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CURVES AND LATTICES OF POINTS IN THE MINKOWSKI
PLANE

by

Carla PERI

A B ST RAe T. The main goal of this work is to derive an inte-
gral formula refering to bounded convex sets (section 3), in
order to obtain some results involving lattices of points in the
Minkowski plane (seccion 4). To prove such a formula it is
necessary to develop some tools of differential geometry in
the large. This is done in section 2, where the turning tan-
gents theorem for Euclidean curves is carried over to
Minkowski plane.

§1 Preliminares. Let C be a closed convex curve, called indica-
tr ix, enclosing the origin 0 of the Euclidean plane IR2 as interior
point. There will be assumed throughout that C is "sufficiently"
differentiable and has positive finite curvature everywhere.

Let v be a vector of the plane and let Iv I be the Euclidean
length of v. Then the Minkowski length of v is defined to be

Iv I
IIvll: = IOAI ' (1)

where A EC a nd the vector 0 A is parallel to v , as oriented
vectors. The plane IR2 equipped with the length (1) shall be
referred to as the Minkowski plane. If C is a O-symmetric curve,
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i.e. Ilvll = II-vii for every VE IR2, then the plane will be called the
symmetric Minkowski plane.

Let T be the polar reciprocal of C, with respect to the Eu-
clidean unit circle, rotated througth -rt/2. The curve T is a con-
vex closed curve called isoperimetrix as it solves the isoperimet-
ric problem [3].

Following Guggenheimer [3], there will be denoted by C a
vector from 0 to a point on C and by T ( C) the vector from 0 to a
point on T, such that [T ( C) , C] = 1, where [ , ] denotes the deter-
minant.

Let x = x(t) be the equation of a curve r of class C 2. There will
be assumed throughout that all the curves to be considered are
regular, i.e, dx ldt is nowhere O. Then the Minkowski arc length
of r is the new parameter a defined up to an additive constant by

IIdx/d<111= 1.

From now on we shall denote differentiation with respect to a by
a dot.

Let us assume that the curve r is parametrized by the Min-
kowski arc length a. Denoting the vector x' (a) by t( a) and the
vector T (i (a» by n (a), we have the following formulas [3]:

dt(a) = -h n (a), dn(a) = kt(a).
da da

(2)

Following Biberstein [1], we shall call h the curvature of rand k
the anticurvature of r.

Let us denote by a the Minkowski arc length of T and by rt the
area enclosed by T. Then 0 s a s 2rt, [3]. We parametrize T with
the positive orientation by means of Minkowskian arclength a.
Then the vectors C and T (C) are uniquely determined by the
corresponding value of a, once we have fixed a zero direction,
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and will be denoted by C (a) and T( a). Two couples of vectors
(T(a),C(a)) and (T(~),C(~)) are related by [3]:

( T(~)) = (e m (~,a)

C(~) - sm (u.B)

st(a,~) ) (T(a)).

em (a,~) C(a)
(3)

As to the Minkowskian trigonometric function sm(a,~), st(a,~),
em(a,~), introduced by Guggenheimer in [3], we have the follow-
ing relations:

{

s t( ~,a) = -st (a, ~)

sm (~,a) = -sm (a,~)

em (o B) em (B,«) + sm (u.B) s t (a,~) = 1 ,

(4)

d em(a,O)

da
d em(O,a)

da
d st(O,a)

da
d sm (O,a)

da

= -sm(O,a)

= - X st(O,a)
(5)

= em (O,«)

= xcm(a,O),

where X is the unimodular centro-affine curvature of T to the
centre 0. Such Minkowskian trigonometric functions can be ex-
tended to every real value a and ~, so that they become doubly
periodic functions in a and ~ with period 21t.

§2. Guggenheimer has shown in [3] that the isoperimetrix plays
a fundamental role in the Minkowski geometry.
In this section we shall use the isoperimetrix, instead of the unit
circle, as carrier of a mapping which takes the place of the tan-
gential mapping. Then, by using elementary geometrical argu-
ments, we shall prove a statement which is the natural equiva-
lent of the turning tangents theorem for the Euclidean curves.

1 9



PERI

Let I' be an oriented curve of class ~ 2 with Minkowskian
length L, defined by the function x( 0) relative to the Minkowski
arc length o . We shall say that r is positively oriented if it is ori-
ented according to the isoperimetrix T. Let us consider the
mapping ~: r ~ T which carries the point PEr to the endpoint of
the vector n (0) = T (t (0)), where t ( 0) is the unit tangent vector
to r at P. Let a (0) be the Minkowskian arc length of the point
~(P) E T. The map ~ is a continous mapping, whereas the func-
tion o.(o ) is not continous. However the following Lemma shows
that there ex ists a continous function closely related to a (0) .

LEMMA 1. There exists a differentiable function a(o) such
that a(o)=a(o) mod 2n,for every OE [D,L].

We omit the proof which does not differ essentially from that
of the Euclidean case [2].

REMARK 1. The difference a(L) - a(D) is independent of the
choice of a. In fact, if ex(0) is a function satisfying the require-
ments of Lemma 1, then a( 0) - a(o) = n(0)2n. Since nto ) is a
continous integer valued function, then it must be a constant.
Therefore a(L) - a(D) = a(L) - a(D).

PROPOSITION 1. Let r be a curve of class t: 2 wit h
anticurvature k(cr), relative to the Minkowski arc length 0.

Then k(o) = da(o)/do.
Proof. By using the formulas (3), where a = D and ~ = a(o), we get

t (0) = (- sm(D, a(o)), cm(D, a(o))),

n (0) = (c m(a(o), D), st(D, a(o))).

Therefore, from (5) we obtain

dn (0) = d':. d ex= d a (-sm(D, a(o)), cm(D, a(o))) = d at.
do d exdo do do
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On the other hand, formulae (2) give dn ldo = k(o)t, so that k(o) =
dO. / do as required.

We shall now consider a more general class of curves. Let I' be
a curve of Minkowskian length L, defined by the function x (0 )

relative to the Minkowski arc length o . Let us assume that the
interval [O,L] is divided into subintervals by points ° = a 0 < a 1 <..<
am =L such that x(o) is of class C 2 on each interval [ai, au. 1],

with i = 0,1..., m -1. The points of I' corresponding to 0 = a i will be
referred to as corne r s.
Let us consider the set ~ defined by:

with i = 1, ... ,m-l}.

Let <l>: ~ ~ T be the map which carries the point (01, (2) to the
endpoint of the vector

T([x (02) - x (01)] / IIx (02) - i (<11)11) or T (x' (<11)),

according as Opt02 or 01 =02. Moreover, let us consider the
function a (0 1, (2) which is defined to be the Minkowski arc
length of <l> (01) 0 2)E T. It is clear that <l> is a continuous map,
whereas a (01, o 2) is not a continuouos function. There exists
nevertheless a continuous function closely related to a (01) 02), as
given by the following Lemma.

LEMMA 2. There exists a continuous function 0.(01'02) such
that a(op (2) ~ a(o" (2) mod 2TI,for every (Op02)E~.

We omit the proof since it differs slightly from that given by
Chern in the Euclidean case [2].

In addition, we now assume that r is an oriented simple closed
curve. We associate to the i-th comer of I' a couple of vectors as
follows:

tt:= lim i (a), tj-:= lim i (a)
O~ at (J~ aj-

2 1
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Where lima-HIo-x'(o) and lima~a;;, i(o) are interpreted as
lima~am i (0) and lima~ao i (0) respectively.

+ + -
Th~n we denote the vector :r:( t;) ~y n; and the vector T ( t i)

by n; Let us assume that n i i:- n i . Such a couple of vectors
divides the region enclosed by T into two sectors centred at O.
Let n; be the sector relative to the arc described from the
endpoint of n; to the endpoint of n ~, according to the
orientation of r. Let us denote twice the area of n; by 100;1. Then
we may define what we mean by the "exterior angle" of r at the
i-th corner.

DEFINITION 1. The exterior angle of r at the i-th comer is
defined to be co; = +1 00;1 or 00; = -I w;1 according as r is positively
or negatively oriented. Moreover, in the case where n ~ = n ~ we

1 1

shall take 00; = O.

We can now define the "rotation number" of a curve r.

DEFINITION 2. Let <l;(o) be the function defined in the
Lemma 1, relative to the interval [ai, ai+tl, with i = 0, ... , m-l.
Then the rotation number of r is defined to be

lm - 1 [ ] m - 1 )nr: =_1_ L ai(ai + I) - ai(ai) + L OOi.
21t . 0 . 01 = 1 =

(6)

PROPOSITION 2. The rotation number of an oriented closed
curve I", consisting of a finite number of t 2 arcs, is an integer.
Moreover

n .
f'

1 (m-l aj+1 m_l)
= 21t ~ f k (0) do + ~ OJ i

1=0 aj 1=0 ,

(7)
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whe re k( 0') is the anticurvature of r.
Proof. The rotation number nr may be rewritten as

nr: = _1 lmr, 1 [aj _I(aj) - aj(aj) + Wj]).
21t . 0

I =
where a_l(O'O) is interpreted as am-l(am). Since aj_l(aj) - aj(aj)= Wj mod 21t. there follows that nr is an integer. By remark 1. nr
is also independent of the choice of a. Finally. formula (7)
follows from Proposition 1.

Now we shall prove a result analogous to the turning tan-
gents theorem for Euclidean curves.

THEOREM 1. Let F be an oriented simple closed curve, con-
sisting of a finite number of c2 arcs. Then nr = ±l .
Proof. Let r be a straight line which cuts r and let PEr 11 r be a
point such that an half-line of r with endpoint P has no other
points in common with r. Let us denote the unit vector parallel
to such an half-line by C P : Since r has a finite number of
comers we may assume that P is not a comer. Moreover. let us
assume that r is defined by the function x (0'), relative to the
Minkowski arc length 0' counted from P.

Let 0 = ao < a1 < .. < am = L be a partition of the interval [0, L],
where L is the Minkowski length of r, such that x (0') is of class
C 2 on each segment.
Let us consider a function a( 0' l' 0' 2) satisfying the requirements
of Lemma 2. Since a(0'1' 0'2) is determined up to an integral mul-
tiple of 2n. we can assume that 0 ~ a(O, L) s 21t.

i) We will first prove that

a(L,L) - a(O. 0) = ± 21t.

Let ~(O') = n(o , L) - a(O. L). with 0' E [0. L]. Since the vector x(L)
- x(O') can never be parallel to -C p and since ~(O) = O. we have -
21t < ~(O') < 2n. for every O'E [0, L]. Thus, the absolute value I~(L)I
represents twice the area of the sector centred at 0 and
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relative to the arc of T described from <l> (0, L) to <l> (L, L),

according to the orientation of r.

Further, let y(a) - a(O,a) - a(O,O), with o s [O,L]. Since z (o )
- x(O) can never be parallel to C p and since y(O) = 0, we have
-21t < y(a) < 21t for every aE [O,L]. Therefore, the absolute value
ly(L)1 represents twice the area of the sector centred at 0
which is the complement of the sector considered above.
Moreover, the sign of y(L) is the same as that of ~ (L). Thus
a(L,L) - a(O,O) = ~(L) + y(L) = ±2n.

ii) Let us define, for i = 1,2, ... , m-I,

a+(ai, ai) = lim a(a, a),
a ~ at

a-(ai' ai) = lim a(a, a) ..
a ~ a,

We shall prove that

where 0) j is the exterior angle of r at the i -th corner.

Let us consider the points of r corresponding to the values
aj-f,aj,aj +f, where we choose E > 0 so small that aj-Ie [aj -E,

aj] and ai+le [aj .ii, + E] .

For simplicity, we assume that r is positively oriented; if not
an analogous proof will work. Since a( a I' a 2) is a continous
function we may choose E > 0 so that a(aj, aj + E) - a(a, ai + E) <
21t, for aj - E< a < aj. Thus a(aj, aj + E) - a(aj - E, aj + E) repre-
sents twice the area of the sector centred at 0 and relative to
the arc of T described from <l>(aj - E, aj + E) to <l>(aj, aj + E) in the
positive sense. Similary, a(a i - E, a j + E) - a(a i - E, a j )
represents twice the area of the sector centred at 0 and
relative to the arc of T described from <l>(aj - E, aj ) to <l>(aj - E,
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ai + E) in the positive sense. Therefore, a(ai' ai + E) - «(a, - E,
a i) represents twice the area of the sector centred at 0 and
relative to the arc of T described from <I>(ai - E, ai ) to <l>(ai'
ai + E) in the positive sense. M>reover, since a(ai ' ai + E) ~

a+(ai, ai ) and a(ai -E,ai) ~ a_(ai, ai ) as E ~ 0, by Definition
1 we get the' required formula:

iii) Finally, we shall prove that nr = ± 1. By definition 2, not-
ing that 0 = 0 is not a comer of r, we have

{
m - 1[ ] m - 1 \

nr:=_1 L o'i(ai+l) - ai(ai) + L roil'
21t i = 0 i = 0

Since a(o, 0) ~ ai(o) mod 21t, for OE (a], ai+l)' by Remark 1
there follows

{
m - 1[

nr =_1 su; L) - a(O, 0) + L a-(ai,
21t i = 0

\
ai ) + roi] r

Thus, by (i) and (ii) we get

nr =_1 [a(L, L) - a(O, 0)] =± 1,
21t

as required.

Taking proposition 2 into account, this theorem has the im-
mediate.

COR OLLARY. Let be T an oriented simple closed curve, con-
sisting of a finite number of C 2 -arcs. Then

(8)
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§3. We shall first recall some notions and results on integral ge-
ometry in the Minkowski plane, which are developed in [4].

Let r be a curve of class t: 2 with anticurvature k( (J) relative to
the Minkowski arc length 0' and let I" be a curve of the same
class with anticurvature k', We shall say that I" is congruent to
I' if and only if k' = k as functions of their restective
Minkowskian arc length, This notion may be used to obtain a
congruence relation for convex sets. In the following we shall
use, except where explicitly mentioned. the expression "convex
set" to mean "bounded convex set having interior points and a
boundary of class t: 2 ''. Then we shall say that a convex set K' is
con g rue n t to a convex set K if and only if their boundaries are
congruent according to the above definition. As in the Euclidean
case, a class of congruent convex sets will be also referred to as
"moving" convex set.

Let K be a convex set and let aK denote the boundary of K. By
a Biberstein's theorem [1], the convex set K is uniquely deter-
mined into its congruence class by the position of a point P (x, y)

fixed on aK and by the value ex relative to the unit tangent vee-
tror C (ex) to aK at P, Then in order to measure sets of convex sets
congruent to K we can introduce the kinematic density as

dK = dx A dy A d« (9)

Let us consider two convex sets K and KO having areas S, So and
Minkowskian perimeters L, LO respectively. Following Guggen-
heimer [3], we take as area of a convex set its affine area. In [4]
we have proved that the measure ~(K; K (') K 0 i= 0) of the set of
convex sets congruent to K and intersecting KO is given by

~(K; K (') Ko i= 0) = 21t(So + S) + Lo L* • (10)

where L * is the Minkowskian perimeter of the set K * obtained
by reflecting K in a point. In particular if K 0 shrinks to a point
P, the measure ~(K; PE K) of the set of convex sets congruent to K
and containing P is
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J.l(K; PE K) = 21tS (11)

We shall now generalize this last statement.

THEOREM 2. Let K be a convex set of area Sand Min-
kowskian perimeter L and let P1, ... , PN be N fixed points in the
plane. Denote by n the number of such points which are cov-
ered by the "moving" set K. Then.

J n dK = 21t N S, (12)

where the integral is taken over all the points P(x,y) in the
plane and all the valules of a, with 0 s a s 2n.
Proof. Let us consider the curve ti with j = 1, ... , N, obtained by
transforming the isoperimetrix T by an homothety of ratio e and
by a translation which carries the origin 0 to the. point Pt Let us
denote by KI the convex region enclosed by TI We choose the
value t so small that KinK; = 0 for i # j. Moreover, all the curves
Tl are assumed to be positively oriented as well as aK.

Let d denote the boundary of K nKl and let nj be the rotation
number of dif d:t 0 or ni = 0 otherwise. From Theorem 1 there
follows that nj = 1 ifd:t 0. Therefore the value nf. = ~=1nj gives
the number of the curves TI intersected by K. Moreover nf. ~ n
as f. ~ O. To prove the result it is therefore sufficient to show
th at

f n« dK ~ 21t N S

as e ~ O.

Since Tl and oK are C 2 -arcs, the curve d has only two comers.
Let us denote the exterior angle at such comers by ro{ and rot
Let kj(oj), k(o) be the anticurvature of tl and aK respectively,
where 0 j and OJ are the Minkowskian arc lengths. Then by (7)
we have
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Let us consider the integral

l{ = J{KI1T~~0}k /~) d~ dK.

Fix a point P of T1. then by (11) and (8) we get

(13 )

Let us now consider the integral

where Q is a point of iJK. _
Denoting the maximun of k(es) by k we have

O<5:I~<5:k({. }dK( .do .
JIK~I1K~0 JQEK~

Since fQ~KjE' des represents the length of iJK nKj e' by convexity of
K and K JE' recalling that the length of tt is 21tE, we have:

O<5:J des<5:21te.
QEKj

E

Therefore, by (10) we get

0<5: Ij2 <5: 41t2k( 1tE3 + L*e2 + Se). (14)

Finally, let us consider the integral

l~ = J{aKI1Tj~0}CJ){ dK.
E
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Let ';IS denote by C ( ~j ), C( ~) the unit tangent vectors to r! and s«
at T~(1 oK, respectively. Then the density (9) may be written as
[4]

dK = Ism(~1 ~)I dojdo do. ,

so that the integral 1j3' becomes

If we fix OJ and 0, then ~j becomes a constant and ~ differs from
ex by a constant. Thus do. = d ~ .

Moreover, if we assume that the ongm of the arc length a. of
T coincides with ~j then by definition 1 we have wj) = ~, so that

. J20E t 20I} = dad oJ ~Ism (~., ~) I d~ .
3 0 J 0 0 J

Writing M = max~ Ism(~j' ~)I, we have 0 s ~ Ism(~j' ~)I ~ 21tM. So
that

jo s 13 s (21t)3 M L e. (15)

Similary, we obtain

o si! J . 3- 4 = {dKnT~ *" ell ~ dK ~ (21t) M L e.
(16)

Therefore, as e ~ 0 formulae (13), (14), (15) and (16) give the re-
quired result.

§4. In this section we shall apply formula (12) to problems in-
volving lattices of points. First we recall the notion of lattice of
fundamental regions.

DEFINITION 3. A lattice of fundamental regions is a se-
quence {A m } m E ~ of regions A m such that:
i) every point of the plane belongs exactly to one region Am"
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i i) every region .A m can be transformed into the region .A 0 by a
translation ~ m which transforms any .A i into another .A i: i.e.
a translation which leaves the lattice invariant as a whole.

The region .A 0 will be referred to as the fundamental cell of
the lattice.

Let Kobe a convex set contained in .A 0 an let K be a "moving"
convex set. Further, let f(K 0 nK) be a real-valued function of the
intersection K OnK such that f(0) = 0 and f( 3" (K 0 nK)) = f(K 0 nK)
for any translation 3" of the plane. In [5] we have proved

flK nK..g;}f(K nK) dK = l, [L f(~n K nK)] ax , (17)
o 0 0 melll

where the second integral is taken over the positions of K for
which the position point P of K belongs to .A 0 and 0 S; a. S; 2n. It is
easily seen that formula (17) also hal s in the case where K 0

consists of a finite number of points.

DEFINITION 4. Let {.A m} me III be a lattice of fundamental re-
gions. A lattice of points is a set :t of points such that
i) for every m the set :tn .A m consist of a finite number of points

which does not depend on m;
i i) for every m the set :tn .A m can be transformed into the set

:tn .A 0 by a translation ~ m which leaves the lattice {.A 11 } n e IN
invariant as a whole.

If :tn .A 0 consists of N points we shall denote such a lattice of
points by :t(N).

We can now prove

THEOREM 3. Let :t(N) be a lattice of points and let K be a
convex set of area S. Denote by n the number of the points of
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:t (N) which are covered by the "moving" set K. Then the mean
value of n is given by

E(n) = NS
A 'o

(18)

where AO is the area of the fundamental cell A o·
Proof. By formulas (12) and (17), where K 0 is identified with
the set l(N)nAO, we get

f n dK = 21t N S .
AD

On the other hand, we have

f dK = 21tAo '
AD

so that

E(n) =

as required.

As a consequence of the previous theorem we have the fol-
lowing.

Blichfeldt's Theorem. There always exist translates of K
which contain [NS/AOI + 1 points of the lattice :t (N), where [xl
denotes the integral part of x.

This result follows from the same arguments used in the Eu-
clidean case (cfr.[6], pg.137).

THEOREM
Minkowski plane.
that the minimal

4. Let K be a convex set in the symmetric
Then it is possible to put n points inside K so

distance d between two of them is greater than
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[25/(Acn)]1I2, where 5 denotes the area of K and Ac the area of
the region enclosed by the indicatrix.
Proof. By a Sayrafiezadhe's result [7], to any oval af area A
there exists a circumscribed parallelogram having area J with

J>A>J/2.
Let us assume that such an oval coincides with the curve C rim-
age of the indicatrix in a homothety of ratio r. Then there exists
a parallelogram circumscribed with C r having area J with

(19)

Such a parallelogram may be chosen as the fundamental cell of
a lattice. Moreover, let us consider the lattice of points
consisting of the vertices of the parallelograms of the above
lattice. By (18), where in this case N = 1, we have

SE(n) = -
J

Denote by d the minimal distance between the points of the lat-
tice. Since d ~ 2r, we have

E(n)
25~ --

A d 2c

Therefore, there exists a position of K where it contains n points
so that

25>--
A n

c

as required.
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