u;k) =
Fp, for every k = {1,..,n}, which in turn would imply that
F =FvF = P(X), by Theorem 3.1. But this is impossible. A

THEOREM 3.3. For each positive integen n, the topo-
Logical space R of the neal numbens, with Lits usual Zopo-
- Logy, admits at Least I mutually non-equivalent n-point
Ti-extensions (L = 1227

Proof. Let J stand for the usual topology on R. Let
A= (An)neN; where An = {x €« R;x > n}. Clearly, A is an
open filter base, and ¥ = IR is an open filter on R, which
is not an open ultrafilter, since neither the open set
A = nQN (n,n+1) nor its complement, Z = R\A, belong to ¥
(3, Prop. 1,2, p.640]. Now, if x =R, there is always a
positive integer n such that n > x; hence taking B = (n-x)/2
we obtain an open neighborhood G = (x-B,x+B) of x satisfy-
ing G ﬂAn = @§. This means that ¥ has no cluster points.
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Let us consider next the open set D = ngN(an,bn), where
0 < a, < bn’ bn'san+1’ and %ig a, = +=. Under these condi-
tion we have DNA, # # for each A, = A, and consequently
R vF # P(R). Furthermore, it is easy to prove that = vF
is an open filter, finer than ¥. By Zorn's Lemma, there is
at least one open ultrafilter §; containing a vF, without
cluster points in R, since F has none. Of course, Qv has

no limit points. Let now D' be another open set of R, con-

. ¥ U 1 ' ! !
sfrucfed the same w?y as D: D neN(an’bn)’ 0<a, <bn 3
bn.san+1, and %lg a, = +=. For this D' there is another

open ultrafilter QD, , without limit or cluster points.
Further, §p # §p', since otherwise we would have
(ﬁR vF) v(ﬁR vF) = P(R), a contradiction. Now, the family
of all distinct sequences intervals (an’bn) satisfying the
above conditions has cardinality L. Moreover, §p vGp:=PR)
since both are open ultrafilters [3,Prop.1.1, 640]. The
theorem now follows from Thecrem 3.1. A

It is worth to remark, using results due to K.D. Ma-
gill [6], that R admits at least { n-point T,-extensions,
of which, up to equivalence, just one is compact, if n =1,2.
If n > 2, none of these n-point Tz—extensions is compact.

An interesting question is the following. When is the
family ¢ in Theorem 3.2 non-empty? To answer this ques-
tion, let us recall first that a T;-space is T;-closed if
it is closed in any T -space containing it as a subspace.
In particular, it is known that a T,-space is Tz-closed if
and only if, every open filter on the space has at least
one cluster point [8,Theo. 17.29, 145]. Thus, & 44 non-
empty if, and only if, (X,T) £s8 not Tz-clabed. Hence, from
Theorem 3.2, we get the following.

THEOREM 3.4. Let (X,J) be a T,-space. Then (X,J) 45
T,-closed if, and onty 4if, (X,J) does not admit 1-point
To-extensions. A

This also means that a topological space (X,J) admits
n-point T -extensions (2 <4 <5) only when it is not TZ—
closed.
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Since a space is compact if, and only if, every filter
on the space has a cluster point [8, Theo. 16.9, 122], we
have the following result:

COROLLARY 3.4.1. 1§ a topological space admits an
n-point Té-extenéion (£ » 2), then it 45 not compact. A

Moreover, since the Alexandroff compactificacion of
a non-compact space (X,J) is a Tl—space (resp. a Tz—space)
if, and only if, it is a Tq-space (resp. a locally compact
T,-space) [8,Theo. 18.3 and 18.6, 148-149], we may conclude,
using Theorem 3.1 (n = 1), the following:

COROLLARY 3.4.2. A non-compact Locally compact T,-
space cannot be T,-closed. A

COROLLARY 3.4.3. If (X,J) 48 a non-compact Tp-space,
then the folLowing statements are equivalent:
(a) The Alexandhoff§ compactifdcation (X*,J*) of (X,J) 4s
a TZ—Apace.
(b) (X,T) 4s Locally compack.
(c) Tn(u;) has no clusten points in X. A

§4. T; and Ty n-point extensions. Let us pass now to examine
the n-point T, -extensions of T;-spaces, for 4 = 3,4. To

begin with, the following example shows that for n = 1, the
construction given by (2), where ¥ is an open filter on X,
without cluster points in X, does not necessarily produces

T -extensions from T -spaces, £ = 3,4.

EXAMPLE 4.1. Let X = (0,1] and 7 its usual topology.
Also let F = ﬁ?x, where 8 = {(0,e)\{1/n; n=1N};0<e g1}.
Then (X,J) is a T,-space, and it is an easy matter to verify
that ¥ is an open filter on X, without cluster points in X.
Let us next take (X*,7*), where x* = [0,1], and 7% = TU
{6 u{0}; 6 =7Tn¥}. Since (X,T) is a T,-space, we already
know that (X*,J*) is a 1-point Tz-extension. However, it
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is not a Tz-space, because the point 0 and the set F =
{1/n; n =N} cannot be separated by open sets in x*,7%).

Let us recall next that a filter on a topological
space is said to be segufaxr if it is both an open and a
closed filter (i.e. if it admits an open base, and a closed
base). This notion allows us to prove the following result,
analogous to Theorem 3.1.

THEOREM 4.1. Let (X,J) be a T3z-space, and Let 'F1,
T'z,...,?n, be rnegulan §iltens on X, without clusten points
in X, and such that F; VFJ' = P(X), 4on every pain L, {,
154, j<sn, £ # . Then there {8 an n-point Tz-extension
(x*,7%) of (X,7) such that Ta(Uy,) = F,, 1<k<n. This ex-
tension 45 undique up to equivalence.

Proof. By Theorem 2.1, we already know that (X*,I*),
where .’!* is defined by (2), is, up to equivalence, the
unique n-point T,-extension of (X,7) satisfying Th('U:)h) =
Fp; 1<k<n. Thus to prove the theorem it suffices to show
that (X*,_'Y*) is a regular space. Indeed, let x e X*, and
F* be a closed set in (X*,.'I*) not containing x. Then
XN(F N X) = (XNF) N X e 3} = 9, which means that F*NX is
closed in (X,7). By hypothesis, (X,J) is a regular space.
Thus, if x € X we may find an open neighborhood Gy of x,
and an open set Ae J, satisfying F*N X < A, and AN G, # 0.
If F* < X, the result is clear. If F* & X, we may write
F* = (F*n x) U {wp :'--:szé}’ for some 4. Since X is not a
cluster point of none of the filters Fkx;’ there exist open
neighborhoods Gy ¢ of x, and open sets A, = J0 Fp, such
that Gx,in A; = #. Hence the disjoint open sets H =06, N Gy 1
n...n Gx,/s and J = (AUAqU... UA) U{wm,...,whé} separate
x and F", Next, let us suppose that x = wj, for some j. If
F* < X, we have X*NFF o= (X\F*) U{W1""’wn} = 7%, But this
implies that X~NF* e Tn Fqn...n 'Fn. In particular, XNFF
E‘FJ». Therefore, there is a cloied set F; ‘i T’J- (since F;
is regular), such that Fj- < X\ F; whence F r;X\Fj-EJ 7.
Again, since Fj‘ is regular, there exist Aj e Jnfj- such that

Aj'g Fj' Now, it is easy to verify that Aj U{Wj} and X\Fj.
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are disjoint open sets in (X %) separatlng wj and F .
Finally, if F* &£ X, we may write F* o= (F n x) U{wk1' e Whys
for some 4, and k # § for all £ ={1,...,4}. But then
x*\r* =(X\F)leVwm,“ J%t}tj ,whne{wpwm,”.
swget = lwy,.o,w }‘~{wk1,.. »Why Y

Therefore X~F' < Jl1f []761 .r]fst. In particular,
X\\F S ? Arquing as in the last case, we may find a closed
set Fj in (X n, belong1ng to fj, and an open set Aj efTﬂfﬂ
such that Fng\F, andA _C_Fj-. Hence F* nx e X\FJ:T
C:J and Aj n(X‘\Fj) . On the other hand, since j # kg
for all Lie{1,...,8}, we have Fj vfki = P(X). This implies
the existence, for every 4 «{1,...,s}, of open sets G; ;
=JIN¥Fr;, and G = I N¥Fp, such that G; (NG, = #. Taking
H = (A l]Gj PR nGj’A) U{wj}, and J = (X'\Fj) UG, u...
UG, U{wk1"' wké}’ we obtain two disjoint open sets in
(X* T*) separating x and F*. A

The foregoing theorem is also valid if we replace in
it T3 for T4. This follows from the following

LEMMA 4.1. 14 (X*,7%) is an n-point Tz-extension of
a Ty-space (X,J), zhen (X*,J*) 48 a Ty-space.

Proof. Let us first consider the case of a 1-point
extension. Given two disjoint closed sets P* and Q*, in
(X*,J*), there are two possible cases. The first case oc-
curs when both P* and Q* are contained in X, in which case
the result follows from the fact that (X,J) is a T4-space,

-by hypothesis. In the second case, without loss of gener-
alitym we may assume that wq is in P*, but Qf < X. Thus the
sets P*NX and Q* are disjoint closed sets in (X,J), for
which there are disjoint open sets A,B « J satisfying
P*NX c A, and Q" = B. However, by hypothesis, (X*,7*) is
a Tz-space, and since wq belongs to P*, but not to Q*, it
is possible to find open sets A* and B* in (X*,J*) such
that w; = A . Qf < B*, and A*ﬂ B* = . It follows now that
the disjoint open sets A UA and BN B" separate, hl(x*,f*),
the closed sets P* and Q . The general case will follow
readily be recurrence on n. A
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The proofs of the next theorems follows the pattern
of those of Theorems 3.1 and 3.2.

THEOREM 4.2. Let (X,J) be a T -space (£ = 3,4) and
Let (x*,7*) be an n- point Ti-extension of (X,J). Then
A%V A or -extension Lé, and only 4if, for each k =
{13 .3 L8 Y the §ilten Tn(uwh) on X 44 negulan without
clusten points in X, and Tn(uw ) an(ﬂwk) = P(X), for each
pain §,k, 154§, kgsn, § # k. A

THEOREM 4.3. Let (X,J) be a Tz-space, @ the family
0§ all nregulan filtens on X, without clusten points Lin X.
Lezt Egn) the family of allf equivalence classes of n-point
Tz-extensions of (X,J). Then the mapping from Egﬂ into
Q" = x...xQ, which sends the class of (X*,5%) into
(TA(U;1),...,TA(U;H)) i8 a one-to-one mapping which 48 not
onto i§ n > 1. 1§ n =1, this mapping 44 a bifection. A

Since a Tz-space is Tz-closed if, and only if, every
regular filter on the space has at least one cluster point
(5, Satz 2, 285], we are able to state the following result

THEOREM 4.4. A Tz-space 4is Tz-closed 4if, and only 4if,
it does not admit 1-point Tz-extensions. A

Next we give another sufficient condition, based on
the notion of filters without clustering sets, in order to

get 1-point Tz-extensiones of Tz-spaces:

THEOREM 4.5. Let (X,J) be a Tz-space, and Let P be
an open §4ilten on X, without cluster points non cluster-
ing sets. Then there is a 1-point T3-extenéion of (X,9)
Auch that TA(U;) =F. This extension is unique up to equdi-
valence.

Proof. Since (X*,J*), where 7% is defined by (2) sat-
isfies TA(U;) = ¥, it suffices to prove that under the con-
ditions of the theorem, this extension is regular. Indeed,
let x = X*, and let F* be a closed set in (X*,J*) such that
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X ¢ e P < X, the result follows readily. If F* £X,
then F* = (F*n x) U{w}, and we can find open sets G, and A
in (X,9) such that x €6,, F N X A, and ANG, = #. On the
other hand, since x is not a cluster point of ¥, there are
G;, and B in (X,7) satisfying x = G;, B =F, and G;n B = (.
Therefore, the open sets G, 0 G;, and A UB U{w} separate x
and F* in (X*,J*). Let us supose now that x = w, so that

F* = X is closed in (X,J). Under these circunstances,

£ ¢ F. Otherwise, we may find G « 7N ¥ such that G g;F*,
and consequently G ﬂ(X*\\F*) = @, and (G U{wl})q (X*\\F*) =
{w}; but this implies that {w} e J*, which cannot be, since
X is dense in (X*,I*). Now, by hypothesis, F* is not a
clustering set of P, so there are open sets B and G in (X,J)
such that G « F, F* = B, and BNG = §. But then B and

G U {w} separate x and F* in (X*,J*). A

Because of Lemma 4.1, we have an analogous result for
T4-extensions of Ty-spaces. On the other hand, the following
example shows that the converse of the above theorem does

not hold in general.

EXAMPLE 4.2. Let X = (0,1], 7 its usual topology,
x* = [0,1], 7% its usual topology. Clearly, (X*,7%) is a
1-point Tz-extension of (X,J), but the set A = {1/n; n =
1,2,...} is a clustering set of the filter Ta(\}).

As a curious consequence of the above, we obtain the

following:

COROLLARY 4.5.1. Let (X,J) be a Tz-4pace. 1§ F 45 an
open filten on X, without clusten points nor clustening
sets in X, then F 4is a negulan filten without clusten point

points in X. A

Finally, Theorem 4.5 can be extended to n-point Tz-
extensions of Tz-spaces. Indeed, if F1,...,fn are distinct
open filters on X, without cluster points nor clustering
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sets, then they are regular filters on X, because of Coro-
llary 4.5.1. But also Lemma 1.1 tells us that Fe vFj =P(X),
since they have no clustering sets. Therefore we are in the
conditions of Theorem 4.1, and the proposed generalization
follows.
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