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HYPERBOLIC GEOMETRY IN HYPERBOLICALLY
K-CONVEX REGIONS

by

Diego MEJIA and David MINDA 1

§I. Introduction. This paper is the third and final part of a
trilogy dealing with the concept of k-convexity in various ge-
ometries. Our first paper [MM1] dealt with k-convexity in eu-
clidean geometry and the second [MM2] with k-convexity in
spherical geometry. In this paper we treat the concept of k-
convexity relative to hyperbolic geometry on the unit disk [) =

{z : Izi < l}.

We assume that the reader is familiar with both [MM1] and
[M M 2]; we frequently omit details of proofs when they are simi-
lar to proofs of analogous results in either one of these papers.

1. Research partially supported by a National Science Foundation grant
(DMS-9008051)
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A Jordan region .n in the unit disk [) is called hyperbolically
k-convex if the hyperbolic curvature of the boundary is at least
k at each point of a.n. This assumes that the boundary of .n is
smooth. A definition of hyperbolic k-convexity that applies to
arbitrary regions is given in section III. Our goal is to obtain
sharp hyperbolic geometric estimates for various quantities in
hyperbolically k-convex regions. These estimates lead to sharp
distortion and covering theorems (including the Bloch-Landau
constant for k ~ 2 and the Koebe set) for the family K h(k, a) of
normalized (j(0) = 0, f' (0) = a) conformal mappings of the unit
disk [) onto hyperbolically k- convex regions.

§II Hyperbolic Geometry. We begin by recalling some basic
facts about hyperbolic geometry on the unit disk [). The hyper-
bolic metric is AID(z) Idzl = Idzlj(1 - IzI2); it has Gaussian curvature
-4. The group of conformal automorphisms of [) is

e i8(z - a)
Au t([» = {T(z) = : e E IR, a E [)}.

I -az
The hyperbolic metric is invariant under the group Au t( [) );

that is, T* (AID(Z) Idzl) = AID(Z) Idzl, or equivalently, IT'I /(1 - 1T/2) =
1/(1 - Iz12) for all TEA u t( [) ). The hyperbolic distance between
a.be [) is defined by

d[)(a,b) = inf J A[)(Z) Idzl,
y

where the infimum is taken over all paths y in [) which join a

and b. Moreover, this infimum is actually a minimum and is
uniquely attained for the arc (5 of the circle trough a and b
which is orthogonal to a D. The path (5 between a and b such that

is called the hyperbolic geodesic joining a and b. The explicit
formula for the hyperbolic distance is dlD(a,b) = artanh/(b-a)/
(l-ab)1. The hyperbolic distance is invariant under the group
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Aut([»). Let IDh(a,r) denote the hyperbolic disk with center a and
radius r. Sometimes it is more convenient to employ a related
quantity in place of the hyperbolic distance. Set E'J) (a ,b) = tanh
d [) (a, b) and note that this quantity is also invariant under the
group Aut( [) ).

We shall also make use of the notion of hyperbolic curvature.
We briefly recall this concept; for more details the reader should
consult ([FO], [M3]). Suppose 't is a C 2 curve on [) with nonvan-
ishing tangent at the point a E [) . The hyperbolic curvature of y
at a is

k (a,y) - (a/an) log A[)(a)

k h (a •y) = A[) (a)

where k(a, y) is the euclidean curvature of y at a and n = n(a) is
the unit normal at a which makes an angle +1t/2 with the tan-
gent vector to y at a. Note that hyperbolic and euclidean curva-
ture coincide at the crrgm. In euclidean (spherical) geometry
each path of constant positive euclidean (spherical) curvature
is a subarc of the boundary of a euclidean (spherical) disk of the
appropriate radius. This is no longer true in hyperbolic geome-
try when 0 < k ~ 2 and helps to explain some of the intriguing
differences between this paper and our two earlier papers
([ M M 1], [MM2]) on k-convexity in euclidean and spherical ge-
ometry. Some of the geometric techniques from the first two pa-
pers do not extended to the hyperbolic setting.

EXAMPLE 1. We begin by listing three types of paths in [)
with constant hyperbolic curvature. First, suppose y is the hy-
perbolic circle {ZE [) : dlD(a,z) = rD, oriented so that the center a

lies on the left-hand side of 't- Then kh(z, y) = 2 coth(2r) > 2.
Next, suppose y is a horocycle, that is. a euclidean circle which is
internally tangent to the unit circle. Then kh(z, y) = 2. The final
case is when y is a subarc of a euclidean circle which intersects
the unit circle at two distinct points; such an arc is sometimes
called a hypercycle. If <p is the acute angle between y and the
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unit circle, then K h(z, y) = 2 cos <p < 2. For more information see
[C, p.25]

In fact, every arc of constant hyperbolic curvature in [) is of
one of these thr~e types. This can be established as follows.
From [S, Thm. 2.13] it follows that if y is a path in [) with constant
hyperbolic curvature, then y also has constant euclidean curva-
ture. In particular, y is a euclidean circular arc and so is one of
the three types considered.

If 1 is a locally schlicht function mapping [) into itself an y is
a path in [), then for ZE y.

kh(f(Z) ,I oy)/\z) = kh(Z,y)A.[)(z) +1 ',,{.[ 2"Z 2 +f':(Z) - 2Mf'(Z;]t(Z»),u\ I-izi 1 (z) 1- Ij(z)1

where t(z) is the unit tangent to y at z. Here fh(z) = !f(z)I/(l-lf(z)12)

denotes the hyperbolic derivative of holomorphic function
mapping [) into itself.

Now we turn to an issue involving hyperbolic geometry on
subregions of the unit disk. For a Hyperbolic region n in the
unit disk [) it is natural to consider the "hyperbolic density" of
the hyperbolic metric in place of the (euclidean) density of the
hyperbolic metric. For a hyperbolic region n C [), the hyper-
bolic density is defined by

The hyperbolic density is a continous function on n which is
invariant under AuttD}.

We shall frequently make use of the hyperbolic distance
(relative to [» to the boundary of a region n C [). Let Yo (z) =
min{d[)(z, c): CE aw} .. This is the hyperbolic distance from z to an
and is clearly invariant under Aut([». In some applications our
formulas become much simpler if we employ a related quantity
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in place 'YO (z). Define I'0 (z ) = tanh 'Yo (z). This quantity is also
invariant under Aut(II).

We reformulate several basic results for the hyperbolic
metric in terms of the hyperbolic density. These results are
well-known for the euclidean density of the hyperbolic metric.

Principle of hyperbolic metric. Suppose 0 is a simply
connected subregion of II) and f is holomorphic on the unit disk
[) with !(lI)lcn. Then vo(f(z» fh(z) ~ A[)(Z) for ZE II) with equality
if and only if ! is a conformal mapping of II) onto Q.

Monotoniciy property. Suppose Q and ~ are subregions of
[) and nc~. Then v~(z) s vn (z) for ZE Q with equality if and only
if n=~.

§III. Geometric
regions. In this
bolically k -convex
properties of such

properties of hyperbolically
section we introduce the concept
subregion of II) and study some
regions.

k-convex
of a hyper-
of the basic

Suppose that k > 0, a, b e II) and d[)(a,b) < artanh (2Ik). We first
assume k > 2. Then there are two distinct closed hyperbolic disks
VI and V2 each_ having hyperbolic E..adius (1/2) artanh (2Ik),
such that a, b e aD} U = 1, 2); note that aD} has constant hyperbolic
curvature k. Let H k[a ,b] = DI n Dz. The boundary of H k [a, b]

consists of two closed circular arcs I'1 and I'2' each with constant
hyperbolic curvature k. For d[)(a,b) = artanh (2Ik), we let
H k[a,b] be the closed hyperbolic disk with center at the midpoint
of the hyperbolic geodesic joining a and b an'!.-radius __(1/2) ar
tanh (2Ik). The case k = 2 is similar except that D, and D: are re-
placed by horodisks. When 0 < k < 2, there are two unique arcs of
constant hyperbolic curvature k joining a and b. In this situa-
tion H k[a,b] is the closed Jordan region determined by the union
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of these two arcs. This latter definition also applies when 2 :5; k
except that we need to specify the shorter arc of constant curva-
ture k joining a and b when k > 2. We define H o[a,b] to be the
hyperbolic geodesic between a and b. Note that for 0 :5; k' < k « 2
I tanh(d[)(a,b» , it follows that H k' [a,b] C Hk[a,b].

DEFINITION. Let kE [0,00). A region nCI[) is called hyperboli-
cally k-convex if for any pair of points a, b e ts , d [) (a, b) <
ar-tanh(2/k) and Hk[a,b]Cn.

Clearly, hyperbolically O-convex is equivalent to hyperbolic
convexity, so we shall employ the phrase "hyperbolic k convex-
ity" only when k > 0 and use "hyperbolic convexity" instead of
"hyperbolic O-convexity". Note that if n is hyperbolically
k-convex, then it is also hyperbolically k' -convex for 0 :5; k' :5; k.
In particular, a hyperbolically k-convex region is always hy-
perbolically convex and simply connected. For each k > 2 a hy-
perbolic disk of radius (l/2) artanh (2/k) is hyperbolically
k-convex but not hyperbolically k'-convex for any k' > k. The
intersection of a finite number of hyperbolically k-convex and
the union of an increasing sequence of hyperbolically
k-convex regions is again hyperbolically k- con vex.

LEMMA O.Suppose that n is a simply connected region in I[).
If at each points CE an there is a supporting hyperbolic geodesic
for all points of n in a sufficiently small neighborhood of c,
then n is hyperbolically convex.
Proof. This proof is adaptation of the proof of the analogous re-
sult for euclidean convexity [5]. Let a.b e n. We want to show
that the hyperbolic geodesic' connecting a and b is contained in
n. By applying a conformal automorphism of I[) to n if neces-
sary, we may assume that a = O. Then 0 and b can be joined by a
polygonal path n with (euclidean) straight sides which is con-
tained in n. Let 0 = zo' zl' z2"" zm' zm+l = b be the vertices of n in
the order in which they are met in traversing n from 0 to b. We
show that the vertices can be removed one at time, so that
eventually the polygon, while remaining inside n, becomes the
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straight line [O.b], which is also the hyperbolic geodesic con-
necting 0 to b. Suppose that [O,zk]cn. We want to show that
[0. ~k+l]cn. If 0, zk and zk+ 1 are collinear, we are done.
Suppose [O,zk+l]<Zn. Consider the set of all segments [O,p], where
p ranges over [zk' zk+l]; let 9(p) denote the angle between [O,p]

and [O,zk]' There is a smallest angle 9(po) such that POE (Zk' Zk+l)
and [0. po] contains a point of an. Let CE an n[o,po] be the point
in this set that is closest to the origin. Then all points of the
closed euclidean triangle ~ whit vertices 0, Z k and Po are in n,
except for c and possibly other points of [c, po]. But then the
point c fails to have a supporting hyperbolic geodesic locally
since the hyperbolic geodesic trough 0 and c contains points of
n arbitrarily close to c and any other hyperbolic geodesic
through c meets the inside of the triangle ~.

PROPOSITION 1. Suppose that is n a simply connected re-
gion on II) bounded by a closed C2 Jordan curve an. If Kh(c,an)
c k >.0 for all CE an, , then n is hyperbolically k-conv ex.
Proof. We begin by showing n that is hyperbolically convex.
By the preceding lemma, it is sufficient to show that there is a
locally supporting hyperbolic geodesic at each point CE an. We
may assume that C = O. Then k( 0, an) = kh(O. an) > 0, so k (~, an)
> 0 for all 'E an in a neighborhood of O. This implies that n has a
locally supporting euclidean straight line at 0 [S, p.46]. This
straight line through 0 is also a hyperbolic geodesic, so n has a
locally supporting hyperbolic geodesic at c.

Next, we show that n is hyperbolically k-convex. Fix a, b e n.
Let t be the supremum of all t ~ 0 such that HI [a,b] cn. Note that
r :5 2/tanh dr>(a,b). Since n is hyperbolically convex, we know
that t > O. We want to show that t > k. In case 't = 2/tanh d[)(a,b), n
contains the closed hyperbolic disk with center at the midpoint
of the hyperbolic geodesic joining a and b and radius (l!2)d/D(a.

b). Let D be the largest hyperbolic disk with the same center
that is contained in n. Then aD meets an at some point c. By
applying a conformal automorphism of II) to n if necessary, we
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may assume c = O. The comparison principle for euclidean
curvature [G,p.28] implies that k(O, ao) s k(O, aD), or k s kh(O, ao)
s kh(O, aD) < t. The remaining case is t < 2/tanh dlD(a,b).
Consider the two arcs r \ and r 2 of hyperbolic curvature t w h i c h
bound H t[a ,b]. At least one of these two arcs, say r l' meets ao in
some point c. As before we may assume c = O. The comparison
principle for euclidean curvature now gives k(O, aO)~k(O, r\),
so that k s t. We need to show strict inequality. Because 0 is
open, we can select points a' and b' in 0 so that a and b lie
strictly between a' and b I on the hyperbolic geodesic in 0 j 0 i n-
ing these latter two points. Let t ' be defined relative to a' and b I

in the same manner that t was defined for a and b. Then for a I

and b' near a and b , respectively, r ' < 'to Since k s r' just as k s r,
we obtain k < 'to

PROPOSITION 2. Suppose 0 is a hyperbolically k-convex
region. Then for any ae 0 and CE 0, Hk[a,c]\{c} CO.'

COROLLARY. If 0 is a hyperbolically k-convex region, then
int !;ldc,d] eOfor all c, de an.

LEMMA 1. Suppose D is an open hyperbolic disk of radius
(l/2)artanh(2/k) and B is an open hyperbolic disk such that

, CE aB n aD and Band D are externally tangent at c. If dID(a,c) <
artanh(2/k) and a e D, then Hk[a,c]\{ c} nB ,.t 0.

Suppose 0 is a hyperbolically k-convex region. Assume a e 0,
CEaO and dlD(a,c) = 'Yn(a), which we assume to be finite. Let 0 be
the hyperbolic geodesic which is tangent to the hyperbolic cir-
cle C h(a,r) = {z: dlD(a,z) = 'Yn(a)} at c and let H be the hyperbolic
half-plane determined by 0 which contains a. Then the hyper-
boltc convexity of 0 implies that 0 eH, so that H is a supporting
hyperbolic half-plane for 0 at c. Moreover, if k > 0, let 0 I be the
unique arc of hyperbolic curvature k that is tangent to C h(a,r)
at c and is contained in H U {c}. (There are two arcs of constant
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hyperbolic curvature k tangent to C h(a,r) at c, but just one of
these is contained in H U {c D. If k > 2, then b' is a hyperbolic
circle in ID, while for 0 ~ k s 2 it meets a [). Let D be the region in
[) which is bounded by b' and contains a.

PROPOSITION 3. Suppose n is a hyperbolically k-convex
region. Assume that aE n, CE an, and dlD(a,c) = Yn(a). If the hy-
perbolically k-convex region D and hyperbolic half-plane Hare
as in the preceding discussion, then u c o.

PROPOSITION 4. Suppose n is a hyperbolically k-conv ex
region and k > 2. Assume that ae [)\.O" CE an and dlD(a,c) = Yn(a).
If D is the hyperbolic disk with radius (1/2)arctan(2/k) that is
tangent to the circle {ZE ID: dlD(z,a) = 'fn(a)} at c and that does not
meet the disk, Dh(a, Yn(a)) then ar o.

§IV. Lower bound for the hyperbolic density of the
hyperbolic metric in a hyperbolically k-convex r e-
gion, We obtain a sharp lower bound for the hyperbolic den-
sity of a hyperbolically k-convex region n in terms of the hy-
perbolic distance to the boundary of the region. In our work we
distinguish the cases k ~ 2 and 0 s k < 2. This distinction is ac-
tually very natural. If k > 2, then n is bounded in the hyper-
bolic sense. In this regard, the case k > 2 is the analog of eu-
clidean or spherical k-convexity where k > O. The case k = 2 re-
sembles euclidean or spherical convexity in many regards,
while 0 < k < 2 seems to have no analog in either euclidean or
spherical k-convexi ty.

EXAMPLE 2. For k ~ 0 we consider some standard hyperboli-
cally k-convex regions Dk. For each of these regions we explic-
itly calculate vk = vD k in terms of rk = rD k' In all cases we shall
show that vk(z) = l/g k(r k(z)), where
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4 arctan)_2_-tk-
2-k l+t 2-k t------==~~- ~--:.:..--7.:- si nxJ 4-k 2 I - t 2

f2;k( I-t)x arctan-v U 1#

Jfl--tkarctan --
2-k

, O~k ~2

t(2-k t)

I-t 2
2 s k .

Note gk that is continous for k ~ 0, but not analytic since it is
not analytic at k = 2.

We first assume k > 2. Let D k be the hyperbolic disk of radius
(l/2)artanh(2Ik) = artanh[(Jk2 +4 - k)/2] which is centered at
the origin. If r denotes the euclidean radius of D k, then k =
(l+r2)lr. Also, for z in D k,rk,(z) = (r -lzl)/(l-rlzl), or Izi =
(r-rk(z»/( I-r rk(z», so that

2 r
Vk (z) =( 1-lzl) 2 2

r _ Izi

__ r_(_I_-_rAk_( z_)_)__ = _(_I_-_ra..k _(z_)_)_

r
k
(z)[2r - (l+r2)rk (z)] )(z) [2-k Ik(z)]'

This establishes the result when k > 2. Because of the invari-
ance under Aut([» of the quantities involved, this formula is ac-
tually valid for any hyperbolic disk of the same radius.

Next, we assume k = 2. In this case D 2 is the horodisk
{z: Iz-l/21 < 1/2}. The Mobius transformation T(z) = i(l+z)1
( 1- z) maps [) conformally the upper half-plane IH = {w : 1m w
> O} and sends D 2 onto the half-plane S = {w : 1m w > I}. The in-
variance of the hyperbolic metric under conformal mappings
implies that v2(z) = YS(T(z»/A.IH (T(z». Similarly, since the hy-
perbolic distance, is invariant under conformal mappings, Y2(z)

= A.S(T ( zn, where YS(w) denotes the hyperbolic distance, relative
to IH, from w to as. Thus, it suffices to express A.S/A.IHin terms of
A.S' Since each vertical line in IH, is a hyperbolic geodesic and
A.H(w) = 1/2 Imw, we have for w = u + iVE S we have for
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1 fV dt 1Y (w) =- - =-log v.
S 2 1 t 2

Because v = Imw, we have 1m w = exp ZAS(w). Thus,

A.s(w)
A.D-1(w)

1m w=----
Im(w)-1

ex p [2yS (w )]

exp [2'YS(w)] - 1

this gives the desired result when k = 2. In fact, the formula is
valid for any horodisk since any two horodisks are equivalent
under the group Aut([»).

Finally, we assume 0 ::; k < 2. In this situation the region D k is
the subregion of [) which is bounded by an arc of constant hy-
perbolic curvature k and defined as follows. The region D k is
bounded by the arc <> of constant hyperbolic curvature k which
passes through ± 1 and lies in the upper half-plane; D k lies below
<>. Let 2cpE [0, n/2) be the angle that <> makes with (-1, 1). We con-
vert to a conformally equivalent situation. The function h (z) =
10g[(l+z)/(I-z)] maps [) conform ally onto L = {w : Ilmwl < n/2}
and D k onto the substrip S = {w : - n/2 < 1mw < 2cp}. Because the
hyperbolic metric is invariant under conform al mappings, v k (z)
=A.S(h(z))/A.r,(h(z)) and 'Yk(z) = 'YS(h(z)), where 'YS(w) denotes
the hyperbolic distance. relative to L, from w to as. Thus, in or-
der to express v k in terms of 'Yk it suffices to express A.SI A.r, in
terms of 'YS. Since A.r,(w) = 1/2 cos(lm w) and

n
\(w) = n(n+2Im w)

(4CP+n)sin
4CP+ n

we obtain

As(w)

A.r,(w)

2n cos (Im w)=----=:.:.-=--=--=-~--~--
1t(n + 2 1m w)

(4CP+1t)sin
4CP+ 1t

Because each vertical line is a hyperbolic geodesic in L, for w

=U + iVE S we have
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1 J2<P dt 1 sec 2<P+tan 2<Py, (w) = - -- = -log =~~~::..::....;~
lS' 2vcost 2 secv+tanv

v
1 I 1 + tan <P 1 I 1 + ta n 2"

=- og -- og
2 1 - tan <P 2 1 _ tan L

2

v
1 1 + tan 2"

= 1. (0)--Iog---=-
S 2 v1 - tan -

2

From this we get Imw = v = 2 arctan tanh[yS(O) - YS(w»).
Consequently,

21t cos {2arctan tanh [Yk(O)-Yk(z)]}

1t{1t + 4 ar ctan tan h [Yk (0) - Yk (z») }
(4<P +1t) sin

4<P+ 1t

From Example 1 we know

1
'Y

k
(0) = ilog

that 2<p= arcsin (k/2). Hence,

1 +tan <P = llog J2+k .
1 - tan <P 2 2 - k

By making use of this and the identity

tanh (x - y) = tanh x - tanh y
1 - tan h x tan h y

we obtain

tan h (Yk (0) - Yk(z») =
k [ 1 - rt (z) ] - 2.J 4 - k 2 rk (z )

2[I-rt(z)] +.J4-k2 [1+r~(Z)]
In addition, the identity

x +yarctan x +arctan y =arctan
1 - xy

and
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n 2-J4-k2 ~+kCP--=arctan +arctan l=arcta --.
4 k 2-k

By putting together all of these facts, we obtain the desired
result. Again, this formula is valid for any region conformally
equivalent to D k under Aut(ID).

THEOREM 1. Suppose is a hyperbolically k-convex region.
Then

and equality holds at a point if and only if Q is conformally
equivalent to Dk under a conformal automorphism of ID.
Proof. Now consider any hyperbolically k-convex region Q.

Fix ae Q. Select CEoQ with rn(a) = tanh dlD(a,c). Let D be the asso-
ciated hyperbolically k-convex region defined just before
Proposition 3. Then Proposition 3 implies that Q CD; also rD ( a) =
rn(a). The monotonicity property of the hyperbolic metric
yields vn(a) ~ vD(a) with equality if and only if Q = D. Because
rD( a) = rn(a), this inequality in conjunction with the formula
for Vk(Z) in Example 2 completes the proof.

COROLLARY 1. Suppose that Q is a hyperbolically k-convex
region, f is holomorphic in ID and f( ID)C Q. Then for ZE ID.

Equality holds at a point if and only if Q is conformally equiva-
lent to Dk under a conformal automorphism of ID and f is a con-
formal mapping of ID onto Q.

Proof. The principle of hyperbolic metric gives vn(f(z» fh(z) ~
AID(Z) for ZE ID with equality if and only if f is a conformal map-
ping of ID onto n. The theorem then implies that l!gk(rn(f(z» ~
vn(f( z) with equality if and only if Q is conformally equivalent
to D k under an automorphism of ID. By combining the two pre-
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ceding inequalities and the necessary and sufficient conditions
for equality, we obtain the corollary.

DEFINITION. Let K h(k, a) denote the family of all holomor-
phic functions f defined on [) such that f is univalent, f(O) = 0,
f '(0) = a and f( [»)' is hyperbolically k-convex region in [).

For k ;:::2 we make the following observation. If fe K h (k, a)
and n = f( [»), then the preceding corollary with z = 0 produces a
= !f'(0)1 Vgk(rn(O)). Note that gk(t) is increasing on the interval
o :<; t « ( k 2+ 4 - k)/2 = rand g k(r) = r. Because n is hyperboli-
cally k -convex, we know that r n (0) s r. Therefore, a:<; r when
fe K h(k, a). Moreover, a = r if and only if f( z) = rz.

EXAMPLE 3. For k s 2, set fk (z) = az! (1-11 - a(k - a) z ).

Then fk e Kh(k, a) since fk([») is a hyperbolic disk of radius
(/2) arctan (21k). Note that

The largest hyperbolic disk contained in It ([») and centered at
the origin has euclidean radius al (l + -II - a(k - a) ) = Mk (a).
Note that gk(M k(a)) = a.

For 0 s k < 2, we consider another standard map. For 0 s k < 2
the function g k is strictly increasing on (0,1) with g k(O) = 0 and
g k(t) ~ 1 as t ~ 1. Hence, for each number a e (0, 1) there is
unique root M k(a)e (0, 1) of the equation gk(t) = a. Let I!.k be the
subregion of [) that contains the origin and is bounded by an arc
'Y of constant hyperbolic curvature k which passes through the
point iM k(a) and with the property that the hyperbolic geodesic
in [) through i M k (a) and tangent to 'Y at this point lies outside
I!.k: The arc 'Y meets a [) in two points. Let 0 be the hyperbolic
geodesic of [) determined by these two points. Then 0 CI!. k and
meets the imaginary axis at a point - a. Let F k(z) map [) confor-
mally onto D k: Explicitly,
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Fk (z) =tan h lar ctan m (~)i JiJ-k j.
log 1 - -arctan --

x -z 2 2+k

Let Ta(z) = (z - a)/(l-az). Seth = Ta 0 Fk 0 Tb, where b = F k-1(a).
Note that T a is a conformal mapping of D k onto !J.k' Then fk(O) = O.
Also, from AI[)(Z) = At.k (ft(z» tf/(z)l, we obtain l/lft'(O)1 =
A!J.k(O)/AI[) (0). Since r!J.k(O) = M k(a), we have l/lft'(O)1 =
1/g kM k(a» from Example 2. Hence !fk'(O)1 = a,

Now, we determine the Koebe set for the family K h(k,a).

COROLLARY 2. Suppose fEKh(k, a). Then either {w : Iwl s
Mk(a)} is contained in f([» or f(z) = e-ieh(eiez) for some BElA.

Proof. Set n = f( [» and apply the preceding corollary with z = 0
to obtain

This yields r 0 (0) ~ M k( ex) with equality if and only if n is
conformally equivalent to D k under some conformal automor-
phism of [). In the case of equality, f is a conformal mapping of
[) onto a region that is conformally equivalent to D k under a
conformal automorphism of [) which contains the origin and
whose boundary is externally tangent to the circle {w : Iw I =
M k (o l}. In this case it is straight forward to check that f m u s t
have the prescribed form.

§v. The hyperbolic Bloch-Landau constant for the
family Kh(k,a). We derive a sharp lower bound for the hyper-
bolic density of the hyperbolic metric for a hyperbolically
k-convex region (k ~ 2) in terms of a uniform upper bound on
Yo. We use an extremal region which is similar to that employed
in [MM1] and [MM2] .
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Initially, we suppose k ~ 2, e E (0. Te/2) and N = tan e. Let R =
...IN(2-kN)/(k-2N) ; R is selected so that the circle through -R. i N
and R has hyperbolic radius (1/2) artanh (2/k) = artanh
[(-V k2+4-k)/2], or equivalently, has hyp.erboliL curvature k. Let
H=H(N) = int [-R, R]. Note that for N = (..;j k2 + 4 - k)/2 the set H
is actually a hyperbolic disk. In all cases, H contains the disk {z :
Izi < N}, but no larger disk centered at the origin, and H is con-
tained in the disk D = {z : Izi < R}. Each of the two circular arcs
bounding H makes an angle 2<p with the segment [-R ,R], where <p
= arctan (N /R).

We also introduce a certain collection of "triangular" hyper-
bolically k-convex regions. Let ~ = ~ (N) denote the family of all
hyperbolically k-convex regions that contain the disk {z: Izi <
N} and are bounded by three distinct circular arcs each of hy-
perbolic radius (1/2) artanh (2/k) and having the property that
the full circles are tangent to Izi = N and contain {z: Izi < N} in
their interior. Each of these circular arcs will meet aD in dia-
metrically opposite points and has euclidean radius k' =
(I+N2 )/(k-2N). Therefore, each region Ll in ~ is both hyperboli-
cally k-convex and euclidean k '-convex. From [MMl, Lemma 2]
we obtain the following result.

LEMMA 2. If LlE ~, then for ZE ..1, VLi(Z) > (Te/4<p) VD(Z) ~
(Te/4<pR) .

THEOREM 2. Suppose n is a hyperbolically k-convex region.
where k ~ 2. Let n = max {'Yn(z) : ZE n} and N = tanh n. Then

> TeJ k - 2N
v o(z) -"4 N (2 - k N)

1

arctan IN(k - 2N)
2-kN

Equality holds at a point ae n if and only if there is a conformal
automorphism T of [) such that n = T (H) and a = T( 0) .
Proof. Select aEn with ro(a) = N. From Proposition 3 we see that
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'Y (a) s ..!. artanh 1= artanhn 2 k

with equality if and only if n is a hyperbolic disk with center a
and hyperbolic radius (/2) artanh (2Ik). Hence, N ~ (k -

~)/2 with equality if and only if n is a hyperbolic disk with
center a and radius (1/2) artanh (2Ik).

First, suppose N = (k - ...J k2 - 4 )/2. Then n is a hyperbolic disk
centered at a and so from Example 2,

1 - r2 (z)
v (z) = n
n rn(z) [2 -k rn(z)]

The right-and side of this identity is strictly decreasing func-
tion of rn(z), so we obtain

2(a) I-NVn z _ [ ]
N 2 - kN

with strict inequality unless z = a. This is the desired result in
this case.

Now, assume that 0 < N < (k - (...J k2 - 4 )/2. We may suppose
that a = 0 since all quantities involved are invariant under con-
formal automorphisms of II). Let I = {z : Izi = Nand ZE an}. The set I
si nonempty and closed. A result of Blaschke [8] for euclidean
convexity readily extends to hyperbolic convexity and implies
that I cannot be contained in a closed sub arc of the circle Izi = N
with angular length strictly less than 7t. Now the proof com-
pletely parallels that of [MM1, ThmA], so all further details are
omitted.

The function
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is strictly increasing on [0, (k - (...j k2 - 4 )/2] with maximum
value

hk (k - J k 2 - 4/2) = !!. (k - J k 2 - 4 )/2)4 .

Hence, for aE [0, (k - (...j k2 - 4 )/2] the equation hk(t) = arc/4 has
a unique solution N(a)E [0, (k - (~)/2].

COROLLARY 1. (Bloch-Landau constant for K h(k, a),
k ~ 2). Let fe K h(k, a) where k ~ 2. Then either f( (1) contains an
open hyperbolic disk with radius strictly larger than artanh
N(a) or else f( z) = e- i'l' F( e i'l' z)for some "'E IR. where

N (a) (2 - k N (a) tan h (l-JN (a) (2 - k N (a) log 1....±2)
k-2N(a) a k-2N(a) 1-z

F(z)=

belongs to K h(k, a) and maps II) conformally onto H ( N ( a».

Proof. Set 0 = f( (1) and N = max {rn(z) : ZE O}. If N > N (a), then
we are done. Assume N5.N(a). Then hk(N) 5. hk(N(a» = «nl«,
Since An(O) = 1If'(0) = lIa, the theorem with z =f( 0) = 0 gives
l/a ~ rc/4hk(N), or hk(N) ~ arc/4. Now hk(N) = arc/4, so N =N(a).
Thus, equality holds in the theorem at the origin, so 0 is just the
image under a conformal automorphism of II) of H (N( a». Since
FEKh(k,a) and maps II) onto H(N(a», we conclude fez) = e-i'l'
F ( e i'l' z) for some "'E IR.

For 0 5. k < 2, the Bloch-Landau constant for K h(k, a) cannot
be determined for all values of a by our method. However, our
method does apply to hyperbolically k-convex regions when
0< k < 2, and a restriction is placed on N = max{rn(z) : z E O}.
For 0 < k < 2 we required that 0 < N < k/(2 + V4 - k2). Then if we
define the region H as before, the arcs bounding H meet the in-
teryal (-1,1) at the points ±R, where R =-VN(2 - kN)/(k - 2N).
Because of the condition on N we have 0 < R 5. 1. Also, these arcs
make the angle 2q> with the real axis as before. We then proceed
as in the case k ~ 2 and we obtain the following corollary.
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COROLLARY 2. Suppose fE K h(k, a) where 0 < k < 2 and the
restriction 0 < a. < (4/rr.) arctan [k/(2 + V 4 - k2)]. Then either
f ( [» contains an open hyperbolic disk with radius strictly
larger than artanh N( a.) or else f( z) = e: iljl F( e iljl z) for some
WE fR.

§VI. Open Problems. The analogs of the applications of the
reflection principle for the hyperbolic metric that were given
in [MM1] and [MM2] are not given here since the method does
not seem to extend to hyperbolic k -convexity. We list some of
these open problems for hyperbolic k-convexity. First, what are
sharp bounds for the hyperbolic curvature (relative to the unit
disk) of a hyperbolic geodesic in a hyperbolically k-co vex sub-
region of [)? Also, determine a sharp upper bound for If" (0) I

when fE K h (k, a.). Another problem is to determine an analytic
characterization of the family K h (k, a.). Finally, find the Bloch-
Landau constant and the extremal functions for K h (k, a.) when 0
s k « 2 when o.~(4/rr.) arctan [k/(2 + V4- e)].
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