Revista Colombiana de Matemáticas Vol. XXIV (1990), págs. 125-128

TOTAL COMPACTNESS OF A-INDUCTIVE PARTIALLY ORDERED SETS

by

Alexander ABIAN and Paula A. KEMP

A poset (i.e., partially ordered set) P is called A-inductive iff every nonempty well ordered subset W of P has a supremum (i.e., least upper bound) which need not be an element of W.

In this paper we prove the following Total Compactness Theorem of A-inductive posets:

THEOREM 1. Let P be an A-inductive poset and S be a subset of P such that the supremum of every nonempty finite subset F of S exists in P (sup F need not be an element of S.) Then the supremum of every nonempty subset of S exists in P.

Clearly, letting S = P in Theorem 1, we immediately obtain the following Compactness Theorem of A-inductive posets:

THEOREM 2. Let P be a nonempty A-inductive poset such that the supremum of every nonempty finite subset of P exists (in P). Then the supremum of P exists of every nonempty subset of P exists (in P)).

¹⁹⁸⁰ Mathematics Subject Classification. Primary 06A10.

Revista Colombiana de Matemblicas

The proof of Theorem 1 is based on the following Lemmas. We recall that a subset \mathcal{D} of a poset \mathcal{P} is called *directed* iff every finite subset of \mathcal{D} has an upper bound which is an element of \mathcal{D} . Obviously, \mathcal{D} is never empty

LEMMA 1. Let H_r be an infinite subset of a directed set (D, \leq) such that

$$\bar{\bar{H}}_{h} \leqslant \bar{\bar{D}}^{(1)}$$

Then there exists a subset $\mathbf{E_r}$ of \mathbf{D} such that

$$H_{\eta} \subseteq E_{\eta}$$
 and $\bar{H}_{\eta} = \bar{E}_{\eta}$ and (E_{η}, \leqslant) is directed (2)

Proof. If (H_{Λ}, \leqslant) is a directed set then we choose $E_{\Lambda} = H_{\Lambda}$. Otherwise, let H_{0} be an extension (superset) of H_{Λ} which is obtained by supplying at most one upper bound for each finite subset of H_{Λ} that does not have an upper bound in H_{Λ} . Since the set of all finite subsets of an infinite set is obviously of the cardinality of the set, we see that $\overline{H}_{\Lambda} = \overline{H}_{0}$. Now, if (H_{0}, \leqslant) is a directed set then we choose $E_{\Lambda} = H_{0}$. Otherwise, we let H_{1} be an extension of H_{0} the way H_{0} is an extension of H_{Λ} . Clearly, again $\overline{H}_{\Lambda} = \overline{H}_{0} = \overline{H}_{1}$ and again if (H_{1}, \leqslant) is a directed set then we choose $E_{\Lambda} = H_{1}$. Otherwise we continue the process obtaining successive extensions H_{Λ} for every positive integer Λ . Oviously, $\overline{H}_{\Lambda} = \overline{H}_{\Lambda}$ for every Λ . Moreover, it can be readily verified that (E_{Λ}, \leqslant) is a directed set where E_{Λ} is given by

$$E_{r} = H_{r} \cup H_{o} \cup H_{1} \cup H_{2} \cup \ldots \cup H_{n} \cup \ldots$$
 (3)

From (3) it follows that E_h is a countable union of infinite sets each of cardianlity \overline{H}_h . Consequently, $\overline{H}_h = \overline{E}_h$ and since $H_h \subseteq E_h$ by (3), we see that E_h satisfies (2), as desired. \blacktriangle

In connection with Lemma 1, we call E_n "a directed closure" of H_n . Thus,

 E_n is a directed closure of H_n where $\omega \leqslant \overline{H}_n = \overline{\overline{E}}_n$ (4)

LEMMA 2. Let D be a directed subset of an A-inductive poset P. Then D has a supremum in P (which need not be an element of D).

Proof. If $\mathcal D$ is finite then the upper bound of $\mathcal D$ is the supremum of $\mathcal D$. Next, let $\mathcal D$ be countably infinite, i.e., $\mathcal D=(d_{\dot{\mathcal L}})_{\dot{\mathcal L}<\omega}$. Let $d_{\dot{\mathcal L}(0)}=d_0$ and for every $n\in\omega$ let $d_{\dot{\mathcal L}(n+1)}$ be the upper bound of $\{d_{\dot{\mathcal L}(n)},d_{n+1}\}$ of the smallest index $\dot{\mathcal L}(n+1)$. Clearly, $\dot{\mathcal L}(n)=(d_{\dot{\mathcal L}(n)})_{n\in\omega}$ is a nonempty well ordered subset and clearly, sup $\dot{\mathcal L}(n)=0$. Finally, let us assume to the contrary and let

$$\mathcal{D} = (d_{\dot{\mathcal{L}}})_{\dot{\mathcal{L}} < \omega_{\dot{\mathcal{U}}}} \quad \text{with} \quad \bar{\bar{\mathcal{D}}} = \omega_{\dot{\mathcal{U}}}$$
 (5)

be a directed subset of P of the smallest uncountable cardinality ω_{u} such that sup $\mathcal D$ does not exist. For every ordinal k with $\omega \leqslant k \leqslant \omega_{u}$, we define by induction a directed subset E_{h} of $\mathcal D = (d_{\dot{\ell}})_{\dot{\ell} \leqslant \omega_{u}}$ as follows:

$$E_{\omega}$$
 is a directed closure of $H_{\omega} = \{d_{\dot{i}} | i < \omega\}$ (6)

$$E_{r+1}$$
 is a directed closure of $E_r \cup \{d_t\}$ where d_t (7)

is the element of the smallest index t of D-E $_{h}$

$$E_r = \bigvee_{k < r} E_k \quad \text{if} \quad r < \omega_u \quad \text{is a limit ordinal.} \tag{8}$$

From (4), (5), (6), (7), (8) it follows that

$$(E_r)_{\omega \leqslant r < \omega_u}$$
 is a well ordered by \subseteq sequence of (9)

directed subsets E_r of D

and

$$\bigcup_{\omega < h < \omega} E_h = 0 \tag{10}$$

Finally we give:

Proof of Theorem 1. Let H be a nonempty subset of S. Clearly, H and the sups of all the nonempty finite subsets of H form a directed subset of P. But then the conclusion of Theorem 1 follows from the conclusion of Lemma 2.

REMARK. If the partial order P in Theorem 1 is a partial order with respect to the set-theoretical inclusion ⊆, where the supreum of a subset S of P is the sumset U S of S, then the result of Lemma 2 and hence, Theorem 1 can be proved as suggested in Exercise 3.1.10 of [1,p.121]. However, the relevance of the latter dependes on the additional fact that every partially ordered set is isomorphic to a partially ordered set with respect to ⊆ where supremums correspond to unions (we made no use of this fact in our proofs).

REFERENCE

[1] Chang, C.C. and Keîsler, H.J., Model Theoy, North Ho-

Department of Mathematics Iowa State University Ames, Iowa 50011, USA. Department of Mathematics Southwest Missouri State University Springfield, Missouri 65804 USA

(Recibido en octubre de 1988, la versión revisada en noviembre de 1989).