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THE OPTIMUM SHAPE OF AN HYDROFOIL WITH NO
CAVITATION

by

A. Y. AL-HAWAJ and A.H. ESSAWY

ABSTRACT. We consider a two-dimensional hydrofoil at
rest in the (xy)-plane embedded in a steam with a uniform
flow at infinity and we pose the problem of finding the opti-
mum shape of the hydrofoil of a given length and prescribed
mean curvature for which the lift is a maximum. Using the
lifting line theory and standard variational calculus techni-
ques we show that the slope of the mean chord of the hydro-
foil has to satisfy a differential equation of the second order.
The Rayleigh-Ritz method is used to solve the second order
differential equation which gives the optimal values.

I. Introduction. The purpose of this paper is to evaluate the
optimum shape of a two-dimensional hydrofoil of given length
and prescribed mean curvature which produces maximum lift.
The hydrofoil as in the accompanying diagram (Fig. I) is placed
in a uniform flow of an incompressible non-viscous liquid fill-
ing an infinite space. The liquid flow is taken to be two-dimen-
sional irrotational, steady. and a linearized theory is assumed.

A two-dimensional vortex distribution over the hydrofoil is
used to simulate the two-dimensional zero cavity flow past the
hydrofoil. This method leads to a system of integral equations and
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these are solved exactly using Carleman-Muskhelishvili tech-
nique. This method is similar to that used by T.V. Davies, [1], [2].

We use variational calculus techniques to obtain the optimum
shape of the hydrofoil in order to maximize the lift coefficient
subject problem is that extremizing a functional depending on y
(the vortex, strength), and z (the hydrofoil slope) when these
two functions are related by a singular integral equation. The
analytical solution for the unknown shape z and the unknown
singularity distributions has branch type singularities at the two
ends of the hydrofoil. The external solutions y(x; AI, A2) and
z(x; AI, A2) will involve two Lagrange multiplier constants AI' A2
w hi ch can be determined by substituting the external solutions
y(x; AI, A2) and z(x; AI, A2) in the constraints. Analytical solution
by a singular integral equations and Rayleight-Ritz method are
discussed.

In a previous paper A.H. Essawy, [9] studied this problem and
the resulting equations were solved numerically using the NAG-
library routine Do2ADF which solves a two points boundary value
problem for a system of two ordinary differential equations

dw;

dx
i = 1,2

In this paper analytical solutions by a singular integral equa-
tions, variation of parameters, and the Rayleight-Ritz methods
are given. A sufficient condition for the extremum to be a maxi-
mum is derived by considering the variation.

H- A. Expression of the problem in integral equations.
OA in the figure 1 represents a hydrofoil of arbitrary shape.
Time_ problem will be solved on the basis of linearized theory and
for this purpose we distribute: vortices of strength y(x) per unit
length in 0< x < a (y> 0 clockwise) along the x-axis to replace the
above physical configuration, and y(x) being an unknown

distribution.
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y

Au
y(x)

o (x ,0) x=a x

Fig. 1.

The velocity potential due to the distribution of vortices in
o < x < a is given by

4l(x,y) = 2-1 !y(S)tan-I(-.L)dS
1t x- So

(Ox r < a) (2.a.I)

and the corresponding velocity in y-direction will be

a
v = -041 = _1 fy(S)(X-S)dS

dy 21t 0 (x - s) 2 + Y 2
(2.a.2)

As y ~ O± we have, for all x

a
__-1-f y(s) dslim v

y~o± 21to (x-s)
(O<x<a). (2.a.3)

The boundary condition on the hydrofoil is

vz(x)=--, z(x)=y'(x) O<x<a
U +u

(2.aA)

where u v are the components of liquid velocity along x,y axis
respectively, U is a uniform stream at infinity, parallel to x-axis
and y '(x) is the gradient of the hydrofoil at position x. The equa-
tion (2.aA) is approximated in the usual way to
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v = Uz(X) (0 -c r <a) (2.a.5)

hence

a
.:l J y(s) ds = Uz (x)
21t x- So

(0 < x < a) (2.a.6)

The linearized form of Bernoulli's equation will be

P =P",,+ pU$x (2.a.7)

where P is the pressure, P 00 the pressure at infinity and p is the
constant density of the liquid.

From (2. a.I) we can write

a
a$ = _I J y(s) y ds
ax 21t 0 (x _s) 2 + Y 2

the limiting value of a$ as y ~ 0 ± isax
lim (~) = ± l.y(x) ( 0 <x < a)·

y ~O± ax 2

(2.a.8)

(2.a.9)

II-B Determinating the general formula for the lift
and drag. Let the x and y components of the hydrodynamic
force acting on the hydrofoil be denoted by drag D and lift L,
then the complex forces acting on a hydrofoil calculated within
the linearized theory are given by

a

D +i L = J{p ~~- -P ~ =iJ+};dZ (2.b.l)
o

Using the results 10 (2.a.7) and (2.a.9) as y ~Ot through positive
value we obtain
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P ~ =0+ = P 00 + pU lim $x
y ~o+

= Poo+ ~ pUy(x), (O<x<a). (2.b.2)

Using the results in (2.a.7) and (2.a.9) as y ~O- through negative
value we have

1= Poo - zPUy(x) (O<x <a) (2.b.3)

It follows that we can write from (2.b.l), (2.b.2) and (2.b.3) the
hydrodynamic forces acting on the hydrofoil

a
= - pU f y ( x ) dx ( 0 < x < a )

o
(2.bA)

and

a
D = -f{p Iy ~--P ly~+}dY

o

a

= PUfy(x)y,(x)dx (O<x<a)

o (2.b.5)

II-C.
tional
mum.

The optimum shape of a hydrofoil using varia-
calculus techniques, so that the lift is a maxi-
We pose the problem of maximizing the lift coefficient
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L * = L

P U2

a
-I J= - y(X)dx ,
Uo

(2.c.!)

subject to a constraint on the curvature of the form

a

k = J z'2(x) dx

o
(2.c.2)

where k is prescribed, together with a constraint on the length
of the hydrofoil of the form

a
C = J JI+z2(x) dx

o (2.c.3.)

where C is prescribed and z (x) = y' (x) is the gradient of the hy-
drofoil at position x.

Statement of the problem. The general optimum problem
considered here may be stated as follows: To find the real, extre-
mal function y(x) of a real variable, required to be Holder conti-
nous (see, e.g., Tricomi, [3]) in the region (0 < x < a) together
wi th

z(x)

a
= __ 1_ J y( s ) d S

21tU 0 S - x
(O«.» <a) (2.c.4)

so that y(x) and z(x) minimize the functional

I (y (x ) , z (x), z '( x), x ] = .. L * + Ale + A2 k

a
= J F[y(X),z(X), Z'(X),X;Al'A2] dx

o
(2.c.5.)
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where

and -y(x), z(x) are related by (2.cA) and Al ,A2 are Lag range mul-
tipliers. We define an admissible function as any function y(x)

which satisfies the H iil de r condition J.l (u < I) and the constraints
(2.c.2) and (2.c.3), and we assume that the optimal function is an
admissible function which minimizes the function I [y,z,z',x].

The solution of (2.cA) satisfying the Kutta condition (the liquid
leaves the hydrofoil smoothly along the tangent at the trailing
edge i.e. the velocity must vanish at x = a).

y(x) = 0 (2.c.7)

is well known and is given by

r(x) z(s)ds
s - x

(O<x<a)

(2.c.8)

The necessary condition of optimally. Let y(x), z(x) de-
note the required optimal vortex distribution function and opti-
mal hydrofoil slope respectively, we write

r (x) = rex) + E~(X) ,
1

z (x) = z(x) + Ell(X) ,
1 (2.c.9)

and we can use (2.c.S) to obtain the following relation between

~(x) and ll(x)

~(x) = 2U J a - x fa J S
~ 1t X a-so

ll(s)ds
s - x (2.c.IO)
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If ~(x), is an admissible variation, then 1 [ y(x) +E~(X), z(x) +ETI(X),
Z'(X)+ETI '(x),x] in (2.c.5) is a function of E which has an extreme
value when E = O.

For sufficiently small E, the expansion of (2.c.5) in a T a y lor
series yields

E2
t!.1 = EO! + - 021 +... (2.c.ll)2!

we have

a a

M = f F[Y+E~, z +ETI,Z'+ETI', x]dx - f F[y,z ,z',x]dx, (2.c.12)
o 0

where

a

01 =f[ ~(x )F).,( y .z . z ',x )+TI(x )Fz( y .z ,z ,z ',x) +TI'(x)F; ,(y .z .z ',x )]dx (2.c.13)
o

in which the sub-indices denote partial derivatives; it may be
noted that ~ and TI are related by (2.c.l0), the variations 01, 021,
depend on !;(x) as well as y(x).

a a
01 = [TI(X)Fz'(y,z,Z ,'X)] + f(~(x)Fy<y,Z,z"x)+TI(x)[~ (y,z,z'.x)

o 0

- :x F'z ,(y,z,z,'x)])dx
(2.c.14)

substituting (2.c.1O) into (2.c.14) we obtain

a a

01 = [ 11( x ) ~ ,(t.z , z ' ,x) ] + f ([F; (y, z ,z ',x) - d~ ~ ~t.z .z" ,x)]TI (x )
o 0

2UF!--X ,+- --Fy(y,z,z ,x)
1t x fE,

o

TI(S )ds )
S - x

(2.c.15)
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it is permissible to interchange the order of the double integral
on the right-hand side of (2.c.15) [see, e.g., Muskhelishvili [4]]
and interchange the variables x .t and when we do so we btain

a o{
OJ=[11(X)~.(y,Z'Z"X)] + J [~(y,z,zl,.x) - d~Fzl(Y'Z'z"x)]

o 0

_2U ~ J ~s
1t V -;- 0 ~--;-

f:t (y,z ,z',x) }11(X)dX (2.c.16)
s - x

we have from (2.c.6)

Fy<y,z .z ',x)
1= U

A1Z(X)
Fz (y,z ,Z ',x) = J l+z 2(x)

(2.c.l?)

~. (y,z ,Z I,X) = 2A,z'(X)
2

substituting (2.c.l?) in (2.c.16) we obtain

a o( AZ(X)
OJ = [2A2 11(X)Z '(x) ] + J -;=.=I===-

o 0 Jl+Z2(X)

- 2A Z "(r )
2

(2.c.18)

.i t: u-
1t V ~ ~ --;-

o
ds )11(X) dx

(s - x)

For I [z] to be a minimum we must have for all admissible func-

tion 11 (x)

01 [ z,11] = 0, (2.c.19)

and this implies that the coefficients of 11 (x) in (2.c.18) should

vanish that is

(xL 2EJ°-Ja- s--.!l.L=2E2A2Z"(X) -AI Z ---I 1t a-x s (s-x) a-x
v'1+z2(x) 0

(2.c.20)

1 1 1
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while at the end points it is necessary that

11(x )z'(O) = 0, l1(a)z'(a) = 0 (2.c.21)

be satisfied. In all the examples considered subsequently z(x) is
postulated at x = 0 and x = a and this implies that

11(0) = l1(a) = 0 (2.c.22)

Equation (2.c.20) is a nonlinear differential equation for z(x). We
consider the solution of (2.c.20) for the slope z(x) only in the ca-
se of small slope, and we approximate to (2.c.20) as follows:

z "(z ) - n z(x) = Ey x , n = AL, E = l, ).2"# 0, (0 <x < a) (2,c,23)
a-x 2).2 ).2

It is assumed at this stage that Al /A2 < 0 and we show later that Al
< 0, A2 > 0 are sufficient conditions for a true maximization of L.
We write the differential equation in the form

ztl(x)+m
2

Z(X)=EJa _xx' (m2 =-n =-2{2)' (G c r < a) (2.c.24)

To derive the solution of the nonhomogeneous equation, (2.c.24)
we apply the usual method of variation of parameters then we
can write z(x) in the form

z (x )=.£. JJ ~ Sin m (x-~)d~+A Sinmx +B Cbsm x, (O<x < a) (2.c25)
m a-~o

where A and B are arbitrary constants. Using the boundary con-
ditions

z(O) = 0, z(a) = ~, (2.c.26)

we obtain

A __ -....::E=--_ fa J, ~ Sin m(a - ~)d~+ ~Cosecm a, B = 0 (2.c.27)
m Sin ma a r.o - ...

substituting (2.c.27) into (2.c.25) we obtain
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Z(X)=Y'(x)=LSJ~ Sinrn(x_~)d~+~S~nrnx
m a - ~ Sill rnao

(2.c.28)

- E S.in m x JJ ~ Sin m (a - ~) d ~ , (0 < x < a)
m Sin rna a - ~o

we integrate (2.c.28) with respect to x, and use the boundary con-
dition y (0) = 0 to obtain.

y (X)=.KfdO fJ; Sinm a-;o 0

m (x _ ~)d ~_ ~ (Co s r:z x - 1)
m Sin rna

(2.c.29)v:E Cos mx-l .+-(. )f -~-Slllrn(a-~)d~,(O<x<a)
m Sin m a a - ~o

Equation (2.c.29) can be written as follows when the order of in-
tegration of the double integral is inverted:

x x
E f JE . (Cos rnx - 1)Y (x)=- d t; - Si n m (0'- ~)do- ~ S'm a-; m In m a

o ~

+.K (Co s rn x - 1) JJ ~ Sin m (a - ~)d ~, (0 < x < a)
m 2 Sin maO a - ~

=_ LJXJ ; [Cbsrn(x_~)_l]d~_~(Cos.rnx-l)
m 2 a-; m Sill rna

o
(2.c.30)

a
+.K (Cos mx -1) JJ ~ Sin m (a - ~)d~,(Ox x <a)

m 2 Sin m a a - ~o
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When we substitute for z (x) an z' (x), using (2.c.28) into the con-
straints (2.c.2) and (2.c.3) we obtain two equations, in the two
unknowns E, m, which have to be evaluated numerically.

We do not complete the solution of this problem using this
method since there is an alternative methods of solving the
problem, the Rayleigh-Ritz method, discussed in detail in section
II-E.

II-D. The sufficient condition for the extremum to be a
min i mum. A sufficient condition for the extremum of I to be a
minimum is derived from consideration of the second variation
of I. Since

OJ [y(x) ,z(x), z'(x), x] = 0 (2.d.!)

the condition for I to be a minimum requires that

021[ y(x) ,z(x), z'(x), x] > 0, (0< x< a) (2.d.2)

for all admissible variations I;(x) and TJ (x) consistent with

I;(x) = 2U Ja - x 1J s TJ(s)ds
1t x a-s s-xo

(0 < x < a) (2.d.3)

where TJ (x) satisfies the boundary conditions

TJ(O) = 0, TJ(a) = 0 (2.dA)

Using Taylor's theorem we can write the increment of the func-
tional I (y,z,z',x) in the form

I [y + £I;,z + £TJ,z' + £TJ',x] - I(y,z,z',x) =

a
£J(I;(X)Fy(y,z,z',x) +TJ(x)[Fz(y,z,z',x) - :x ~,(y,Z,z',X):Udx

o

a
+~ £2 f{1;2(x)F"t'Iy,z,z',X)+TJ2(x)Fzz (y,z.z',x)+TJ'2(x)Fz"z'(y,z,z',x)

o
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+ 2~(x) Tl(X )FyZ (y .z ,z' ,X) + 2~(x )Tl' (x)Fyz ,( y, z .z ', X)

(0 < X < a) (2.d.5)

Denoting that coefficient e by OJ and that of e2 by 02/ at a statio-
nary value fo I, we have from (2.d.I), (2.d.3) and (2.d.5)

Fz (y,z,z',x) - ~Fz'(Y'z,z',x)
dx

= 2U r-;- f ~
7t ~~ \/-;-o

FyCY,z,z',x)
--'---- ds

s - X
(2.d.6)

and

a

'ill = J{~2JYy+Tl2Fzz+Tl'2Fz'z'+2~TlFyz +2~Tl'Fyz'+2TlTl'Fzz'}dx (2.d.?)
o

where by (2,c.6) we have

Fyy[Y ,z ,z ',x] =0

Fzz[y,z,z',x]

Fz'z' [y,z ,z ',x] = 2A.2 (2.d.I8)

Fyz'[Y'z,z',x] = 0

Fzz' [y,z,z',x] = 0

substituting (2.d.8) in (2.d.?) we obtain

(2.d.9)

Using Friedrich's inequality (see, [5], p.I92, (18-28»)
1 15
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d dfU2(X)dx< (d-c)2 fU'2(x)dX, u(c)=O, u(d)=O, (2.d.l0)
1t2c c

we can write

a

02[ > (2A2 + ~; AI) J 11,2 (x)dx.

o
(2.d.ll)

The sufficient condition for 02[ to be positive is

21t2
Al + -----a- A2 > 0 . (2.d.12)

II-E. Analytical solution by the Rayleigh-Ritz method.
We use the Rayliegh-Ritz method (see, e.g. [6] and [7]) to solve
equation [2.c.23], namely:

ZIl(X) - n z(x) = EJ x
a - x

n = ~ , E = I (2.e.!)
2A2 A2

where AI, A2 are Lagrange multipliers, and z(x) is subject to the
boundary conditions (2.c.26). Equation (2.e.!) is the necessary
condition for the integral

z 2 (x) + E J x . Z(X)}dX (2.e.2)
a - x

to be minimized.

The Rayliegh-Ritz method can be applied to this problem
in the following way. We select a basic set of a linearly indepen-
dent polynomial functions and we assume an expression for z(x)

of the form

z(x) =~x2+alx(a - x) + a2x2(a - x)a
116
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which satisfies the end conditiuns (2.c.26), a 1 and a2 being arbi-
trary constants. The values of z(x) and z'(x) are obtained from
equation (2.e.3) and are substituted in (2.e.2); the result is a
quadratic from in al and a2' namely

2 R2 1 3 2 1 5 2 1 4 1J = - ~ + -a a + -a a + rr a a a - -~a a3 a 6 1 15 2 6 1 2 3 1

_.lj3a a + _1-n~ + _1-na2a5 + _1_ na2a7
6 2 10 60 1 210 2

+_I-nalBa3 + _1-na2Ba4 + _1-ala2na6
20 30 60

51tj3a E 51ta
3

al 51ta4a2
+ -- + E + 128 E = 016 16 (2.eA)

The necessary conditions for minimizing J, with respect to a 1

and a2 are

3 4 3

aJ =~[10+na2]+a2a [l0+na
2

]-_I_j3a[20-3n i]+~E=O (2.e.5)
aal 30 60 60 16

and

4 5 4aJ a I a 2 a 2 a 2 1 2 2 51ta
- =-- [lO+n a ] +-- [l4+n a ] - --j3a [5- n a ]+- E =0. (2.e.6)
aa2 60 150 30 16

Using (2.e.5) and (2.e.6) the quantities nand E can now be ex-
pressed in terms of a 1 and a 2' but for convenience we introduce

~ = al a2

(2.eo 7)

and we then have

n = W/V (2.e.8)

wi th
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w = (~4 - 610)~ + (}8 - 125)~ - (~4 - ~) ~

v = [(418 - 610)~ + (91
6 - 1~5)~ + (3

1
2 - 310)~]a2

(2.e.9)

and

E =.:..l2.-[~(lo+n a2)+..B....(l0+n a2) - _1_ ~(20 - 3n a2)]
1ta 2 30 60 60 . (2.e.1O)

From (2.d.12) it follows that the sufficient condition for the lift to
be a maximum can be expressed in the form:

1t2
[n + 16]

E
> 0

(2.e.ll)
, n

Substituting from (2.e.3) in the constraints, (2.c.2) and (2.c.3) we
obtain

a

£ = f[1+
2
1

Z2(X)]dX =a+_1_~a+_1-a2a5
10 60 1

o
,

(2.e.12)
1 1 1 1+--a7a2+-f3a3a +-f3a4a +--a a a6

210 2 20 1 30 2 60 1 2

. and

a

K =fz'2(X)dx =
o (2.e.13)

2 1 2 1 4
- ~a a - -3 ~a2 a + - a a a3 1 312

Equation (2.e.12) and (2.e.13) can be written as follows:
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SI = Al~2 + 2HI~11 + BI112 + 2PI~+2QI11 + C1 = 0

S2 = A2~2 + 2H2~11 + B2112 + 2P2~+2Q211 + C2 = 0
(2.e.14)

where

Al = 1/ 60,

HI = 1/120,

B
1

= 1/210, B 2 = 2/15

P 1 =(1/ 40) ~,

Q
1

= (1/ 60) e.
C

1
= (t - ar!« +(1/ 1O)~.

p = (- 1/ 3) ~
2 (2.e.15)

Q = (- 1/ 6) ~
2

we shall consider the special case

( = 4.02 ft
a = 4.00 ft
K = 0.0148 ft
b = - tan 12 = -0.21256.

(2.e.16)

Regarding S 1 = 0 and S2 as two conics the condition upon ')..,for
the quadratic

(2.e.17)

to represent a pair of straight lines is

233661 ')..,3- 27702.7 ')..,2+ 1712.08 ')..,+ 34.663 = 0 (2.e.18)

(see, e.g. [8], which can be solved to give the following roots

').., == - 0.01572, 0.067139 ± 0.070215 i (2.e.19)

using the real value of ').., we can write equation (2.e.15) in the

form:

1.142n2 + 1.142n11 +0.2666112- 1.2855~ - 0.819911- 0.04983 = 0 (2.e.20)

1 19



AL-HA W AJ and ESSA WY

By factorizing equation (2.e.20), we obtain

~ + 0.3708 11- 1.1625 = 0 (2.e.21)

~ + 0.6292 11+ 0.0375 = 0 (2.e.22)

The straight line' (2.e.21) when combined with S 1 = 0 produces

~ = 1.5576 ± 1.7002 i, 11= -1.06656 ± 3.15517 i (2.e.23)

in other words there is no real intersection of this straight line
with the conic; the points of intersection between the straight
line (2.e.22) and S 1 are real and are as follows:

(i) ~ = -0.30834 11 = 0.43045
(2.e.24)

(ii) ~ = 0.062619 11 = -0.15915

Using (2.e.16) and (2.e.24) we can write the values of 11 and E,
(2.e.8) and (2.e.1O) in the forms

(i) 11 = -2.2599 E = -0.17072
(2.e.25)

(ii) 11 = -1.7925 E = -0.12293

We find that both values of nand E in (2.e.25) satisfy the suffi-
cient condition (2.e.ll), but the values

11= -2.2599 E = -0.17072 (2.e.26)

actually provide the maximum values of lift, namely

L = 121260 Lbs (2.e.27)

Thus the appropriate values of ~ and 11 are

~ = -0.30834 , 11= 0.43045 (2.e.28)

using (2.e.28) and (2.e.7) we obtain

a1 = -0.01927 ,a2 = 0.006726 (2.e.29)

Now we can write the solution z(x), (2.e.3) of the differential
equation (2.e.l), using (2.e.9) and (2.e.16) as follows:

z(x) = -0.07708 x + .0.05946 x2 - 0.006726 x3 (0 s x ~ a) (2.e.30)

We integrate (2.e.30) with respect to x and we obtain

y(x) = - 0.03854 x2 + 0.01982x3 - 0.001682x4 (0 s x s a) (2.e.3l)
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there being no arbitrary constant since

y(O) = 0

The graph of y(x) is shown in Fig.2.

(2.e.32)

Y-AXIS

0.5 ._~.2.0 2.5 3.0 3.5 X - AXIS

-0.2

-0.4

Fig. 2
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