Revista Colombiana de Matemáticas Vol. XXIV (1990), págs. 115-123

LAGRANGE INTERPOLATION AND ENTIRE FUNCTIONS

bу

Radwan AL-JARRAH and Kamel AL-KHALED

Abstract. For a function \mathfrak{f} defined almost everywhere on \mathbb{R} . Let $\{L_{n}(\mathfrak{f})\}$ be the sequence of Lagrange interpolation polynomials that approximates \mathfrak{f} , where the nodes are taken to be the zeros of a certain sequence of orthogonal polynomials. In this paper, we will give a condition on the decay of the error term $|\mathfrak{f}-L_{n}(\mathfrak{f})|$, which makes \mathfrak{f} the restriction on \mathbb{R} of an entire function of order one and finite type. In the case of the Hermite polynomials an estimate on the type is given.

§1. Introduction. A nondecreasing bounded function α on $I\!\!R$ is called *m*-distribution if it takes infinitely many values and all integrals

$$\int_{\mathbf{R}} x^n d\alpha(x), \qquad n = 0, 1, 2, \dots$$

converge; α generates a Lebesgue-Stieltjes measure which we shall briefly call the m-distribution d α .

For any m-distribution $d\alpha$ there exist a unique sequence of orthonormal polynomials $\{p_n(d\alpha;x)\}$ (see [4, Sect. I.1]) with the properties:

- a) $p_n(d\alpha; x) = \gamma_n x^n + ... + \gamma_0$ is a polynomial of degree n and $\gamma_n > 0$.
- b) $\int_{\mathbf{R}}^{n} p_{n}(d\alpha; x) p_{m}(d\alpha; x) d\alpha(x) = \delta_{nm}$, the Kronecker symbol.

The zeros $x_{kn}(k = 0,1,...,n)$ of $p_n(d\alpha;x)$ are real, and simple.

We shall assume, as usual, that $x_{1n} > x_{2n} > ... > x_{nn}$. If, in addition, $d\alpha$ is an absolutely continuous m-distribution, then $d\alpha(x) = \alpha'(x) dx$ and $\alpha'(x)$ is a weight function. In this case $\alpha'(x)$ will be denoted by $\omega(x)$ and $p_n(d\alpha)$ by $p_n(\omega)$.

For a given function f the Lagrange interpolation polynomial $L_n(f,x)$ corresponding to the m-distribution $d\alpha$ is defined to be the unique algebraic polynomial of degree at most n-1 which coincide with f at the nodes x_{bn} . Thus

$$L_n(\xi,x) = \sum_{k=1}^n \xi(x_{kn}) \ell_{kn}(x)$$

where $\ell_{kn}(x)$ are the fundamental polynomials of Lagrange interpolation defined by

$$\ell_{kn}(x) = \frac{p_n(d\alpha, x)}{p_n'(d\alpha, x_{kn})(x-x_{kn})}, \quad (k = 1, 2, ..., n).$$

§2. Main result. A weight function $w_Q(x) = \exp(-Q(x))$, $x \in \mathbb{R}$ is said to be in the class V, if Q(x) satisfies the following conditions:

- (i) $Q: \mathbb{R} \to \mathbb{R}$ is an even function in $C^2(0,\infty)$.
- (ii) Q'' is positive and nondecreasing on $(0,\infty)$.

(iii) $1 \le c_1 \le x \frac{Q''(x)}{Q'(x)} \le c_2$, $x \in (0,\infty)$.

For example, weights of the form $\exp(-C|x|^{\alpha})$ where $C = (0,\infty)$ are in the class V if $\alpha \ge 2$.

For $w_Q \in V$, let q_n be the unique positive solution of the equation xQ'(x) = n, i.e.

$$q_nQ'(q_n) = n, \quad n = 1, 2, \dots$$

and define $q_n = q_n q_{n-1} \cdots q_1$.

For a Lebesgue measurable function g on R, we have

$$\|g\|_{p} = \{ \iint_{\mathbb{R}} |g(x)|^{p} dx \}^{1/p}; \text{ if } 1$$

and we say that $g \in L^p(\mathbb{R})$ if and only if $||g||_p$ exists, p > 1. Finally, for $w_Q \in V$, let $\{p_k(x)\}$ be the sequence of orthonormal polynomials generated by the weight function $w_Q^2(x)$, and for $w_Q \in L^p(\mathbb{R}), p > 1$, we consider the Fourier orthonormal expansion

$$\delta(x) \sim \sum_{k=0}^{\infty} b_k p_k(x)$$

where

$$b_k = \int_{\mathbb{R}} \delta(t) p_k(t) w_Q^2(t) dt.$$

We can now formulate our main theorem as follows:

THEOREM 2.1. Suppose that $w_Q \in V$, $w_Q f \in L^2(\mathbb{R})$, and $\lim_{n \to \infty} \sup \| (f - L_n(f)) w_Q \|_2^{1/n} < 1$. Then the function f has an extension on the complex plane f to an entire function of order one and finite type f, where

$$\sigma = \underset{R \to \infty}{\text{Lim}} \sup \frac{\text{Log } M(R)}{R} < \infty$$

and M(R) = $\max_{\substack{|z|=R}} |f(z)|$. Moreover, if $Q(x) = \frac{x^2}{2}$ (the Hermite weight function), then $\sigma < \sqrt{2}$.

§3. Preliminaries. Before we prove our main result, we need the following lemmas.

LEMMA 3.1. There exists a constant C_3 such that for every $\pi_b \in P_b$ we have

$$\| w_{Q} \pi_{k}^{\prime} \|_{2} \le c_{3} (\frac{k}{q_{k}}) \| w_{Q} \pi_{k} \|_{2}$$
 (3.1)

where P_k is the set of all polynomials with real coefficients and degree at most n.

(For $Q(x) = \frac{x^2}{2}$, in which case the π_k 's are the orthonormal Hermite polynomials, one can show by straightforward computation that C_3 can be chosen to be $\sqrt{2}$ (and no less)

Proof. (see [5]).

117

LEMMA 3.2. There exist constans C_4 and C_5 such that for each polynomial $\pi_n = P_n$

$$c_{4}\left(\frac{1}{q_{n}}\right)^{1/p-1/n}\|\omega_{Q^{\pi}n}\|_{p} < \|\omega_{Q^{\pi}n}\|_{r} \leq c_{5}\frac{n}{q_{n}}^{1/p-1/n}\|\omega_{Q^{\pi}n}\|_{p} \tag{3.2}$$

where $1 \le p < r \le \infty$ and $C_4, C_5 > 0$ depend only on Q, p and r. Proof. (see [6]).

LEMMA 3.3. Suppose that $w_Q \in V$, $w_Q f \in L^2(\mathbb{R})$, and $\lim_{\substack{n \to \infty \\ \text{and } \beta}} \sup \left| (f - L_n(f)) w_Q \right|_2^{1/n} < 1$. Then there exist constants C_6 and C_6

$$\sum_{k=n}^{\infty} |b_{k}| \|w_{Q}p_{k}^{(n)}\|_{\infty} < c_{6}c_{3}^{n}\beta^{n}$$

where Cz is as in Lemma 3.1.

Proof.
$$b_k = \int_{\mathbf{R}} \delta(x) p_k(x) w_Q^2(x) dx$$

$$= \int_{\mathbf{R}} (\delta(x) - L_n(\delta, x) + L_n(\delta, x)) p_k(x) w_Q^2(x) dx$$

$$= \int_{\mathbf{R}} (\delta(x) - L_n(\delta, x)) p_k(x) w_Q^2(x) dx + \int_{\mathbf{R}} L_n(\delta, x) p_k(x) w_Q^2(x) dx,$$

but, by orthogonality,

$$\int_{\mathbb{R}} L_n(f,x) p_k(x) w_Q^2(x) dx = 0 \quad \text{for } k > n;$$

hence

$$b_k = \int_{\mathbb{R}} (f(x) - L_n(f, x)) p_k(x) w_Q^2(x) dx.$$

By applying the Cauchy-Schwartz inequality, we get

$$|b_{k}| = |\int_{\mathbb{R}} (f(x) - L_{n}(f, x)) w_{Q}(x) p_{k}(x) w_{Q}(x) dx|$$

$$\leq \{\int_{\mathbb{R}} (f(x) - L_{n}(f, x))^{2} w_{Q}^{2}(x) dx\}^{\frac{1}{2}} \{\int_{\mathbb{R}} p_{k}^{2}(x) w_{Q}^{2}(x) dx\}^{\frac{1}{2}},$$

but, by orthogonality, and a seaso doldwar at a = (x) 9 Tol)

$$\left\{\int_{\mathbf{R}} p_k^2(x) w_Q^2(x) dx\right\}^{\frac{1}{2}} = 1$$

hence

$$|b_{k}| \leq \left\{ \int_{\mathbb{R}} (f(x) - L_{n}(f, x))^{2} \omega_{Q}^{2}(x) dx \right\}^{\frac{1}{2}}$$

$$= \| (f - L_{n}(f)) \omega_{Q} \|_{2}.$$

Therefore

$$|b_k|^2 \le \|(6-L_n(6))w_0\|_2^2$$
 (3.3)

From our assumption

$$\lim_{n\to\infty} \sup \| (f - L_n(f)) w_Q \|_2^{1/n} < 1$$

it follows that there exists a constant $\beta \in (0,1)$ such that for sufficiently large n (n > N, say) we have

$$\|(\delta - L_n(\delta))w_Q\|_2^{1/n} < \beta$$

or

$$\|(\delta - L_n(\delta))w_Q\|_2^2 < \beta^{2n}. \tag{3.4}$$

By combining (3.3) and (3.4), we conclude that

$$|b_b| < \beta^n \text{ for all } k \geqslant n \geqslant N.$$
 (3.5)

Now taking p = 2 and $n = \infty$ in (3.2) with π_n replaced by $p_k^{(n)} \in P_{n-k}$ we obtain

$$\sum_{k=n}^{\infty} |b_k| \|w_{\mathcal{Q}} p_k^{(n)}\|_{\infty} < C_5 \sum_{k=n}^{\infty} |b_k| \left(\frac{k-n}{q_{k-n}}\right)^{\frac{1}{2}} \|w_{\mathcal{Q}} p_k^{(n)}\|_2.$$
 (3.6)

By repeated application of (3.1), we obtain

$$\begin{split} \|w_{Q}p_{k}^{(n)}\|_{2} & \leq c_{3}(\frac{k-n+1}{q_{k-n+1}}) \|w_{Q}p_{k}^{(n-1)}\|_{2} \\ & \leq c_{3}^{2}(\frac{k-n+1}{q_{k-n+1}}) \left(\frac{k-n+2}{q_{k-n+2}}\right) \|w_{Q}p_{k}^{(n-2)}\|_{2} \\ & \vdots \\ & \leq c_{3}^{n}(\frac{k-n+1}{q_{k-n+1}}) \left(\frac{k-n+2}{q_{k-n+2}}\right) \dots \left(\frac{k}{q_{k}}\right) \frac{(k-1)!}{|q_{k-1}|} \frac{|q_{k-1}|}{(k-1)!} \|w_{Q}p_{k}^{(0)}\|_{2} \end{split}$$

$$\leqslant c_3^n \frac{(k-n+1)!}{[q_{k-n+1}]!} \frac{[q_{k-1}]}{(k-1)!},$$

hence

$$\|w_{Q}p_{k}^{(n)}\|_{2} \leq c_{3}^{n} \frac{(k-n+1)!}{|q_{k-n+1}|} \frac{|q_{k-1}|}{(k-1)!}.$$
 (3.7)

From (3.6), (3.7) and (3.5) we conclude that

$$\sum_{k=n}^{\infty} |b_{k}| \|w_{Q} p_{k}^{(n)}\|_{\infty} \leq C_{5} \sum_{k=n}^{\infty} |b_{k}| \left(\frac{k-n}{q_{k-n}}\right)^{\frac{1}{2}} C_{3}^{n} \frac{(k-n+1)!}{\frac{q_{k-n+1}}{q_{k-n+1}}} \frac{|q_{k-1}|}{(k-1)!}$$

$$\leq C_{5} \sum_{k=n}^{\infty} \beta^{k} \left(\frac{k-n}{q_{k-n}}\right)^{\frac{1}{2}} \frac{(k-n+1)!}{\frac{q_{k-n+1}}{q_{k-n+1}}} \frac{|q_{k-1}|}{(k-1)!} C_{3}^{n}.$$

Letting k' = k-n, we get

$$\begin{split} \sum_{k=n}^{\infty} \|b_{k}\| \|w_{Q}p_{k}^{(n)}\|_{\infty} &\leq C_{5}C_{3}^{n} \sum_{k'=0}^{\infty} \beta^{k'+n} \left(\frac{k'}{q_{k'}}\right)^{\frac{1}{2}} \cdot \frac{(k'+1)!}{\left\lfloor \frac{q_{k'+1}}{k'+1} \right\rfloor} \frac{\lfloor \frac{q_{k'+n-1}}{(k'+n-1)!}}{(k'+n-1)!} \\ &\leq C_{5}C_{3}^{n} \beta^{n} \sum_{k=0}^{\infty} \beta^{k} \left(\frac{k}{q_{k}}\right)^{\frac{1}{2}} \cdot \frac{(k+1)!}{\left\lfloor \frac{q_{k+1}}{k+1} \right\rfloor} \frac{\lfloor \frac{q_{k'+n-1}}{(k'+n-1)!}}{(k'+n-1)!} \end{split}.$$

The proof of the Lemma will be complete if we show that

$$\sum_{k=0}^{\infty} \beta^{k} \left(\frac{k}{q_{k}}\right)^{\frac{1}{2}} \frac{(k+1)!}{\lfloor q_{k+1} \rfloor} \frac{\lfloor q_{k+n-1} \rfloor}{(k+n-1)!}$$

is a convergent series. But this can be easily seen by the ratio test, since

$$\lim_{k \to \infty} \left| \frac{\beta^{k+1}}{\beta^k} \left(\frac{k+1}{k} \right)^{\frac{1}{2}} \left(\frac{q_k}{q_{k+1}} \right)^{\frac{1}{2}} \frac{(k+2)!}{(k+1)!} \frac{|q_{k+1}|}{|q_{k+2}|} \frac{|q_{k+n}|}{|q_{k+n-1}|} \frac{(k+n-1)!}{(k+n)!} | = \beta < 1.$$

Therefore

$$\sum_{k=n}^{\infty} \|b_{k}\| \|w_{Q}p_{k}^{(n)}\|_{\infty} \leq c_{6}c_{3}^{n}\beta^{n}.$$

which complets the proof.

We are ready now to prove our main result.

§ 4. Proof of Theorem 2.1. Let S be a compact subset of \mathbb{C} , and take $z \in S$. Then there exists a constant k such that

$$\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=n}^{\infty} |b_{k}| |p_{k}^{(n)}(0)| |z|^{n} \leq \sum_{n=0}^{\infty} \frac{k^{n}}{n!} \sum_{k=n}^{\infty} |b_{k}| |p_{k}^{(n)}(0)|.$$

$$= w_{Q}^{-1}(0) \sum_{n=0}^{\infty} \frac{k^{n}}{n!} \sum_{k=n}^{\infty} |b_{k}| |p_{k}^{(n)}(0)w_{Q}(0)|.$$

$$\leq w_{Q}^{-1}(0) \sum_{n=0}^{\infty} \frac{k^{n}}{n!} \sum_{k=n}^{\infty} |b_{k}| ||p_{k}^{(n)}w_{Q}||_{\infty}$$

$$\leq w_{Q}^{-1}(0) C_{6} \sum_{n=0}^{\infty} \frac{k^{n}}{n!} C_{3}^{n} \beta^{n}, \text{ (Lemma 3.3)}$$

$$\leq C_{7} \sum_{n=0}^{\infty} \frac{c_{8}^{n}}{n!} < \infty,$$

where C_7 and C_8 are positive constants. Therefore the series

$$\sum_{n=0}^{\infty} \frac{1}{n!} |b_{k}| |p_{k}^{(n)}(0)| |z|^{n}$$

converges uniformly in z on compact subsets of the complex plane C. Hence we can interchange the order of summation to get

$$\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=n}^{\infty} b_k p_k^{(n)}(0) z^n = \sum_{k=0}^{\infty} b_k \sum_{n=0}^{\infty} \frac{1}{n!} p_k^{(n)}(0) z^n = \sum_{k=0}^{\infty} b_k p_k(z).$$

Thus the series

$$\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=n}^{\infty} b_k p_k^{(n)}(0) z^n$$

converges uniformly on compact subsets of \mathbb{C} to an entire function, say g(z).

It follows that the restriction of g to the real line is almost everywhere equal to f. Further, for g we have the power series.

$$g(z) = \sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\sum_{k=n}^{\infty} b_k p_k^{(n)}(0) \right] z^n.$$

Hence

$$a_n = \frac{1}{n!} \sum_{k=n}^{\infty} b_k p_k^{(n)}(0),$$

and by using Lemma (3.3) we get

$$n! |a_n| \le w_Q^{-1}(0) c_6 c_3^n \beta^n$$
.

But, $g^{(n)}(0) = n!a_n$, therefore

$$\lim_{n \to \infty} \sup |g^{(n)}(0)|^{1/n} = \lim_{n \to \infty} \sup \{n! |a_n|\}^{1/n}$$

$$\leq c_3 \beta < c_3 < \infty,$$

which shows (see [3], formula 2.2.12) that g is of order one and type σ where

$$\sigma = \lim_{n \to \infty} \sup \{n! |a_n|\}^{1/n} < c_3 < \infty.$$

Finally, from Lemma 3.1, we have $C_3 = \sqrt{2}$ when $Q(x) = \frac{x^2}{2}$, and this completes the proof of the theorem.

Corollary. Suppose that $w_Q \in V$, $w_Q f \in L^2(\mathbb{R})$, and $\lim_{n \to \infty} \sup_{n \to \infty} |f(x) - L_n(f,x)|^{1/n} < 1$, uniformly on \mathbb{R} . Then the function f has an extension on \mathbb{C} to an entire function of order one and finite type σ , where σ is as in Theorem 2.1.

Proof. Since $\lim_{n\to\infty}\sup|f(x)-L_n(f,x)|^{1/n}<1$, then there exists a constant $\beta\in(0,1)$ such that for all n sufficiently large $(n\gg N, \text{say})$ we have

$$|\delta(x) - L_n(\delta, x)|^2 < \beta^{2n} \text{ for all } x \in \mathbb{R}.$$
 (3.8)

Since

$$\|(\delta - L_n(\delta))w_Q\|_2^2 = \int_{\mathbb{R}} (\delta(x) - L_n(\delta, x))^2 w_Q^2(x) dx$$

then it follows, by using (3.8), that

$$\lim_{n\to\infty}\sup \|(\mathfrak{f}^{-L}_n(\mathfrak{f}))\omega_{\mathbb{Q}}\|_2^{1/n}\leqslant \lim_{n\to\infty}\sup \{\beta^n(\int\limits_{\mathbb{R}}\omega_{\mathbb{Q}}^2(x)\,dx)^{\frac{1}{2}}\}^{1/n}<\beta<1.$$

The corollay follows now from Theorem 2.1.

Acknowledgement. The authors would like to thank the referee for noting that Theorem 2.1 and its corollary remain valid for exponential weights of the form $\exp(-|x|^{\alpha})$, $1 < \alpha < 2$, by using a more recent work on Markov-Bernstein inequalities and Nikolskii inequalities. We also hope to go back to this work soon and try to include a larger class of weights.

REFERENCES

- [1] Al-Jarrah, R., An Error Estimate for Gauss-Jacobi Quadrature formula with Hermite weight $w(x) = \exp(-x^2)$,
 Publ. Inst. Math. (Beograd) 33(47)(1983), 17-22.
- Publ. Inst. Math. (Beograd) 33(47)(1983), 17-22.

 [2] Al-Jarrah, R., On the Lagrange interpolation polynomials of Entire Functions, J. Approx. Theory 41(1984), pp. 170-178.
- [3] Boas, R.P., Entire Functions, Academic Press, New York, 1954.
- [4] Freud, G., Orthogonal Polynomials, Oxford: Pergamon, 1971.
 [5] Freud, G., On Markov-Bernstein-Type Inequalities and
- [5] Freud, G., On Markov-Bernstein-Type Inequalities and Their Applications, J. Approx. Theory, 19 (1977), pp. 22-37.
- [6] Mhaskar, H.N., Weighted Polynomial Approximation of Entire Functions, J. Approx. Theory, 35 (1982), pp. 203-213.
- [7] Szegö, G., Ortohogonal Polynomials, 2nd ed. Amer. Math. Soc. Providence, R.I., 1959.

Department of Mathematics Yarmouk University Irbid, Jordan

(Recibido en Febrero de 1989; versión final en Febrero de 1990)