Revista Colombiana de Matemáticas Vol. XXIV (1990), págs. 97-101

THE MIDDLE GRAPH OF A HYPERGRAPH

, by a sharpy of out a rail , a

Dănuţ MARCU

Introduction. This paragraph is meant to present some definitions that are necessary to follow the further notes, our graph theoretic terminology being fairly standard [2], [3], as well the matroid terminology [5].

The characterization of a middle graph of a graph is given by Akiyama, Hamada and Yoshimura [1]. Some other properties of the middle graphs are presented in [4]. In a similar way, we introduce the middle graph of a hypergraph and we give a characterization of this graph. With any middle graph, we associate a matroid and we prove that it is graphic.

Let $X = \{x_1, \ldots, x_n\}$ be a finite set and let $\S = \{E_{\lambda} : \lambda \in I\}$ be a family of subsets of X. The pair $H = (X, \S)$ is called a hypergraph on X, of order n, if $E_{\lambda} \neq \emptyset$, $\lambda \in I$, and $\bigcup_{\lambda \in I} E_{\lambda} = X$. It will also be denoted as a pair H = (V(H), E(H)), where V(H) = X is the set of vertices, and $E(H) = \S$ is the set of edges.

A hypergraph is simple, if the edges $E_{i}(i \subseteq I)$ are all distinct, and multiple, otherwise. If $|E_{i}| \le 2$, for all $i \in I$, then a multiple hypergraph is a multigraph without isolated vertices, and if $|E_{i}| = 2$, for all $i \in I$, a simple hypergraph is a graph without isolated vertices.

We define the middle graph M(H) of the hypergraph H = (X, \S) , as an intersection graph $\Omega(F)$, where

$$F = X' \cup g \text{ and } X' = \{\{x_1\}, \dots, \{x_n\}\}.$$

A graph is called a middle graph, if it is isomorphic to the middle graph M(H) of a hypergraph H.

If H is a hypergraph and $x \in V(H)$, then we denote by N(x) and $\overline{N}(x)$ the open and the closed neighbourhood of the vertex x, in the hypergraph H, respectively, i.e., $x' \in N(x)$ if and only if $x \neq x'$ and there exists an edge E of H, such that $\{x', x\} \subset E$, and $\overline{N}(x) = N(x) \cup \{x\}$.

Let G be a graph. The set $\{C_{\hat{\mathcal{L}}}: \hat{\mathcal{L}}=1,\ldots,m\}$ of the cliques of G is called a C-cover of G, if

$$\bigcup_{i=1}^{m} V(C_{i}) = V(G) \text{ and } \bigcup_{i=1}^{m} E(C_{i}) = E(G).$$

If in the graph G there exists a stable set S, such that the collection $\{G[\overline{N}(x)]:x \in S\}$ is a C-cover of G, then the set S is called C-stable. Here, G[A] denotes the subgraph of G, induced by $A \subset V(G)$.

A matroid M is a pair (Q,\underline{B}) , where Q is a nonempty finite set and \underline{B} is a nonempty collection of subsets of Q, called bases, satisfying the following properties:

- (B1) no basis properly contains another basis,
- (B2) if B_1 and B_2 are bases and if b is any element of B_1 , then there exists an element b' of B_2 , such that $(B_1 \setminus \{b\}) \cup \{b'\}$ is also a basis.

The main results. In this section, we shall present our main results.

THEOREM 1. A graph G is a middle graph if and only if there exists a maximal stable set $S = \{x_1, \ldots, x_k\} \subset V(G)$, such that the collection $\{G[\overline{N}(x_i)]: i=1,\ldots,k\}$ is a C-cover of G.

Proof. Let us assume that G is the middle graph of the hypergraph H. We consider the set $S = \{\{x_1\}, \dots, \{x_n\}\}$ and

the collection $\left\{G\big[\bar{N}(\{x_{\hat{\mathcal{L}}}\})\big]: \hat{\iota}=1,\ldots,n\right\}$. From the definition of the middle graph of the hypergraph \mathcal{H} , the set S is stable and maximal. Moreover, any two elements of $N(\{x_{\hat{\mathcal{L}}}\})$ have a nonempty intersection. Therefore, $G\big[N(\{x_{\hat{\mathcal{L}}}\})\big]$ is a clique of G, for all $\hat{\iota}=1,\ldots,n$. Obviously, $G\big[\bar{N}(\{x_{\hat{\mathcal{L}}}\})\big]$ is also a clique of G, and the collection $\left\{G\big[\bar{N}(\{x_{\hat{\mathcal{L}}}\})\big]: \hat{\iota}=1,\ldots,n\right\}$ is a C-cover of G.

Now, assume that the collection $\{G[\bar{N}(x_{\lambda})]: \lambda=1,\ldots,k\}$ is a C-cover of G, and $S=\{x_1,\ldots,x_k\}$ is a maximal stable set of G. A hypergraph H, whose middle graph is isomorphic to G, may be obtained in the following way. Let V(H)=S and $V(G)\setminus S=\{e_1,\ldots,e_m\}$. The family of edges of our hypergraph is $\{E_{\lambda}: \lambda=1,\ldots,m\}$, where $E_{\lambda}=\{x_j:x_j\in S \text{ and } e_{\lambda}\in \bar{N}(x_j)$, for $j=1,\ldots,k\}$. It is easy to see that $M(H)\cong G$, and the proof is complete. Δ

Let G be a graph and let $\underline{B}(G)$ be the collection $\{B:B\subseteq V(G) \text{ and } B \text{ is a } C\text{-stable set of } G\}.$

For example, if $G = K_n, V(K_n) = \{x_1, \dots, x_n\}$, then, $\underline{B}(G) = \{\{x_{\underline{i}}\}: \underline{i} = 1, \dots, n\}$. If $G = K_{1,n}, V(G) = \{y, x_1, \dots, x_n\}$, then $\underline{B}(G) = \{\{x_1, \dots, x_n\}\}, n \ge 2$. If $G = P_n, V(P_n) = \{x_1, \dots, x_n\}, n \ge 4$, then $\underline{B}(G) = \emptyset$.

THEOREM 2. Suppose that $\underline{B}(G) \neq \emptyset$. Then, the pair $M_G = (V(G), \underline{B}(G))$ is a matroid.

Proof. Let G be a middle graph. We must to prove the properties (B1) and (B2). Clearly, (B1) is trivial. To prove (B2), we let $B_1, B_2 \in \underline{B}(G)$ and $b \in B_1$. If $b \in B_1 \cap B_2$, then we put b' = b, and (B2) is true. Suppose that $b \in B_1 \cap B_2$. Obviously, $B_2 \cap B_1$ is not empty. Since B_1 is C-stable, we have $N(b) \cap (B_2 \cap B_1) \neq \emptyset$, for every $b \in B_1 \cap B_2$. Moreover, $|N(b) \cap (B_2 \cap B_1)| = 1$. If it were not so, the induced subgraph $G[\bar{N}(b)]$ would not be a clique, and $B_1 \notin B(G)$, in contradiction with the assumption. Let $N(b) \cap (B_2 \cap B_1) = \{b'\}$. In a similar way, we obtain $N(b') \cap (B_1 \cap B_2) = \{b\}$, for $b' \in B_2 \cap B_1$. Hence, there exists a bijection $\{ : (B_1 \cap B_2) \rightarrow (B_2 \cap B_1) , \text{ such } \}$

that $(B_1 \setminus \{b\}) \cup \{\{(b)\}\}$ is C-stable, i.e., it is an element of $\underline{B}(G)$. Thus, $M_G = (V(G), \underline{B}(G))$ is a matroid.

From the above and from the properties of the matroids, it is easy to verify the facts described in the next theorem.

THEOREM 3. If G is a middle graph and M_G is its matroid, then:

- (a) The rank $r(M_G)$ of M_G is equal to the stability number q(G) of G.
- (b) If S is a stable set and $|S| = \alpha(G)$, then $S \in B(G)$.
- (c) The hypergraph H is uniquely determined up to an isomorphism by its middle graph M(H). ▲

It is a reasonable question to ask whether a given matroid \mathbf{M}_G is the circuit matroid of some multigraph. In other words, whether there exists a multigraph G', such that \mathbf{M}_G is isomorphic to the circuit matroid corresponding to G'. The answer to this question is obtained in the next theorem. Moreover, we give the construction of a such multigraph.

Suppose that we are given the middle graph G = M(H) of a hypergraph H and the matroid $M_G = (V(G), B(G))$, with the rank function h, and let $A = U_{B \in B(G)} B$. Obviously, $A \subseteq V(G)$ and A does not contain the loops of M_G . Note that the set A contains only those elements of G, which correspond to the vertices and loops of H (if it were not so, the collection B(G) would not satisfy (B2)). These facts imply that the matroid M_G does not have a circuit of size greater than two. We define, on the set A, a relation R, in the following way:

$$xRy$$
 if and only if $r(\{x,y\}) = 1$. (1)

Note that x and y form a pair of parallel elements of M_G . The above considerations give the following

LEMMA. The relation R, defined above, is an equivalence relation on the set A. The matroid M_G does not contain circuits of size greater than two. \blacktriangle

THEOREM'4. Suppose that we are given a matroid M_C = $(V(G), \underline{B}(G))$ where G is a middlegraph. Then, there exists a connected multigraph G', such that M_G is isomorphic to the circuit matroid corresponding to G'.

Proof. Let $A = U_{B \in \mathcal{B}(G)} B$ and let R be the relation defined by (1). Let us denote by $A - R = \{A_1, \dots, A_b\}$ the factor set of A, with respect to R. Now, with every set A, let us associate a multigraph G_i , with two vertices and $|A_i|$ parallel edges, joining these vertices. Let H_1 be a multigraph with one vertex and $|V(G) \setminus A|$ loops. By the above and by lemma, it is easy to see that the circuit matroid of the multigraph $G' = (\bigoplus_{k=1}^{n} G_{i}) \bigoplus_{k=1}^{n} H_{1}$, where the operation " \bigoplus " is a direct sum operation, i.e., it is a multigraph obtained by the coalescence of a vertex of G_1 with a vertex of G_2 and then of a vertex of $G_1 \oplus G_2$ with a vertex of G_3 and so on, satisfies the required isomorphism. Note that the size of the collection $\underline{B}(G)$ is equal to $\prod_{i=1}^{R} |A_{i}|$.

REFERENCES

- [1] Akiyama, J., Hamada, T. and Yoshimura, I., On characterization of the middle graphs, TRU Mathematics 11 (1975), 35-39.
- [2] Berge, C., Graphes et Hypergraphes, Dunod, Paris, 1970.
- [3] Bondy, J.A. and Murty, U.S.R., Graph Theory with Applications, Macmillan Press, New York, 1976.
 [4] Hamada, T. and Yoshimura, I., Traversability and connectivity
- tivity of the middle graph of a graph, Discrete
 Math. 14 (1976), 247-256.
 [5] Welsh, D.J.A., Matroid Theory, Academic Press, London-
- New York, 1976.

Str. Pasului 3, Sect. 2, 70241-Bucharest, Romania.

(Recibido en enero de 1989)