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1. THE PRECONJUGATE

. Definition. With the aid of a systematic study by A. E. Taylor
and S. Goldberg, one can gain knowledge about a linear operator T by
studying its conjugate operator T'. However, it is at times difficult to
study T’ when T is a map from tm into £y ,since (£n )’ is rather

complicated. While the conjugate is a map between dualspaces, Y’ and
X', the preconjugate operates between spaces, X and Y. For example,
the preconjugate of an operator from by to lo isa map between e,_
and 4, . These remarks are also applicable to operators on i 8 , the

Lebesgue space of functions bounded almost everywhere.

In the following discussion X and Y will always be normed
linear spaces and X' and Y’ their dualor adjoint spacessT will
represent a linear operator and &'(T) will be the domain of T. Unless
otherwise noted x,y,x’ and y’ will be elements of X, Y, X’ and Y’

respectively.

Definition. A subset F of X' is total in X' if x'x =0

forall x’ ¢ F implies x = 0.

Let A be a linear operator mapping X to Y with® (A) dense
in X. Let T be its conjugate operator mapping Y' to X'. In other
words O (T) = {y'é Y' /y'A is continuous on (A}, and Ty'is
the unique continuous extension of y’A to the whole of X. We would

like to define the preconjugate, ‘T, of T mapping. X to Y.'T should



be equal to A or at least an extension of A. |f x€ LY (A), then
y'Ax = A'y'x = Ty'x forall y'e¢ LI(T). Thus motivated, we say
x€[J('T) if there exists yg Y such that y'y = Ty'x for all yeD(T),
and we define 'Tx = y. In order for 'T to be well defined we require

that the domain of T be total in Y. We give the following

Definition. Let X and Y be normed linear spaces and
T a linear operator mapping Y’ to X' with &(T) total in Y’'. Then
the preconjugate, 'T, of T maps X to Y ond is defined as follows.
An element x e X lies in the domain of 'T if there exists a yeY such
that y'y = Ty'x forall y'€Z(T).
Then 'Tx = y.

Notice that the preconjugate of T is only defined when T is
o map between dual spaces and the domain of T is total. The restriction
that J(T) be total is necessary to insure that 'T is well - defined, for
suppose y and y, are elements of Y with the property that y'y =y'y,=
= Ty'x for all y'€ £7(T). Then by the totality of O(T), y = y,.

It follows immediately from the definition that Ty'x = y’(’'Tx)
if and only if xef('T) and y'€(T). A common mistake is to assert
that Ty’x = y'("Tx) when it is not necessarily true that xe('T)
or that y'e€ > (T).

2. Properties of the Preconjugate. Let A bea

linear operator mapping X to Y. The graph of A, G(A),equals
{(a, Ax) e XxY /xéﬂ(A)}. G(A) is a subspace of XxY. We say

that A is a closed operator if its graph is closed in XxY and that A
is closeable if it has a closed extension. |f A is closeable, let A
denote the minimal closed extension of A; G(A) = G_(.;\-).

Suppose the conjugate, A’, of A exists; i.e.,O(A) is dense in X.
Then A is closeable if and only if FTA) is total in Y'.

If M is a subset of X, then
M= {xe X /xx =0 forall xe M.



Likewise if N is a subset of X', then

°N = { x€ X/ xXx =0 fordl x' e N}.

We first prove an elementary consequence of the definition of
the preconjugate . Unless otherwise noted we assume T maps Y' to
X' and that &(T) is total in Y.

Theorem 1. The preconjugate of T is a closed linear operator.

Proof. Clearly 'T is linear. Suppose that { x4} is a

sequence in & ('T) and that x,-»x and 'Tx.~y. Toshow 'T is

n

closed we must show x€0°('T) and 'Tx = y. Let y'e O/ (T).Ty'is

continuous, hence Ty'x = lim Ty'x,; likewise y'y = lim y' ("TxpQ).
n->o n-»Q@

But x,€L(T) implies y'('Tx,) = Ty'x, Hence Ty'x = y'y

Since y' was an arbitrary element in & (T), this equality holds for
all y'e L(T). Thus x€ £Z('T) and 'Tx = y. B

In the following discussion we assume that the domain of the
preconjugate is dense in X. This will enable usto consider the
conjugate of the preconjugate, i.e. ('T)" exists. We now want to study

the relation between T and ('T)’.

Theorem 2. Let T be alinear operator from Y‘to X' such
that the domain of T is total and the domain of its preconjugate is

dense in X. Then T is closeable and ('T)' is an extension of T.

Proof. Let y'er(T). Then if xe I (CT), wehave
y' (Tx) = Ty'x.In other words, y’," T = Ty’ onD('T). Thus y'e P ('T)’
and ('T)'y’ = Ty'. Therefore ('T)’ is a closed extension of T and

so T is closeable. Clearly ('T)" is an extension of 1.8

We have at our disposal theorems concerning linear operators
and their conjugates, see [1]. In the special cases where ('T)' = T
We can use these diagrams by letting 'T be the operator and T its
conjugate. We wiil show that T = ('T)’ whenever both X and Y are

reflexive or T is the conjugate of some operator. For our first result



we will need the following lemmas. Some of the lemmas are well known

results, and will be stated without proof.

Lemma 1. Let X and Y be normed linear spaces. Let
X xY have the norm H(x,y)l = ¥x¥ + fyll and X' xY’
the norm I (x",y" )l = max { Ix'll , ”y’"} . Then there exists a
linear isometry 1 between X'xY' and (XxY)' defined by

[L0¢, )] (xy) = Xx + y'y
where (x',y') € X'xY’ and (x,y) € XxY.

This lemma permits Y'xX' and (Y xX)' to be identified,
which we shall do. Notice that under the identification z'e (XxY)'

implies 1 = (x',y") where x'x = 2'(x,0) and y'y = 2'(0,y).

Lemma 2. If T is a linear operator from Y' to X' and
Y(T) is total, then (y,x) € °G(T) if and only if x € £ ('T) and
"Tx = -y; i.e., (x,-y) € G('T).

Proof. An element (y,x) isin °G(T) ifandonly if
(v, Ty ) (y,x) = y'y + Ty'x = 0 forall y'e £ (T). Butthis
statement is equivalent to x € £CT) and 'Tx = -y. 1

Lemma 3. If T maps Y’ to X' and the domain of T is

total in Y’ and the domain of 'T is dense in X, then
(°G(T))® = G('T)’.

Proof. An element (Yo" Xo') isin (°G(T))® if and only
if (yg'ixo )y, ¥ = yo'y + xo'x = 0 forall (y,x) e (°G(T)).
But by lemma 2 we have the equivalent statement that y'(-' Tx) +
+ xo'x = 0 for all xef ("T). This, however, is anecessary and
sufficient condition for (yg’, x,') to be in G('T)’. (Recall that
A'y' = x" ifandonly if y'(Ax) = x'x for all xef(A)).0



Lemma 4.1f X is areflexive and N a closed subspace

of X', then N = (ON)°.

Proof. If x' isin N then clearly x' annihilates all the
elements which are annihilated by N. In other words x' isin (°N)°.
Thus we have N C (°N)°.

Suppose xg isin (°N)® but notin N. N isclosed, hence
by the Hahn-Banach theorem, there exists xJ' € (X')' such that
X, (G VF 0 and xo” (x') = 0 for all X' € N. Since X is reflexive,
there exists x, € X such that xo xo ¥ 0 and x'xo = 0 for all
x'€ N.This implies xoeoN, but by assumption X;e("N)o. Thus

x, xo = 0, which is a contradiction. ¥

Lemma 5.1f X and Y are reflexive then XxY is reflexive.

We are now ready to prove the following.

Theorem 3, Let T be an operator from Y' to X' such
that ("T)' exists; i.e.,¥(T) is total in Y’ and JUT) is densein X.
If X and Y are reflexive then ('T)' = T.

Proof. We shall show that G('-r) = G('T)". By lemma 5,
Y’ x X' is reflexive; hence we can apply lemma 4 which tells us that
°G(T))° = G(T) = G(T), By lemma3, (°G(T))° = G('T),
and so G(T) =G('T)'.®

Theorem 4.1f A is a linear operator mapping X to Y

—

such that & (A) = X and IF(A’) is total in Y', then A = "(A").

proof. If xesWandyed(A') then y' (Ax) = (A'y')x.
Hence x&Z ('(A’)) and '(A’)x = Ax. Thus '(A") is an extension
of A, hence of A, since by theorem 1 the preconjugate is a closed

operator.
To complete the proof we will show that G('(A")) is contained
R e il

in G(A) = G(K). If not, there exists x,6 & ('(A’)) such that
(%o, "(A") xo) ¢ G(A).). By the Hahn Banach Theorem there exists



(x',y") & (XxY) (we identify (XxY)' and X'xY' as before)
such that (1) (x',y")(x,, "(A')xq) = X' xq + y'( (") x,) # 0 and
(2) (x',y")(x,Ax) = x’x + y'(Ax) = 0 for all xe& (A).

We first note that y’ is in £&(A’) since by (2) y'+ A = -x'
on U (A). L'(A) = X so there exists a sequence txu} in J(A)
which converges to x,. From (2) we have
—)x'x. + (A'y' )x,=

0 =x'xq +y Axp= x"x, + (A'y')xn

= x'xo+ y'('(A')x.) :
Thus we have contradicted (1). B

Corollary. If T maps Y' to X' with &(T) total in Y’
and T = A’ for some operator A, then T = ('T)".

Proof. T is closed since the conjugate of a linear operator
is closed. By the above theorem, A = "(A") = ‘T.Hence (*T) 1= At

Therefore to complete the proof we need only show that A’ = A’,

Suppose y'€ .D‘(/-\") and A'y' = x'. Then y' Ax = x' x
forall x€ D(A). Thus y'Ax = x"x for all x €L (A) which implies
y€J(A) and A’y = X'

Suppose y'€ L (A’) and A’ y' = x'. Let xo bein O (A)
and let [xd be a sequence in D{A) such that (X Ax,J -2k}, _Ax.)‘.
Then since y'Ax = x"x for all x€.2(A) we have

x' xo= ll_{nw X' xq = 'I‘inL y Axy = vy Axq .
Hence y'; = x on &(A). Thus y'e L (A) and Ay = x.8

If we add the hypothesis that X and Y are reflexive we get
another representation for A. For simplicity we shall denote (X')’

by X'* and (A')’ by A’’.

Theorem 5. Suppose X and Y are reflexive and Jx and

Jy are the respective isometries onto their second duals. Let A be a

linear operator from X to Y with the domain of A dense in X and the



domain of A’ totalin Y'. Then £ (A’) isdensein Y' and
g (A”)Ig = A

Proof. We first note that &(A’) is dense in Y’ since
F(A') isiotal and X' is reflexive. Recall that (Jyx)x" = x"x and
y'(J-Y1 v'') =yt

We first show that J:;' (A'")Jx is an extension of A. Let
x € D(A. To show xe&(JT (A")J))
Jx xef(A""); i.e., we must show (Jx x) A’ is continuous ond (A’).
If y'e &(A"), then

it suffices to show that

"(Jxx)A'y'" = “A'y'x" = " y'Ax"S ny'ﬂ “Ax“ .

If y'e &(A"), then

Y'JY (A”Jxx) = A“ (Jxx)y' :((Jxx)A,y’:A'y’x:y‘A X

Hence since £°(A’) is total we have that Ax = J;l A ,JX x. This
holds for all xe& & (A).

We now complete the proof by showing that G(A) = G(J:r| (A"")J x) .
To see this, one need only observe the following equivalent statements:

i) (xy)€ G(A)

ii) there exists a sequence {x,} in D(A) such that
(xps Ax, ) > (x,y)

i) (x,Jg (A"")Jy %) = (xy) (This follows from the
preceeding paragraph )

iv) (Jyxm A'Jyx) = (Jxx, Jyy)

v) (Jxx,JYy)eG(A") since A’’ is closed

vi) A"(Jxx) = JYy or J-;«‘ (A")Jxx =y

-1

Y
Hence (x,y)G_G(K) if and only if (x,y)€G(J:('(A")Jx)..

vii) (xy)€ G(J (A")Jxx).



3y THE STATE OF A LINEAR OPERATOR.

Let A be a linear operator from X to Y. |f A is one-to-one,
~4 ! A
then A 'is a linear operator from the range of A into X. The state

of a linear operator shall be described in terms of the following :

I. R(A) =Y,
Il. R(A) %Y, but R(A) =Y,

I, R(A) #* Y.

1. A has a bounded inverse,
2. A has an unbounded inverse,
3. A has no inverse.

By the various pairings of |, Il, of |1, with 1, 2, 3 nine
conditions can thus be described relating to R(A) and A . For
instance, it may be that R(A) = Y, and that A has a bounded
inverse, This we will describe by saying that A is in state e s

( written A € '1)' A operator in state | we shall call surjective.

We shall use the above classification for both T and 'T.
To the ordered pair of operators (T, 'T) we now make correspond
an ordered pair of conditions which we call the ‘‘state’’ of (T, 'T).
Thus if Te |5 and 'T € 11, we say that ( T, 'T) is in state
(ls,llli)(wriﬂ'en(T,'T) € (ls,lllﬁ)).

At times we shall use a notation such as (T, 'T)e( 12, 3)

to mean that T g I2 and 'T has no inverse.

We shall now exhibit several theorems which will enable us
to determine which states can or cannot occur for the pair ( T, 'T).
The attention of the reader is called to the symmetry between theorems
2and 3, 4and5, and 6 and 7. Remember T will always map Y'to X’;
hence 'T maps X to Y.

10



THEOREM 6. If therange of T is total in X' then 'T is one-to-one.

In particular, 'T €3 implies T € I|I1l.

Proof. If "Tx = 0, then for y'€(T), 0 = y' ("Tx)=( Tyd x,
andso x = 0.1

THEOREM 7. If the range of 'T is dense in Y, then T has an

inverse.

Proof. Suppose T has no inverse. Then there exists a
Yo € LY (T) such that y ) *# 0 and Tyy' = 0. Say y,'y #0. The range
of 'T is dense soc we can find a sequence {xa} in S('T) such that

"Tx, - y. Butthen 0 = (Ty ') xo=y,('Tx) = y,'y # 0.8
We state without proof the following well known

LeMMA. A linear operator A does nothavea bounded inverse

if and only if there exists a sequence {xu} in the domain of A such

that |lix4l->ee and Ax, —> 0.

THEOREM 8. If R(T) = X', then 'T has a bounded inverse.

Proof. In the theorem were not true, then by the lemma
there would exist a sequence {x,} in &'(‘T) such that ixul] = o=
and "Tx,>0. Let 'Tx, = y,; then for all y'e J(T),y'ya=y Txa=
Ty'x,~>0. Hence since Tis surjective, x'x,—»0 for all x" & X.
As a consequence of the Uniform Boundedness Principle, lix.)\ < M

for some M. We have thus reached a contradiction.®

THEOREM 9. If Y is complete and 'T is surjective, then T has a
|

bounded inverse.

Proof. Suppose the theorem is false, then by the lemma
there exists a sequence {yn} in &( T) such that Ty,'—=0 and
Ny >0 . If xe JCT) we have (Ty, ) x=y '('Tx) — 0.
R(T) = Y, hence y,'y =0 forall ye Y. Y is canplete, therefore
by Uniform boundedness Principle, the sequence {y“'} is bounded

which is a contradiction. §

11



Theorem 10. |Iftherangeof 'T isdensein Y and 'T

has a continuous inverse, then T has a continuous inverse.

Proof By Theorem 7, T—J exists. We shall show itis

bounded. First note that since 'T has a continuous irverse,

1, Nen=l
Vx| T i Il

forall x+0€ & ('T). This gives us the following expression :

‘(T-'x' )yl l(T-‘x')'Txl
Wt el = SUp: TR S SUp L T T =
0 xe(’ ’
y# lIyll Xabo( T ITxl
28 oy | 717 x )xl : BT xR lx ;::&,Tgx I dC D)
x %0 W Txil x+0 'Txll  x+0  yxy

= Mxl e,

Observe that the second equality is valid because R('T) = Y.

Theorem 11. |f therangeof T is dense in X' and T4

exists and is continuous, then ('T)'t is continvous. (If T€E 11 or

”1' then 'T € 1.)

Proof  This proof is analogous to the one above. Notice

that since T * is bounded we have fary+ 0 in (T)

1 (A

WA

Nyl Iyl
: 3 | x" x|
and thatif x € X, then x = sup

12



By Theorem 2, ('T)—‘ exists. Hence if y € R('T), then

g | ¢ Ty Dy

lcm ‘y“ = sup n = sup —{—"—‘_’—,:
£0 Xl j:*g(T) Tyl

2 fy' CTeT 'yl y' - Iy Iyl A T

e &esm _Tn'—u_’sf"é‘fa

g0 Tyl y' 40 y%0  ly'l

= (lyll T . Hence T is bounded. §

Lemma. |f Aisaclosed, continuous linear operator from

a normed linear space X into a Banach space Y, then O(A)is closed.

Proof. Suppose x is a limit point of #(A) and {xn} is a
sequence contained in J(A) converging to x. A is continuous, hence
{Axn]’ is a Cauchy sequence in Y. Y is complete, therefore there
exists a y € Y such that Ax,—y. Then since A is a closed operator

x must be in the domain of A.l

Theorem 12. |f X is complete and 'T has a continuous

inverse then R('T) is closed. (If X is complete then T ||1)

Proof. By the Theorem 1, 'T is closed, hence G

also closed. Thus we can apply the lemma to ('T)—‘ and the result

follows. |

Theorem 13. 1f X is reflexive and RT'F) * X', then 'T

is not one-to-one.

Proof If E(-'F) # X', then by the Hahn-Banach Theorem
there exists x''# 0 in (X’)’ such that x’'(Ty’) = 0 for dll y' € S(T).

Since X is reflexive there exists an x € X such that x # 0 and

Ty'x = 0 forall y'€ L (T). But then x€J('T) and'Tx = 0.1



4. THE STATE DIAGRAM OF PAIRS (T, ‘'T).

Similar pairings were first done by A. E. Taylorfor a bounded
operotor and its conjugate. In order to present systematically which
states can or cannot occur for T and its conjugate, a ‘‘state diagram '’
was constructed . This diagram is a large square divided into 81
congruent smaller squares arranged in rows and columns. Each column
is labeled at the bottom denoting a given state for T, and the rows
represent states for T'. The small square which is the intersection of
a certain column and row denotes the state of the pair (T, T'). Squares

belonging to states which cannot exist are blacked out.

Based on the theorems of the last section we have constructed
such a state diagram for T and its preconjugate. A square is crossed
out if the corresponding state is imposible. |f a square contains X then
the corresponding state cannot occur if X is complete, likewise for Y.
X-R in the square implies that the corresponding state will not exist

if X isreflexive.

STATE DIAGRAM FOR AN OPERATOR AND ITS PRECONJUGATE

111, X-R[X-R

Y
]”2 x| Y X-R X-R| X-R

1L [ xer [ xr X | YR R | X-R

1,
11, Y
Iy X

14



2 - EXAMPLES OF ADMISSIBLE STATES

We have presented a state diagram for the linear operator and
its preconjugate. The obvious question now is whether any more of the
squares can be crossed out. In this chapter we will show this is not
possible by exhibiting examples of operatorsalong with their conjugates

which have states corresponding to the empty squares.

In all of the examples T will map between the infinite sequence
spaces 2‘, 81 and fy . Thus 'T maps between the spaces such as

o 22 . 91 and in some cases a dense subspace of C_, 22 or 21 s

We begin by proving some propositions concerning various
linear operators between sequence spaces and some theorems on linear

operators in general .

Propositon 1. If Ty’ =y’ then 'Tx = x and

HUT) ={xe X/ xeY}.

Proof. Given x e X, then Ty'x = y'x for all yeY,
hence for all y'€ I(T), Thus x€ ('T) whenever x¢ Y and 'Tx = x.4

Proposition 2. If T(y,, Uz"") = <U1.' 2u,, 3ug...)
then 'T(xl, Xy ) B (x’, 2x2, 3x,, ...) and

oen = {(x ' Xgp nHyve X /(x,, 2%y, 3x3,...)e Y‘
We shall denote this operator by U.

Proof. If x € X then
Tylais (u1, 2u,, 3ug, . .0) (x,, Xz"") = uy %y ¥ Wog xgiich
+ 3u3 X3+ AL =0/ ug, 49%) (xl, 2x,, 3x,, w3 ) =ty Te)
forall y'e Y. Thus the desired result follows.B

Proposition 3. If Tlu, uy,...) = (uy, 1/2u2, 1/3u3,...)

then 'T is the same operator with J('T) =

{(xi, x3, "')GX/(XL’ 1/2x,, 1/3x5, ...)GYE 7

15



We shall denote this operator by D.

Proof. Ty'x = (ug, V2up...) (xg...) = ugx, +
Fo s J Qg i - onn 1B (u‘_, y ,...)(xi, 1/2x1_,...) = y'("Tx)
forall y' € Y'. The proposition follows. 8

Proposition 4. If T(u, upen) = (v, ug...) then
"T(xy, Xg,+-2) = (0, x, x,,...) and
BOT) = { (0 gy s2) 0, X7/ (0, %y Xgusrs ] € X § »

Proof Ty'x = (uy, ugeer) (Xy Xy een) = ugxg +

tugxy oo = (Ui' UZ"") (0, %y, x5, 00.) = y'('Tx) for dll y'¢ Y.

Hence when T is a shift to the left 'T is a shift to the right.}
Proposition 5. If T(u,uy,...) = (O'U1’U}:"") then

'T(x1,xl,...) = (xz,xs,...) and

TCT) = { (xg, xg000) € X/ (%, x5 ... )€Y Y,

Proof. Ty'x = (0, R T eed) (xi, Xgr +e s ) =

U, X

g X T UuyXg ool = (u,’,uz, ...)(xz,xs,...) =vy'("Tx) for all

y'eY. The desired result follows. 8

We shall denote the operator which shifts to the right by R
and the one that shifts to the left by L. So far we have shown that
'D =D 'U=U 'R=1L, and 'L = R.

THEOREM 1. Suppose A maps Z' to X' and B maps Y’
to Z'. Then if &(A) is total in Z' and J(B) is total in Y’, '(AB) is

an extension of 'B'A.
Proof. Let x€e'('B'A) and y = ('B'A)x. Then
i) xed('A) and z’("Ax) = (Az') x for all z'¢ O (A) and
ii) 'Axed (’B) and y'('B('Ax)) = By’ ('Ax) for all
y'e £ (B).
We must show that y'y = (AB) y’'x for all y'e [D(AB). But



if y'e L(AB) then y'€ £(B) and By'€ A (A). Hence by i) andii)
y'y = y'(B('Ax)) = By'('Ax) = A(By')x. 8
Proposition 6. |f T(ui, Uz"") = (]/2u2,1/3u5,...)0nd

the set
S={Dx / xe X}

is contained in Y, then
'T(x‘,xz,...) =%(0, 1/2)(.1, 1/3xl,...\ ad &(T) = X

Proof. T = LD where D:Y' — X',mD) = (T) and
L:X'—» X' with &(L) = X'. Hence by the above theorem 'T is an
extension of 'D'L. By propositions 3 and 4 and the fact that SCY,
itis easy to see that Z(’D’'L) = X.

Thus 'T = 'D'L = DR and D('T) = X. 1

Proposition 7. If T(U_L, u‘,...) = (0, Uy, ]/QUZ."")
and S is as described above, then ‘T(x,, xz,...) = (xL, ]/2x3,... )
and JU'T) = X.

Proof. The proofis similar to the one above. Here T = RD
and 'T = DL. 1

Proposition 8. If D:ﬂP—" 2,{ and if all (exceptperhaps
a finite number) of the coordinate unit vectors &; are contained in

the domain of D, then D has an unbounded inverse.

Proof. Clearly D is one-to-one. The norms of the ng, go
to infinity in 1.? but the norm of T( N,E") in ﬂq' isone.Hence T7%

is unbounded.B

Corollary. |f D is followed or preceeded by a right or left

shift then if the inverse of the composite map exists, it will be unbounded.

Theorem 2. Let A be adense subspace of X and A the
isometry from X' onto A’ defined by 2x' = x' restricted to A. If
T maps Y' to X' with &(T) total, then 'BT) = 'T restricted to A.

17



Proof. M8:A—> X is the identityon A for if x& A and
x' € X' then x'x = x'x. We know by theorem 1 that ‘(2T) is an

extension of 'TiR = 'T restricted to A.

Since '(AT) maps A to Y, to complete the proof we need
to show that if x € 8'(DT), then xed ('T) and (AT)x = 'Tx.
Let x€dB'(AT) and y = "(AT)x. Then O(Ty')x = y’'x for all
v'e I (BT) =F(T). But since x € ﬁ,(JlT) implies xeg A, (Ty')x=
Ty’'x. Therefore Ty'x = y'x forall y'€ 4 (T).8

Theorem 3. Let A be a dense subspace of Y and & the
linear isometry mapping A’ onto Y' defined by a’ the unique
continuous extension of a' to all of Y Suppose T maps Y’ to X'
with &(T) total in Y’. Then '(TA) mapping X to A is the restriction
of 'T fo{xeﬁ’('T) /'Txe A} .

Proof. We first look at & which maps Y to A. If ye A

then #a’y = o'y for all o’ € A’. Hence A is contained in the domain
of "R and Ry =y forall ye A. Since R®) = Y' we seeby the state
diagram that A is one-to-one. Therefore f (:2) must equal A and L is
the identity map.

By theorem 1 we know that "(T4) is an extension of 'A'T ='T
restricted to {xe & ('T) / 'Tx € A}. Suppose x&J '(T). Then there
exists ae A such that (T)a’'x = a'a for all d'e S (TR). But since
F(TR) = X' @), (1) (Xy)x = (FY) o for all yie H(T).
Hence Ty'x = y'a for all y'€ & (T). Thus x€P(T) and *Tx = "(TV)x.
Since '(&T) is only defined on A, the theorem is proved.®

In all examples A will be the subspace spanned by cooodinate
vectors. If it is notclear which norm is relative to A, then we will let
Ay be the subspace of £, and A, of £ and A, will have the

‘e . ”
maximum norm .

We are now in a position to examine efficiently examples which

will show that the thirty-three remaining squares cannot be crossed out



without strengthening the hypothesis. It should be noticed that in
the theorems in section 3 we did not require that the domain of the
preconjugate be dense in X. One might think that with this added
hypotheses fewer states could exist. It turns out that this is not the
case, for in each one of the examples the domain of the preconjugate

is dense in X.

When the details of the verification of the examplesare obvious
or follow immediately from the proposition, the operator and its

preconjugate will just be listed.

(., ) T:[z—)cz,ﬁ(T) = 22 and Ty’ = y'.

1’1
T 0,707 =4, and 'Tx = x.
( I)Tl——)c ﬁ'T)—AondTy:y.

'T is the identity operator on 2,, s

(1, 1) T: =8, &(T) = C, and Ty’ =y
'T is the identity map from Zi to li :

(11 lz, lz) Let R be the isometry from A, onto C, = e’,
and let T, be the identity map from 21 into fy. Then T: Al—{,,
withP(T)= A, and T= Toﬁ. Clearly T€ |l]l and is one-to-one.
To show T % is unbounded we exhibit a sequence in &°(T) suchthat
the norms of the elements in the sequence go to infinity but their images
under T have norm one. Define the SPWIES fvn § in Q, by
Y = Zl;_“(]/l) . Then Jyn' )| = ZJ]/I—’W and

NGy, = max { 1, 1/2, ..., /n } = 1. The sequence that we
want is {&“’yﬂ'}.

T Qi——) Ay "Tx=xand 'T) = Ai‘ 'T has an unbounded

inverse for the same reasons that T has an unbounded inverse.

(li' | li) Let T:li—? A, be the linear isometry from ﬂaonto A:,
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By the proof of theorem 2, we see that 'T:Ag=— C, is the
identity map on Ag.

(1 Ii’ I1y) Let T be the isometry in the above example, only
let J(T) = A,. "T is the identity map from A to C,.

(11 |1 oy ) Let T be the isometry from fyonto Ai' restricted
to C,. 'T is the identity map from A, to |

(g, 111) Let T:g.—» £, H(T) = L, and T is aleft shift.

'T: L= 31,3’('T) :Qz and 'T is a right shift.
(See proposition 4).

(I 15 S |1) Let T be the above example restricted to A.

(Illd, I |1) Let T: fo= 8 withd(T) = C, be a left shift.

'T: ?1—" li is a right shift with J('T) = 24 ;s

(11 |1, | |3) Let T: lz—’Al', O(T) =8, and T =3R where
R is a right shift from ez to Iy ad & is alinear isometry from !1

onto Aj.

T:Apg— cz and by theorem 2,"'T isthe restriction of 'R to

A, . Hence 'T is a left shift. (See proposition 5 and thearem 2).

(1, 1g) T: B~ H(T) =& and T is a right shift.
'T is-a left shift from l’l onto (’Z‘

(llz,llz) Let T: !'z,"’ QZ,P(T) =0,,and T = D. Recall
that D: (u,, Uys ov ) = (uy, 1/2u,, 1/3uy...) ). The element
(1,172, 1/3, ...) is in lz but not in R(T). By proposition 8, Te2. .

'T:lt—fl , &(T) :EZ’ and 'T = D, by proposition 3.

(1, 11,) Let T: =0, &(T) = od T =D.
’T:Q’—; G H(T) = 1‘ and 'T = D«

(I1,,1,) Let T:A—> 8, H(T) = A" and T = DX where 3

ts the linear isometry from A’ onto 22, ‘
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'T:, = A and by theorem 3, 'T is the restriction of'D=D
to {xe X / 'Dx € A}. Hence 'T = D&'T) = A.

(1, ,115)  Let T:8—» & witho®(T) =L, be defined by
T = RD. (Recall that R is a right shift).

’T:iz-’ ?,2, and by proposition,7, T = DL and HCT) = f&.

(111,,15) Let T:A—> fz, be defined by T = T,& where T,

is the operator of the previous example and 3 is the isometry from A’
onto lzﬁ(T) = A,
'T:4,=> A and by theorem 3 &('T) = A and 'T = DL.
(Hg,111,) Let T:02—> 0, 7T =0, and T = LD.
" ‘t{" lz and by proposition 6, J1) =4, and 'T = DR.
LD,

(11, 111,) Let T: 3% Ly, BT) = £ andlet T
'T:0—~> 0, B(T) =4y ond 'T = DR.

(I1g,111y) Let T:§,— 8, and Ty’ = 0 for all y' EL,
'T:Rx—) 2, is also the zero operator on 81 for if x & QZ, then
Ty'x = (0)x = y'0 for all y'Gcz .

(111, 111y) Let T: 020, , B(T) = A and
ire. )i

T(uj, Uy, b= (uz—u‘, Uy=Uy s Ug= Uy, -

It is clear that Ty’ isin l,,. ‘

First we show that T has a bounded inverse. Let
n
y' = 2 wig,
i=1
|f uy .12k Y'“, then
“TY’ “ = max { ‘Uz -Ul‘l R IU'\"UIII\Ui“)

ol > 172-\ vl
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Iflug| € 172 - ly’| then there exists an integer i between 2 and
n such that §y'|[=lu;l. Hence 8§ Ty’ll >{u; —u, bay’f — 172-0y’L.
Thus ATyl > 1/2-0y'[| forall y'e (T).

To see that T € 11l, one need only note that Tis continuous
I (T) is separable, and Lo is not.

T4y M =l ad "Tlx, xy, .00) =

= (=2«

[y

PRV SYREE ), forif xe 01

Ty'x = (uz-u1, ug 'Ui"")(xl’ Xgy e0e) =
oo
= u, (— E. xg) Fupgx, tugxy +a.. =

- (Ui’ Uy ...)(-—%x‘, Xy Xy ced) =y (CTx).

()
Proposition 9. H Z{ (x,,xz,...)/ ¥ 75 x; = O}is

=)
a closed subspace of 81 .

Proof. Clearly H is a subspace. Suppose the sequence

",x,\_} , Where x, = (x:‘, x;_“, .), isin H and converges to

x = (xl, Xy ...). Given £>0, there exists an integer N such that

0o
Nx - an = _Z.‘xl—xz”(f.

=1\
Hence
Oo » oo [ had
‘in\ =\ .Z_‘_.x-‘~0‘: ‘in— Z, x?‘ < Z_lxi‘-x?|<€\
i=g =1 =) = =1
Thus \ix;i: 0.X

L=y

(I, 11ly)  Let T:B,—> g withP(T) = A, T=RT,

where T, is the operator in the preceding example and R is aright

shift. Clearly T€ Il1l. T €1 since both Tg' and R™ are continuous.
i i 21"’ 2_1 and by theorem 1, 'T is an extension of

"T,'R. But sinceﬂ('To'R) sl tTie gk (4 and &('T) = 01 Hence
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rT(Xy Xz,...):(_Z.“’ Xz, xz, xa,...)-
i=2
'TE€Illl for RC'T) = H and 'Te 3 for 'TELZ 0.

(Hy, 11ly) Let T:@5>€qwith &(T) = A and T = DT,,
Ty is the operator described above. T is one-fo-one since it is the

composite of one-to-one maps. The sequence inenk < D7) and
llngal = n butforn> 1, WTne, ll= HDng W = MEM = 1.
Hence T has an unbounded inverse.
'T:6>€ J('T) =€y ond 'T = 'TyD. In other words
xgrevs) = (-Z:ll/ixi, V2xy V3xg, ... ).
Proposition 10. The set{ A / h=-€,} is total
infp for 1< p<eo.

'T(xi,

Proof. Let x = (x4, x3,...) bein C, orEP, I<p<oo.

Suppose .A‘x =0 for i = 1,2... Then &x =& 4x or xj = Xi_q
for i = 1,2, .... Butsince x isin Cg or CP for ]S.p«n,xi—) 0.
Hence x; = 0 for each il

Proposition 11. If T:€p—>€P, 1 < p<eo , isaleft
ghift and if L(T) = H, thenTis one-to-one. H is the set in

proposition 9.

Proof. Suppose T(xg,x,,...) = (x, xb.,...) =20
Then x; = 0 for i = 2,3.... Butif (xl, X, +++) € H, then

0
Xl s -Ei=1 x-|.

Hence x; = 0.

(I, M) Let T:&,DT) = H and T isaleft shift.

T is surjective for if (wi, Wy ...)e¥,, then

<o
T(‘ Zi:lwil w‘l“"") = (wll WZI"'\ and
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<0
FZ‘-:'}.WI, wz,...)EH. Tel forif y' =(u, uz,...)eH,

thenuTy’“ = ‘u?_‘ + ‘U3\ IR A ]/Q(IUZ] +|us\+ cee + Ugt Ugte)

]
1/2(Ziqui+ Uy + Uy e = 120 ytu, +..0) = 172000\,

We first note that by proposition 10, H is totai in’gi, hence
'T exists. 'T:Co-" COQM'T) = Co ond 'T is a right shift.

(I, ) Let T:fl—»ei be the operator in the above example
restricted to AN H. Note that AN H is total in €4 = C'o by
proposition 10.

'T:Cy>Co and o ('T) = Cy and 'T is aright shift.
(|2, llli) Let T:-ﬂz—)‘ez,,f{(T) = H and T is again a left

shift. As is the example ('1' Illi), T is surjective and one- to-one.

T-Yis unbounded for the sequence {xn] where
n+1
x, =¥n Si-El.z?fl/iﬁ)Ei - (ﬁ%...;v‘a, 0,0...)
is contained in H Z-&(T) and “X““: Vin + 1, but “Txn “ —

:V Z{Ll(l/n) = Toi

'T:[zﬁez , FET) Z{glnd 'T is aright shift.

In the rest of the examples we shall use the subspace B
described as follows. If S is a subset of a linear space then sp{S)»
is the subspace generated by S or equivalently the smallest subspace
containing S. Let x5 = (1, 1/2, ]/22, 1/2%, ...). Then

B = splx,> @ Sp({Ez, 83,...}>

where @ is the algebraic direct sum.

B is total in ‘eP for B contains the set

{xoh €246, }

which is total.

Proposition 12. |If T(P—*ep is a leftshift and if
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m‘f) =Bthen T is one-to-one.

Proof. Suppose Tx = 0. If xe@B then x is of the form
(k, x4+ k/2, ..., xpt k/2n, k/Qn*i, «..). Hence if

0 = Tx = (x, + k/2 ..o, xpt k20 k/2M1, )
then k = 0. Thus xj = 0 for i = 1,2 ..., n. Hence x = (O} |

(I, My) Let T: &yl FT) = B and T be aleft shift.
T is not surjective for all of the elements in R(T) are of the form
P, S0P " k™ LR
T(sp({EZ, és, })) D T(sp&xey) = AD sp <T9 which contains A.
Hence T € Il. By the above proposition, T is one-to-one. T & 2 for

sequence \xn‘ where
20 .
xp = 278 "Z‘\mﬂ(zn/z‘ﬂ)e'\ = My #
B 2770w L T2 M )
is contained in B =-0/(T) and ‘Xn“ = 2n+1' but

WTxpl: =W(004,0,0:20000, 3% = 1.

Hence T~! is unbounded.

"R Cy =Y Co,-a'('T) = Cp and 'T is aright shift.

(Ily, 11ly) Let T:f2d, A1) = B ond T isaleft shift.
To see that T€lll we note that T is continuous and H(T) is separable.
Hence E(TF) is separable.

By proposition 12, T is one-to-one. Let (xn} be the sequence
of the previous example. We see that the norm of xp in (.,o is 2 and
the norm of Txp is 2™, Jhichis less than 1. Hence T has an

unbounded inverse.
’T:@pé’i,ﬂ('T) 3-61 and 'T is aright shift.

(Ilg, 1) Let T:€g€XT) = B and T = LD.
T is continuous, hence T(B) = R(T) is separable, thus Telll.

T is one-to-one since it is the composite of two one-to-one maps.
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Te€ 2 by the corollary to proposition B.
'T:€‘—a€“ & (T) :g and 'T = DR.

(Hg 1112)T: 426 ,O(T)= Band T = LD
'T:Co—> C,.8('T) = Co and 'T = DR.

Proposition 13. B is dense in Co-

Proof. Given x = (UL, Uy «..) €Cq, the sequence{xn}
defined by

Xp = Uy xg + Z_-::i(ui -ug ]/2"‘)5\ = (ug) eeey U Uy P
isin B.

Suppose E'> 0 is given. Since x € Co: there exists a

positive integer N’ such that if n > N’, then \”n\ < &€/2.There

also exists a positive integer N'' such that if n ) N'' then

1/20  waiie a\u\ «Let N = max{N’,N""}, Thenif n)N
“xn -x || —\\Z lui/2"‘ -ui)“ = mo;‘( \u1/2 -uH_‘\ <
12

max |yl /2'+1 Flomls ol o+ 82-¢1
i2n 2|
(Illx, ”2) By the previous proposition B’ is isomorphic to

Co = él' Let .& be this isometry mapping 41 onto B'. Let
g i 4_"” B'/i&(T) :e}, and 'T = d R where R is a right shift. TEl

since it is the composite of functions which have continuous inverses.

'T:B—> Co,'b('T) = B and 'T is a left shift. To see that
'T € 2 seethe first half of example (111,,1114).

(llli, |2) Let B = A @sp (172, 1720 ... ). It isclear

that B, is dense in Cgq since it contains A. Hence Bg is equivalent
to ‘el' Let QO be this isometry from flonfo By and as above let

be the isometry from fi onto B’.

Let 'T:Bo—>B',8(T) = Byand T -IRY; .
'T:B=B,L£(T) = B and 'T is a left shift. 'T issurjective _
for R(T) = T(B) = B
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3. APPLICATIONS

1. The Conjugate and Preconjugate of a Differential Operator.

LP(S), ]ipsﬂsholl denote the set of complex-valued
functions f on the set S with the property that \f\P is Lebesgue
infegrable.i’P(S) is the set of equivalence classes of L p under the
relation ~ defined by, f~r g if and only if f = g a. e. (almost
everywhere). The equivalence class incfp containing f shall be

represented by f. ‘fp is a Banach space under the normlmk ( SSIH P)'/P

L oo (S) is the set of complex-valued functions which are
bounded a.e. If f isin Loo(S) and K is the set on which fis bounded,
then the least upper bound on K of |fl is called the essential bound of
that function. olee is the spaced of equivalenceclasses of Lieo under~
defined obove.ef.ois a Banach space with the norm“;ll = essential
bound of f.

Let p’ be the codimension of p, 1/p + 1/p' = 1 (1/ke= 0).
Then for 1 < p<co the map &:fp(fp’)aefined by &g(f) =
- ng, 564, f.ef?, is an isometry between ofP and (efp')'.

A complex-valued function is absolutely continuous if its reai
and imaginary parts are absolutely continuous. A function which has

a continuous derivative is absolutely continuous.

| shall denote a real interval, not necessarily bounded. Cn(l)
is the set of all complex-valued functions defined on | whose n¥h

o0
derivative exists and is continuous. Let Coo (1) = N % Cn (n.
n=

With D as the derivative operator, we define
An(l) = {ftLp(l) / Dn-lf is absolutely continuous on

every compact subinterval of I} .

We represent the formal differential expression

n n-1
anD" + aq D teeo-a, D +as
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d; € Coo(l), by T. We shall assume that a () # 0 forall tel.
T is the differential operator mapping 4“) to ‘fq(l) defined by
Tf = T’ (where fe AnNf). The domainof T is

BTy = {f.eofip(l)/f & Ap(l) and 't’felq“)}.

The purpose of this chapter is to find a restriction of T which

is surjective and has a continuous inverse.

A function defined on a subset A of the real line has compact
support in the interior of A if there exists a compact set K contained

in the interior of A such that f(x) = 0 for all x€¢K. Let

Cc
An(l) = lf € An(l) / f has compact support in the interior of | }

and

C&(l) — {f €Cooll) / f has compact support in the interior of l} .

Then Tc is the restriction of T to the set

B (Teye= {8 eif,(l) /feAq() and Trelqm].
The set, {f o/ fECoco(l)} , is dense in IF(I), 1<p <% andtotdl
in (Il(l))'g ,l:(l). Thus T’ exists for 1< p¢oo and 'Tgexists
for 1< p € oo

2. THE FORMAL ADJOINT 'C'*AND ITS CORRESPONDING

»*
OPERATOR T .

From now on we shall omit | from expressions such as Ah(l)
In order to investigate the preconjugate of Te, we consider Te
as an operator from (‘fP‘)' to (-fq')' when 1¢p, gSoo ,
We let <QP f?(fr)'be the isometry defined above by J)Pé (f) =

:s fg for g.;eafp and f.eiup' . <Cc‘ 7°fq"’ (fc")'

is defined similarly. Then
D) = {4/ ielp, fe Ap ond T eXq}
and Tc <0Pf. :<‘)q Tf. Thus for all <9P f‘ Cn(Tc) and all

'
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(TeDp ) () = (Dq T (h) fhtf

We now let | = lo be the compact interval [aq, b] . Then
h € Ap(lo) is bounded, say by K. If fe An(lo), then \Tf\ is
integrable, and thus |hT f| < g f‘K, implies h Tf is integrable.
We have
b b b b
Saht’f = L aphf + Sa agh Df + ... + Saanh D"f.

Since Dkf is integrable and ayxh is absolutely continuous, we can

integrate by parts and for k = 1, 2, ..., n obtain

b

L

If k-12 1, we can integrate by parts again, and after repeated

b
agh D¢ = agh D¥Yg ]Q - LD(akh) 5 i 8

integrations we obtain

b b , b
fa agh DX = ogh D“"f] . - D(g¢h) D*” f]a $ii
K1 g
+ 1 (°xh + (1) S *(a < f.

Thus

Sh'(f _Z Z‘, 0L D" (a h)D""f}L
st (-1 D¥(ach) f.

Let us denote the double sum by b P2

In the following lemma we shall show that if f has compact
support (which it does in D(Tc)) then ZZ = 0. We define T the
formal adjoint of T, by

= Z o (DX DXayh).

The following properties are well known.
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b b
(1) If h and fe A,, then L hTf -fa f ™ =£Z,

*
(2) ’C(ag+bf):at*g+bt’h,
3 = T
(4) The leading coefficient of T ism constant multiple of a,.

We define T* mappingzz., to-f', by T*i x t’.f with

B ={$eLq /fehn ond t"fefP} ;

Lemma 1. ' As above let |g = [a, b]. If feAﬁ(Qand
h € Ay(lo), then h Tf and fT*h are integrable and

Sah‘Cf =),  tT%h
K

Proof. Since f€& An(le), D'f (a) = D (b) = 0 for
k=01 ..0.n. Thes ZZL="08

3. reLaTions seTween Ty, Te and b Rl Thefo llowing
theorems stated, without proof, are well-known. It is not necessarily
compact.

Theorem 1. Suppose g is complex-valued and integrable
over every compact subinterval of I, i. e., g is locally integrable.

N
As usual T :Zi‘laiD' and an(t)# 0 forall t & |. Then given t5€ |
and n arbitrary complex constants Cor i Spar there exists a unique
f € Ap such that Tf = ga.e. and

DX f(tg) = e k =00 .00, n-l.

If f is continuous, g is absolutely continuous, and Dg = fa.e.,
then Dg = f. If hé@l), ] £ p<oo then h is locally integrable .
This follows from the fact that for a compact interval and for

1$p age, Lala cLp (o).

Theorem 2. The set of solutions in Ap tothe differential
equation Cf = 0 is an n-dimensional subspace of C o0 .
Proof. Let tg be a fixed point in |. By the previous

theorem there exists unique functions fgr vees fq in An suchthat
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sz = 0ae andfor j = 1,..., n.

Di-{:Jﬂ (t5) = S.,j (Kronecker delta).

To see that the f;’s are linearly independent, observe that if
J i = 0. Then 0 = Dz:J1 30 = divts for
T Sl o i

Suppose f€ Ay and Cf = 0. Let

- Z;Lo(DJf(fo)] Fing -

Using the uniqueness established in theorem 1, we shall show that

-f = 0. We first observe thatfer i = 0, ..., n-1
Di(§-9) (to) = Difte) - Ly o D'Fttg) ) DHhj,q(t0) =
= D'f(ty) - D'f(ty) =

Al so since th = 0 a.e., wehave T(t - g) = Oa. & Hencef-gq
and the zero function are both in An and satisfy the conditions of
theorem 1, so they must be equal. Thus f is a linear combination of
% ’
the f‘ s
To complete the proof we must show that all of the solutions

arein C oo . First note that if CTf = 0, then
n-1 .
D"f = -(1/aq) 2 a3 D'f.

Hence D™ iscontinuous and differentiable. We take the derivative of
both sides and then D™Y¢ s a linear combination of the first n

derivatives of f | Thus D™ is continuous and differentiable.

Theorem 3. If 1£p, q<ca, then T,' = T* and if
1< p,qs00 ,then 'Te = T*.

Proof. We shall only prove the theorem for the preconjugate.
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The proof for the conjugate follows similarly.

We have T : (nfpl)'-—) (L)' with

°5(Tc) :{ -C()Pi/;ef,fEAﬁ and t.fefq }
and Tcgfi :th.f. Thus for 1<p, g <o , 'Te ;;qu —)fr,

exists and
H0Te) = {8 ey Tc&‘j @) =Dpf(h) for some heXor
and all Dofe H1Te) }.
Also T+ : g Lo and T*§ = T*'g with
L% = {(§edq /i eAnamd T edpl.
Suppose §e (T*). We must show that Tc&Pf'(g) -
= Dp f (T*"g) for all A)Pie H(T,). lf-':_OPf eD(Tc), then feAS,

and thus by lemma 1

Sgtf = Sf T gl
Hence TeDpf (3) =DqTF(3) = [+ :f £T* g = <9',E (T*q)
We have shown 9(T*) CIl'Te) and T* = 'Te on H(T™).
Now suppose 9 &D('Te).
Letting h = T, 3, we have §en =Dei () = Dpf ('Te) = T8 9 =
IFt (9 = ysu for all <0‘,f € J(Te). Thus for JPF in HTe),
(m fl(tf) g = -(If h.

To show ge D(T*, it suffices to show that for any
compact interval Iy = [a, b ] contained in I, that g is equal a.e. to
a function in Ap(l) and T is equal to h a.e. on [.

Define Do = {_f /-&P;‘ eoa'(Tc) and f has support in I°} :
For fe& Do, it follows that D®%f(a) = D"f(b) = 0, 0 £k £n-1, and
therefore successive integration by parts yields the formula
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0

t n-k-1
K
@ D f@) = Sq TRITATY o"(s) ds telo b).

Since f vanishes outside of I, it follows from (1) and (2) that

b P l, + n-K-1
(3) qc1n(s) g(s) an(s) ds +Z gdf Ig &() o(t) (L: _\<S))\

(t S\'\l
S j h() Gy T D" F(s) ds.
Each of the integrands in (3) isin Ly (IX 1) since ay is continuous

on I, gely (lo)cly () and felpllo)cly(lg). Thus by Fubini's

theorem we may change the order of integration in (3) and obtain

b b n-k-1
(t-s)
4) 0= Sa D" #(s) ‘n(s) gls) + ng—skﬁ W1 o) dt -

b n-1
(H-f)
Ssmh(t) dt } ds

forall f € Dg.

l'\f(s)ds

Let F(s) be the expresion inside the square brackets in (4).

We show that f is equivalent onlg to a polynomial of degree at most n-1.

Given Qe Lq(lo) such that Q is orthogonal to the subspace
Qof Lq.(lo) of polynomials of degree at most n-1, the function r
defined by

t
(,'t‘ S\“—l

SR hrc

Q(s) ds, telg

and equal to 0 outside of |, is easily seen to bein Do with

D"h = Qa.e. on lo. Thus setting r = f in equation (4), we have
Sa Q(s) F(s) ds

(o]
forall Q€ Lq(lo) orthogonal to Pc qu(lo), i.e., forall Q€& G?
when 1< q <es or for all Q €% when 1 = q. Since @ is of
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dimension n, we have from (5)

Fe €% =%, 1<qse0 ,G’ch.(l.,)
Fe ()°=®,1=q & clLu(l

Thus F is equivalent on |y to a polynomial p of degree at most

n - For
n-k-1
(6) apls) g(s) = p(s) Z S::_E_\\)\ak(f) g(t) dt
Sb Lf-s)""h 5
a(—“-T (t) dt, a.e.

Since the right hand side of (6) and 1/a, are absolutely continuous
on lg we redefine g on a set of measure zero so as to be absolutely

continuous on lo. Differentiating, we obtain
D(aqg) (s) = an(s) Dg(s) + g(s) Dan(s) =

n2 b n-K-1
(t-s)
(7) Dp(s) + ang(s) g(s) + k-ogs—(n-k-z)\.

e

s (n-2)!}

at) g (t)dt

Since g, Da,, 1/an, and the right hand of (6) are absolutely
continuous on g, it follows that Dg is also absolutely continuous on
lo. Repeated differentiation of both sides of (7) shows that Dn_lg is
absolutely continuous and CT'9 = h a.e. on lo (Recall that p is
a polynomial of degree at most n-1.) W

Corollary. T is aclosed operator; hence T, is closable.

Proof. Let Tg be the restriction of T™® to the equivalence
classes containing functions with compact support. We then have for
1 €9, qg<coo ,(T&)' =(T*)* = T whichis closed,

*) =
c
T = (T*V since (CT*)* =T.

and for 1 < p’, q'se0 (T T* = T which is closed.

(
| |
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SUMARIO :

Este articulo trata de operadores lineales (no necesariamente
acotados) entre espacios lineales normados. El conjugado T’ de un
operador T es cosa bien conocida. El preconjugado 'T se define co-
mo sigue :

Suponemos que el domino de T,G&(T), es total en el espacio
dual Y' y que toma valores en el espacio dual X' Entonces 'T : XY
y 'Tx se define como el elemento de Y para el cual y'("Tx) = (Ty')x
para todo y'eoa'(T). Si 'Tx existe es (nico dada la totalidad de <¥(T).

D (’T) consiste de los x € X para los cuales 'Tx existe.

'T es operador lineal cerrado y si ('T)’ existe es entonces
una extensién de :l'., donde ? es la extensién cerrada minimal de
T-Si Xy Y son reflexivos o si T es el conjugado de algin operador
entonces ('T)’ = T

El ‘“‘estado’’ de un operador lineal A: X—>X se describe en
términos de lo siguiente : |. R(A) (rango de A) = Y, Il. R(A) 3y
y R(A) =Y, Il R—(X) # b L X A! existe y es continuo, p A
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existe y no es continuo, 3. A_i no existe. Luego se muestra en cudnto
el estado de un operador determina (es determinado por) el estado de
su preconjugado. Un ‘‘diagrama de estado '’ se construye para mostrar
que parejas de estado son inadmisibles.

En la segunda parte damos ejemplos de operadores lineales
de «EPL a 41 y de sus preconjugados mostrando que las parejas de

estado no clasidicadas como inadmisibles pueden existir.

Finalmente, en la ¢ltima parte se determina el conjugado y el

preconjugado de un operador diferencial que aplica ‘fr en £¢‘
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