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1. THE PRE CON JUG ATE

1. De fin i t i o n . With the aid of a systematic study by A. E. Taylor

an d S. Gol dberg, one can gain know Iedge about a I inear operator T by

studying its conjugate operator T'. .Hcwever, it is at times difficult to

study T' when T isamapfrom tQ)into eoo,since (2 .. )' is rather

complicated. While the conjugate is a map between dualspaces, y' and
X', the preconjugate operates between spaces, X and Y. For example,

the preconjugate of an operator from 2"" to Roo is a map between e1
and ~1' These remarks are also applicable to operators on:t:",,' the

Lebesgue space of fun ction s bounded al mo st everywhere.

In the following discussion X and Y will always be normed

linear spaces and X' and Y' their dualor adjoint spcce s.i T will

represent a linear operator and ..8'(T) will be the domain of T. Unless

otherwi se noted x, y, x' and v' will be elements of X, Y, X' and Y'

respectively.

Definition. A subset F of X' is total in X' if x'x = 0

for all x' ~ F implies x = O.

Let A be a linear operator mapping X to Y with.tY(A) dense

In X. Let T be its conjugate operator mapping Y' to X'. In other

words ff(T) = {y'6Y' / v' A is continuous on d(A)}, and Ty"is

the unique continuous extension of v' A to the whole of X. We would

like to define the preconjugate, 'T, of T mapping- X to Y.'T should
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be equal to A or at least an extension of A. If x E,b( A), then

v' A x ": A 'y 'x = Ty'x for all y'E .!1( T). Thus motivated, we say

xfi:f}('T) if there exists YEY such that y'y = Ty'x for all y~.b(T),

and we define 'T x = y. In order for 'T to be well defined we require

that the domain of T be total in Y. We give the following

Definition. Let X and Y be normed linear spaces and

T a linear operator mapping Y' t e X' with ff(T) total in Y", Then

the preconjugate, 'T, of T maps X to Y and is defined as follows.

An element x E X lies in the domain of 'T if there exi sts a ytY such

that v'v = Ty'x for all y'E.b(T).

Then 'T x = y.

Notice that the preconjugate of Tis only defined when Tis

a map between dual spaces and the domain of T is total. The restriction

that bTD be total is necessary to insure that 'T is well-defined, for

suppose y and Yo are elements of Y with the property that v'v = y'Yc,=

= Ty'x for all y'€, b'(T). Then by' the totality of.o'(T), y = Yo'

It follows immediately from the definition that Ty' x = y'( 'Tx)

if and only if x~ff('T) and y'€.l7(T). A common mistake is to assert

that Ty'x = y'('Tx) when it is not necessarily true that xEff('T)

or that y' "lr ( T).

2. Pro per tie 5 0 f the Pre con jug ate. Let A be a

linear operator mapping X to Y. The graph of A, G (A), equal s

~(a, Ax).:- XxY/x.:P(A)t. G(A) is a subspace of XxY. We say

-thct A is 0 closed operator if its graph is closed in XxY and that A

is closeable if it has a closed extension. If A is closeable, let A-denote the minimal closed extension of A; G(A) = G(A).

Suppose the conjugate, A', of A exists; i.e.,!Y(A) is dense In X.

Then A is closeable if and only if J/( A) is total in Y'.

If M is a subset of X, then

MO = { x' ~ X' / x' x = 0 for all x eM}.
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Likewi se if N is a subset of X', then

oN = { x e X / x' x = 0 for all x' e N ~ .

We first prove an elementary consequence of the definition of

the preconjugate • Unless otherwi se noted we assume T maps y' to

X' and that U(T) is total in Y'.

Theorem 1. The preconiugate of T is a closed I inear operator.

proof. Clearly 'T is linear. Suppose that {x",,\ is a

sequence in .cr('T) and that X",,4X and 'Tx ....-y. Toshow 'T is

closed we must show x(itr('T) and 'Tx = y. Let y'£ If (T). Ty' is
continuous, hence Ty'x = lim Ty'x,,; likewise y'y = lim y' ('Tx").

n.~ <» ,,~QJ
But x",E: fJ ('T) implies y'('Txll) = Ty'x ...: Hence Ty'x = y'y.

Since y' was an arbitrary element in b (T), this equality holds for

all y',"" .£7(T). Thus xeJ1('T) and 'Tx = y.'

In the following di scussion we assume that the domain of the

preconjugate is dense in X. This will enable usto consider the

conjugate of the preconjugate, i, e. ('T)' exi sts. We now want to study

the relation between T and ('T)'.

Theorem 2. Let T be a Iinear operator from y'to X' such

that the domain of T is total and the domain of its precon jugate is

den se In X. Then T is closeable and ('T)' is an extension of T.
Proof. Let Y'Eb(T). Then if xEoff('T), wehave

y' (Tx) = Ty'x.ln other words, v',' T = Ty' onff('T). Thus y'(ifY ('T)'

and ('T)'y' = Ty", Therefore ('T)' is a closed extension of T and

so T is closeable. Clearly ('T)' is an extension of T .•

We have at our di sposal theorems concerning linear operators

and their conjugates, see [1]. In the special cases where ('T)' = T

We can use these diagrams by letting 'T be the operator and Tits

conjugate. We wi i] show that T = ('T)' whenever both X and- yare

reflexive or T is the conjugate of some operator. For our first result
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we will need the following lemmas. Some of the lemmas are well known

results, and will be stated without proof.

Lemma 7. Let X and Y be normed linear spaces. Let

X x Y have the norm II ( x, y)1/ =

the norm 1'(x',y')11 = max {/lx'll ,
linear isometry i between X' x y' and

hi +
h'lI} .
( X x Y)'

II y" and X' x Y'

Th en there ex; st s a

defined by

[-i(x', y')] (x,y) = x'x + y'y

where (x',y') e X'xY' and (x,y) E XxY.

Th i s Iemma permi ts Y' x X' and (Y x X)' to be identified,

which we shall do. Notice that under the identification z ' Eo (X xY)'

implies i-'z' = (x',y') where x'x = z'(x,O) and y'y = z'(O,y).

Lemm.2. If T is a linear operator from Y' to X' and

b'(T) is total, then (y,x) e °G(T) if and only if x E ff('T) and

'Tx = -y; i.e., (x,-y) c G('T).

Proof. An element (y, x ) is In °G( T) if and only if

(y',Ty') (y"x) = y'y + Ty'x = ° for all y'eb(T). Butthis

statement is equivalent to x~J5('T) and 'Tx =-y.'

Lemma 3. If, T maps Y' to X' and the domain of Tis

total In Y' and the domain of 'T is dense in X, then

Proof. An element (y/,xo') isin (oG(T))o if and only

if (Yg',xo')(y,x) = vs'v + xo'x = ° for all (y,x)f;(oG(T)).

But by lemma 2 we have the equivalent statement that Yo'(-'Tx) +
+ xo'x '= ° for all x6P"('T). This, however, is a necessary and

sufficient condition for (Yo',xo') to be in G('T)'. (Recall that

A'y' = x' if and only if y'(Ax) = x'x for all xE:P'(A»).'
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Lemma 4. If X is a reflexive and N a closed subspace

of X', then N = (ON)Cl.

Proof. If x' is in N then clearly x' annihilates all the

elements which are annihilated by N. In other words x' is in ("N)o.

Thus we have N C (ON)o.

Suppose xQ is in (ON)o but not in N. N is closed, hence

by the Hahn-Banach theorem, there exists x';' Eo (X')' such that

xo" (x~):f 0 and x~' (x') = 0 for all x' E N. Since X is reflexive,

there exi sts Xo E: X such that xo' x~ i 0 and x' x 0 = 0 for all

x'E N. This implies Xo E "N, but by assumption l(~e.(ON)o. Thus

xo'xo = 0, which is a contradiction.'

Lemma 5.lf X and Yare reflexive then XxY is reflexive.

We are now ready to prove the following.

The 0 rem 3. Let T be an operator from Y' to X' such

that ('T)' exists; i.e.,~(T) is total in Y' and 1{'T) is dense in X.

If X and Yare reflexive then ('T)' = T.
Proof· We shall show that G(T) = G('T)'. By lemma 5,

Y' xX' is reflexive; hence we can apply lemma 4 which tells us that

(oG(T))o = G{T) = GlT). By lemma 3, (oG(T))o = G('T)'J

and so G(T) = G('T)' .•

Theorem 4.lf A is a linear operator mapping X to Y-such that If(A) = X and 1f(A') is total in Y', then A = '(A').

proof. Ir xliPWandyE.D'(A') then y'(Ax) = (A'y')x.

Hence xW('(A')) and '(A')x = Ax. Thus '(A') is an extension

of A, hence of A, since by theorem 1 the preconj ugate is a closed

operator.

To cornpl ete the proof we wi II show that G(' (A')) is con tain ed

in GTAT = G (A). If not, there exi sts x. (, t:i ( , (A ' )) such "that

( Xo, '(A') xo) t G'(A). ). By the Hahn Banach Theorem there exi sts
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(x',y') e (XxY)' (we identify (XxY)' and X'xY' as before)

such that (1) (x',y')(x., '(A')x.) = x'x. + y'{ 'cA,) x.) :tr 0 and

(2) (x',y')(x,Ax) = x'x + y'(Ax) = o for all x€J"(A).

We fi rst note that v' is in t:J'( A') since by (2) v': A = -x'

on If (A). IY (A) = X so there exi sts a sequence ~x" \ in b( A)

which converges to x •• From (2) we have

o = x' x" + y' Axl\,= x' xh, + (A' y') x~ - x' x. + (A' v' )x.=

= x'xo+ y'('(A')x.).

Thus we have contradicted (1) ••

Cora II a ry. If T maps Y' to X' wi th b( T) total in Y'

and T = A' for some operator A, then T = ('T)'.

Proof. T is closed since the conjugate of a linear operator

is closed. By the above theorem, A = '(A') = 'T. Hence ('T)' = A' .-Therefore to complete the proof we need only show that A' = A'.

Suppose y'~ b(A:)
for all xE.lJ(A). Thus y' Ax

y'eJ}(A') and A'y' = x",

Suppose y'€b(A') and A'y' = x'. Let Xo bein,h(A)
- I

and let lxll.\ be a sequence in !:J(A) such that (xlt,Ax-J 4(x.,Ax.).

Then since y' Ax = x' x for all XE.B'(A) we have

d -A' I h 'A- ,an y' = x. T en y x = x x

= x' x for all x e.f}(A) which implies

x ' xo= lim x' x'" = lim y' Ax ... = y' Ax ••
_ "" ... 1.» "~GJ

Hence y' A = x' on b(A). Thus y'E: ~(A) and A'y' = x' .•

If we add the hypothesi s that X and Yare refl exi ve we get-
another representation for A. For simplicity we shall denote (X')'

by X'· and (A') I by A".

Theorem 5. Suppose X and Y are reflexive and JXand

Jy are the respective isometries onto their second duals. Let A be a

linear operator from X to Y with the domain of A dense in X and the
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domain of A' total in Y'. Then b'(A') is dense in yl and

Jy (A")JX = A.

Proof. We first note that IY(A') is dense in Y' since

I1(A') is total and X' is reflexive. Recall that (JXx)x' = x'x and

,(J-i ") - '"y yY -yy.

We first show that J~i (A")JX is an extension of A. Let

x E ,/}(A). To show XE h(J~1 (A")JX) it suffices to show that

JX xc[f(A"); i.e., we must show (JX x)A' is continuous onF(A').

If y't= b (A'), then

/I(Jxx)A'y,g = (/A'y'x1l= lly'Ax"~ny'nIlAxa

If y' (. tf( A'), then

y' J ~ (A' 'J X x ) = A II (J l( X) v' = ( (J)( x ) A' y' = A' v' x = y' A x,

t:V -I .,
Hence since J;J (A') is total we have that Ax = Jy A JJ( x , This

holds for all xe J:J'(A).

We now complete the proof by showing that G(A) = G(J~ (A' ')JX)'
To see this, one need only observe the following equivolent statements:

i) ( x, y) € G (A)

ii ) there exists a sequence ~xn \ in /)(A) such that

( x"" Ax",) ~ (x, y )

jii) (~,Jyl (A") Jxx,.) ~ (x,y) (This follows from the

preceeding paragraph)

i v ) (JXx,., A' 'J )( x"') --'» (JX x, J y y )

v) (J)(X,Jyy) eG(A") since A" is closed
-I

vi) A" (JXx) = Jyy or Jy (A")J)(x = y

vii) (x,y) € G(J~ (A")JXx).

Hence (x, y) t G (A) if and only if (x; y) E: G (JY' (A" )JJC).f
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3., THE STATE OF A LINEAR OPERATOR.

Let A be a linear operator from X to Y. If A is one-to-one,

then A-tis a linear operator from the range of A into X. The state

of a linear operator shall be described in terms of the following

I. R(A) = Y,
II. R(A) ~ Y, but R(A) = Y,

III. R (A) ~ Y.

1. A has a bounded inverse,

2. A has an unbounded inverse,

3. A has no inverse.

By the various pairings of I, II, or III, with 1, 2,3, nine

conditions can thus be described relating to R (A) and A-J. • For

instance, it may be that R(A) = Y, and that A hasa bounded

inverse. This we will describe by saying that A is in state 11,

( wri tten A E: 1"\.). A operator instate I we shall call surj ecti v e ,

We shall use the above classification for both T and 'T.

To the ordered pair of operators (T, 'T) we now make correspond

an ordered pair of conditions which we call the "state" of (T, 'T ).

Thu s if TE:l 3 an d •TEl Ill' we say that ( T, 'T) is instate

('3,1111) (written (T, 'T) E (13,1111)),

At times we shall use a notation such as (T, 'T)€(I~,3)

to mean that T E '2 and 'T has no inverse.

We shall now exhibit several theorems which will enable us

to determine which states can or cannot occur for the pair ( T, 'T ).

The attention of the reader is called to the symmetry between theorems

2and3, 4andS, and6and7. Remember Twill always map Y'to X';

hence 'T maps X to Y.
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THEOREM 6. If the range of T is total in X' then 'T is one-to-one.

In particular, 'T ~ 3 implies T ~_ III.

Proof. If 'Tx = 0, then for y't=J)(T), 0 = y'('Tx)=( Ty~x,

and so x = O. I

THEOREM 7. If the range of 'T is dense In Y, then T has an

inverse.

Proof. Suppose T has no inverse. Then there exists a

y.,'(;; ff(T) such that y ~ :1: 0 and Tyo' -== O. Say Yo'y :t:- O. The range

of 'T is dense so we can find a sequence ~ x", in P('T) such that

'Tx,,~ y. But then 0 = (Tyo')xn.= y;('Txn) -+ Yo'y ~ 0.'

We state without proof the following well known

LEMMA. A linearoperotor A doesnothavea bounded inverse

if and only if there exists a sequence txO\.\ in the domain of A such

that I\xW\.lI- OQ an d Ax......~ O.

TH EO REM 8. If R( T) = X', then 'T has a bounded inverse.

Proof. In the theorem were not true, then by the lemma

there would exist a sequence txv,,) in ff('T) such that l\x,,11 ~ =
and ·Txll.~ O. Let 'Tx"" = y",; then for all y'E 3(T), y'Yn = v' 'Txf\ =
Ty·xl\.-O. Hence since T is surjective, x'xl'l.-O for all x' E X.

As a consequence of the Uniform Boundedness Principle, \lx,,11 <, H

for some M. We have thus reached a contradiction.'

TH EO REM 9. If Y is complete and 'T is surjective, then T has a

bounded inverse.

Proof. Suppo se the theorem is fal se, then by the Iemm a

there exists a sequence \y~l in JY( T) such that Ty~-O and

lIy ..:\\ ~ Cb • If xEb('T) we have (Ty,,-') x = y",,'('Tx) -+ o.
R ('T) = Y, hence y,,'y40 forall yE Y. Y is canplete, therefore

by Uniform 60undedness Principle, the sequence t y .....} is bounded

which is a contradiction. ,
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P'r o o ], By Theorem 7,
-.\

T exists. We shall showitis

Theorem 10. If the range of 'T is dense in Y and 'T

hos a continuous inverse, then T has a continuous inverse.

bounded. First note that since 'T has a continuous inverse,

for all x 4:- 0 € ..5"('T). This gives us the following expression:

~T-\ x'lI = sup

y:tO

=
/I ylj

= sup

XEb('T)
l(l"O

II'Tx II

sup«z-r n
x *0

IT(T-' x')xl sup l\x'H IIxh su, Ax'UIlxU"('TrIll-_._- 1lC ~ 1)'(' T) 5. l("~ T) -~-=--_.....::
\\' Txll x *0 II'Txll - x~O Ixl

=

-Observe that the second equality is valid because R('T) = Y.

Theorem 11. If the range of T is dense in X' and T-i.

exi sts and is continuous, then ('T)-l is continuous. (If T E. 11 or

"1.' then 'T E. 1.)

Proof. Thi s proof is analogou s to the one above. Noti ce

that since T-1 is bounded we have foryt 0 in d(T)

RTy'lI By'ft

and that if x E X, then x = sup
x';#: 0

I x' xl

/lx'n
12



By Theorem 2, ('T)-I exi st s, Hence if y EO R('T), then

= sup
x' 4- 0

\ x' ('T)-I Y I
\lx'lI

= sup

Y' €.Y(T)
y'i= 0

------=

II Ty'll

Iy' ('T('Tf' y) I
= sup ,sup

y'~b(T) -y' Efr(T)
y~O IITy'1I y':4-0

Ily'l\·hll
IITy'll

l/y'llllyll-llrlll
~sup -
y'E'&(T)
y'otO lIy'lI

=
-I

Hence 'T is bounded.'

L emm a. If A is a closed, continuous linear operator from

a normed Iinear space X into a Banach space Y, then lY(A) is closed.

Proof. Suppose xis a limit point of JJ(A) and tx,,\ is a

sequence contained in PtA) converging to x, A i s continuous, hence

tAx,J is a Cauchy sequence in Y. Y is complete, therefore there

exi sts ayE:- Y such that Ax V\;""'y. Then since A is a closed operator

x must be in the domain of A.I
Theorem 12. If X is complete and 'T has a continuous

inversethen R('T) is closed. (If X is complete then 'T¢ 111.)'

Proof. By the Theorem 1, 'T is c1osed,hence ('Ti' is

al so closed. Thus we can apply the lemma to ('T) - \ and the result

follows. I

The 0 r em 13. If X is reflexive and R(T) :t X', then 'T

is not one-to-one.

----
Pro 0 f. If R(T) t X', then by the Hahn- Ban ach Theorem

there exists x" oj: 0 in (X')' such that x" (Ty') = 0 for all v' €<P"(T).
Since X is reflexive there exists an x E: X such that x :P 0 and

Ty' x = 0 for all y'G b(T). But then xeff('T) and 'Tx = 0.,
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4. THE STATE DIAGRAM OF PAIRS (T, 'T).

Similar pairings were first done by A. E. Taylorfora bounded

operator and its conjugate. In order to present systematically which

states can or cannot occur for T and its conjug.ate, a "state diagram"

was constructed. This diagram is a large square divided into 81

congruent smaller squares arranged in rows and columns. Each column

is Iabel ed at the bottom denotin 9 a gi ven state for T, an d the rows

represent states for T'. The small ~quare which is the intersection of

a certain column and row denotes the state of the pair (T, T'l. Squares

belonging to states which cannot exi st are bl acked out.

Based on the theorems of the last section we have constructed

such a state di agram for T an d its precon jugate. A sq uare is crossed

out if the corresponding state is imposible. If a square contains X then

the corresponding state cannot occur if Xis complete, Iikewi se for Y.

X- R in the square implies that the corresponding state will not exist

if Xis refl exi ve •

STATE DIAGRAM FOR AN OPERATOR AND ITS PRECONJUGATE
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2 EXAMPLES OF ADMISSIBLE STATES

We have presented a state di agram for the I inear operator and

its pr econj uqo te. The obvious question now is whether any more of the

squares can be crossed out. In this chapter we will show this is not

po ssi ble by exhibiting examples of operators along with their conjugates

whi ch have states corresponding to the empty squares.

In all of the examples T will map between the infinite sequence

spaces ti,' tz and too . Thus 'T maps between the spaces such as

(.'~Z'~t and in some cases .o dense subspace of (0' £z or ~1'

We begin by proving some proposition s concerning various

linear operators between sequence spaces and some theorems on linear

operators in general.

Propositon 1. If Ty'

P('T) ={Xt X/xf.Y}.

,
= v then 'Tx = x and

Proof. Given x l: X, then Ty'x = y'x for all y' E: y',

hence for all y'€:ff(T), Thus x Eft'('T) whenever Xc Yand'Tx=x .•

Proposttion 2. If T(ul, u.1",,) = (u1.' 2uz' 3u~ ... )

then 'T(x1, xz' ... ) = (xi' 2x2, 3x3, ... ) and

We shall denote thi s operator by U.

Proof. If x E: X then

Ty'x = (u1' 2u2, 3u,}, ... ) (xl' x~, ... ) = u~xi. + 2uZx2 +

+ 3u3x3+ .. .=(u11 uri ••• ) (Xl' 2xz, 3xJ, ... ) = y'('Tx)

forall Y'E.Y. Thus the desired result follows ••

Proposition 3. If T(uv u2",,) = (u-t' 1I2u2, 1I3u3,· .. )

then 'T is the same operator with fr('T) =

t (Xl' X2J ••• ) E X / (xv l/2xz, l/3xJ, ••• ) e Y ~
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We shall denote thi s operator by O.

Proof· Ty'x = (ui,' 1I2uz, ... ) (x:1'",) = U~XL +

+ 1I2uZxz. + ... = (u1.' uz,···) (xt' l/2~, ••• ) = v' ('Tx)

for all y' c- Y'. The proposition follows.'

Proposition 4. If T(us' uz, ... ) = (u1,uJ' ... ) then

'T(x1, x2'···) = (0, x1.' x2' ••• ) and

P'('T) = { (x1.' x2.",,) Eo xl (0, xt.' xz., ... ) G Y 1 .
Proof.Ty'x = (Uz..,u3, ... )(X1,x2, ... ) = U2Xj +

+ U3XZ + ... = (U1.,uz,·,,) (O'X.1-,Xz"") = y'('Tx) for all y'f:: Y.

Hence when T is a shift to the left 'T is a shift to the right ••

Proposition 5. If T(u1,uZ, .... ) = (O,u1.,u~, ... ) then

'T (x~, xl'''') =: (~, x,3' ... ) and

ff('T) = {(xi' Xl"") G XI(x~, x3' ••• )EY},

Proof· Ty'x = (0, ui' uz, ... ) (xi' x2' ... ) =

U1)fZ + u1x, + ... = (u-1'UZ"")(x2.'X3"") = y'('Tx) for all

y'€Y. The desired result follows. I

We shall denote the operator whi ch shifts to the right by R

and the one that shifts to the left by L. So for we have shown that

'0 '" 0, 'U = U, 'R = L, and 'L = R.

TH EO REM I, Suppose A maps Z' to X' and B maps Y'

to Z'. Then ifb'(A) is total in Z' ord )'(B) is total in 't', '(AB) is

an extension of 'B'A.

Proof. Let xeb('B'A) and y = ('B'A)x. Then

i ) xE"'('A) and z'('Ax) = (Az') X for all z'f;IY(A) and

i i ) 'Axf:,JI (' B) and y'(' B (' Ax)) = By' (' Ax) for all

y'~,/7(B\.

We must show that y'y = (AB) y'x for all y'f, b(AB). But
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U y'€ IJ'(AB) then y'E P(B) and By'E. PtA). Hence by i) and i i)

v'v = y'('B('Ax)) = By'('Ax) = A(By')x. I

the set

s = { Dx / x ~ X \

is contai ned in Y, then

'T(Xl'~"") = (0, 1I2xJ.' 1I3xz, ... ) and P('T) = X.

Pro 0 f. T = L D where D: y' - X',P'(D) = h(T) and

L : X' -- X' wi th d(L) = X'. Hen ce by the above theorem 'T is an

extension of 'O'L By propositions 3 and 4 and the fact that Sc Y,
it is easy to see that U('D'L) = X.

Thus 'T = 'D'L = DR and .tr('T) = x.1

Proposition 7. If T(u-l.' uz,·.·) = (O,uJ.' 1I2ul."")

and S is as described above, then 'T(x1.' x~, ••• ) = (x£, 1I2x3,· •• )

an d .tr(' T) = X.

Proof. The proof is similar to the one above. Here T = R D

and 'T = DL.I

Proposition 8. If DJp--!~ and ifall (exceptperhaps

a finite number) of the coordinate unit vectors Gi are contained In

the domain of D, then D has an unbounded inverse.

Proof. Clearly D is one-to-one. The norms of the "-En. go

to infinity in tf but the norm of T( "-En) in t\ is one. Hence T-1

is unbounded ••

Corollory. If 0 is followed or preceeded by a right or left

shift then if th e in ver se 0 f the compo si te map exi sts, it wi l] be unbounded.

Theorem 2. Let A be a dense subspace of X and A> the

isometry from X' onto A' defined by ~ x' = x' restricted to A. If

T maps Y' to X' with b(T) total, then '(Jl.T) = 'T restricted to A.
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Prooj.JJ:A-X is the identity on A for if xEA and

x' E. X' then x'x = x'x. We know by theorem 1 that '(ftT) is an

extension of 'T~ = 'T restricted to A.

Since '(..Q.T) maps A to Y, to complete the proof we need

to show that if x£: 1J·(..f}T), then xe.JY ('T) and '(1)Th = 'Tx.

Let xE..,8"(.Jl.T) and y = '(..9-T)x. Then.8(Ty')x = y'x for all

y'cJ)'(.8-T) =P(T). But since x e. b'(.I!l.T) implies x~ A, (Ty')x=

Ty'x. Therefore Ty'x = y'x for all "y'E."&(TLI

Theorem 3. Let A be a dense subspace of Y and..tthe

linear isometry mapping A' onto y' defined by.Ale' the unique

continuous extension of a' to all of Y Suppose T maps y' to X'

with lY(T) total in Y'. Then '(T» mapping X to A is the restriction

of'T to t x € .e' ( 'T) / 'T x Eo A 1 .
Proof. We first look at ~ which maps Y to A. If yE A

then ba'y = a'y for all a' c N. Hence A is contained in the domain

of '.& and J).y = y for all YeA. Since R~) = y' we seeby the state

diagram that ~ is one-to-one. Therefore1J'(;.t) must equal A and ~ is

the identity map.

By theorem 1 we know that '(T.J.) is an extension of :;"'T ='T

restricted to {xE:fr('T) / 'Tx 6 Al. Suppose xe)Y"(T). Then there

exists a Eo A such that (T..l.)a'x = a'a for all a'e.o8'(TR). But since

)r(TA) = K'(JY(T)), (T.J.) (§'y')x = (..9-'y) a' for all y'6 /Y ( t ).
Hence Ty'x = y'a for all y'~P(T). Thus xE.,tr(T) and 'Tx = '(U)x.

Since '(J1T) is only defined on A, the theorem is proved.'

In all examples A will be the subspace spanned by cooodinate

vectors. If it is notclear which norm is relative to A, then we will let

As be the subspace of it ~ and Az of .t~ and Ao will have the

". "maximum norm

We are now in a position to examine efficiently exampleswhich

will show that the thirty-three remaining squares cannot be crossed out
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without strengthening the hypothesis. It should be noticed that in

the theorems in section 3 we did not require that the domain of the

preconjugate be dense in X. One might think that with this added

hypothe ses fewer states coul d exi st. It turn s out that thi sis not the

case, for in each one of the examples the domain of the preconjugate

is dense in X.

When the details of the verification of the examplesare obvious

or follow immediately from the proposition, the operator and its

preconjugate will just be listed.

(It' Ii) T: (1---' l.t' ,Jr(T) = €2. and r-: = y'.

'T: e~-2.t,'-('T) = t;L and 'Tx = x ,

(11:1.' 11.) T:.t1~t1.,JY(T) = A and r,: = y'.

'T is the identity operator on £.2,'

(111
1
, 11) T:£_~t .. ,ty(T) = Co cn d Ty' = y'.

, Tis the identi ty map from i
1
to li, .

(l11~, 12) Let..Q. be the isometry from A~ onto c; = eH
and let To be the identity map from £:1 into Ow· Then T: A;,~tCrJ
withff(T)= A~ and T=ToJ). Clearly TE: III and is one-to-one.

To show T --4. is unboun ded we exhi bi t a sequen ce in fr(T) such that

the norms of the elements in the sequence go to infinity buttheir images

u;der ~ have norm one. Define the seq~nce \ y,:' in t1. by
y' = £(l/i)t •• Thenlly",'11 = C1/i-OO andn. ....1" .._t
II1;.y': n = max t 1, 112, •.• , lin l::= 1. The sequence that we

want is {..J)-Jyn'}.

'T: t ~ A , 'Tx:-"andb('T) = A... 'T has an unbounded
1 0 ~.

inverse for the same reasons that T has an unbounded inverse.
,

(I, II) Let T:,1 ~ Ao' be the linear isometry from tonto A.
1. i 1 ~
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By the proof of theorem 2, we see that 'T:Ao--t Co is the

identity map on Ao'

(1'1' 111.) Let T be the isometry in the above example, only

1et JY(T) = At' 'T is the identity map from A" to Co'

(111
1
, Ilj) Let T be the isometry from £q)onto Ai' restri cted

to Co' 'T is the i denti ty map from A 1. to f.1. •

(15 ' I I 11) Let T: t~-. .tz' .tr(T) = lz an d Tis a left sh i ft •

'T: Lt- fz./.1Y('T) = ~1 and 'T is a right shift.

(See proposition 4).

(11
3
,1111) Let T be the above example restricted to A.

(111~,1111) Let T:t",-+t .. with.8'(T) = Co bealeftshift.

'T: ei--+!l is a right shift withfr('T) = e~.
(1111,113) Let T: tt-A~', .tnT) =.e~ and T =.a R where

R is a ri ght shi ft from e~ to t1 Q'ld.Jl is a linear isometry from 11
onto A~.

'T: At-f'2. and by theorem 2,'T isthe restriction of 'R to

Az.. Hence 'T is a left shift. (See proposition 5 and theaem 2).

(1II
i
,13) T: ~~t~,h(T) =~:t and T is a right,shift.

'T is vo left shift from tt, onto t1.
(111, liZ) . Let T: t,t ~ tz, fl(T) = e~.,and T = D. Recall

that 0: (ut,' u2.' ••• ) - (u1, 1/2u2.' 1/3u~ ••• )). The el ement

(1, 1/e, 1/3, ••• ) is in 11but not in R( T). By proposition 8, T£:2..

'T: It-f t~, ,fi(T) =£~, and 'T = 0, by proposition 3.

(1112, liZ) Let T: ~1.-+ Qoo, b'(T) = 1j cn d T = O.

'T: f:f~ CD,"""('T) = t1 and 'T = D.

("2,12) Let T:A'-£t,J:{n) = A' and T = o.B-where.J.

t s the linear isometry from A' onto £2.'
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'T: t2 ~ A and by theorem 3, 'T is the restriction of 10 = 0

to tXE: X / 'Ox E:A). Hence 'T = D,~'T) = A.

(111
2
, II~) Let T: .et-'t.el. with~(T) = £2, be defined by

T = RD. (Recall that "R is a right shift).

'T:1
1
-9' t1,and by proposition,7,'T = DL andP('T) = i~.

(III z: 13) Let T: A'-+ £Z' be def ined by T = T..~ where T.

i s the operator of the previous example and JJ is the isometry from A'

onto (2: d(T) = A' .

'T: t~~ A and by theorem 3, .8'('T) = A and 'T = 0 L.

(11$.1112.) Let T:e~-i> ~}.D'(T) = ~i and T = L O.

'T: tt,-+.2.2. and by proposition 6, .ff('T) =1,2 and 'T= DR.

(111
3
,I liZ) Let T: t;-" ta, •.8{T) = E;z, and let T = LD.

'T:.f1~t~,,6('T) =11 and 'T = DR.

(1113 ' III~) Let T: £1-' t%, and Ty' = 0 for all y' E ~

, T : t't,-+ 12, is al so the zero operator or, e.t for if x '" U2 then

Ty'x = (0') x = y'Q for all y' 6 et .
(1111 ,1111) Let T: 1..-4 ellt ,.8 (T) = A and

T(uj, uz, ... ) = (u1-u1' u3-ut' u .. -uf' ... ).

It is clear that Ty' is in flit .

Fi rst we show that T ha s a boun ded inverse. Let

If u 1 ~ 1 / 2 1\ v' 1\ , then

1\ Ty' 1\
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lflu!/ < 1/2· U/I then there exists on integer i between 2 and

n such that lY'II=luj,\. Hence ftTy'd)\u~-ull~'y'6- 1/2·Uy'l.

Thus • Ty'~ ~ 1/2· a/d for all y'E;. /1'(T).

To see that T € III, one need only note. that T is continuous

JJ(T) is separable, and toe is not.

'T: !t.--'" -t,i ,JJ'('T) = ti and 'T(x1, x;., ••• ) =
elf

= ( - C)(~.x~, xL' ••• ), for if xE,. 01
\,,,:-,

Ty'x = (uz -us.' "s -ut' ... ) (Xi' x,l' ••• ) =
00J

= u1(-~ Xi,)+uLX1,+u3XZ+'" =
1.=1

00

= (us' uti' ••• ) (-~x~, Xl' xl' ••• ) = y'('Tx) •..,
CD

Pro p 0 sit ion 9, H =! (x..,. "r .. ) / Ex. = 01i st "J &.=, ~
a closed subspace of e1 .

Proof, Clearly H is a subspace. Suppose the sequence

{XI\,) , where xWL = (x~, xi, ••• ), is in H and converges to

X = (xl' Xl' ••• ). Given E.. > 0, there exists on integer N such that

(»

= .L.'x.-x~l<e.
i~, L '"

Hence

Thu s \ t X. I = 0 ••10_,

(IllS' Ilia) Let T: e.. ~ ~c, with p(T) = A, T = R To

where To is the operator in the preceding example and R is a right

shift. Clearly T ~ III. T e.1 since both T;' and R-' are continuous.

'T: £1~ ~i and by theorem 1, 'T is on extension of

'To'R. But sinceb'('To'R) =~} 'T = 'To)'R andJY('T) = U
t
, Hence
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'T(~, xt, ... ) = .r: xi' xl! x?>' ••• ).
1=2

'T Eo III for R('T) =.H and 'T E 3 for 'TE.i = O.

(1112, 111,3) Let T:eoo~(aowith 1)-(T) = A and T = DT1,

T1 is the operator described above. T is one-to-one since it is the

composite of one-to-one maps. The sequence tnf.n~c...b(T) and

II nf.n II = n but for n ) 1, Jr Tn£n /I = 1\ Dncn II = JlE1!\\;: 1.

Hence T has an unbounded inverse.

'T:~~el1~('T) = e1 and 'T = 'T1D. In other words
OCI

'T(x1' Xfj,"') = (- L. l/i X;, l/2xz, l/3x~, ••• ).
~ 1=1

Proposition 10. The set{ ~ / ~=f.\-E.i_l\ is total

in tp for 1 ~ p 5. cO •

Proof. Let x = (xl' x2' ••• ) be in Co orep, l~p<oo.

Suppose ~x = 0 for i = 1,2, •.• Then £ix =t"i-1)( or xi = xi-l

for i = 1,2, •••• But since x is in Co or ip for 15. p<co,Xj-'t O.

Hence xi = 0 for each i'

Pro p 0 sit ion 1 l . 1fT: fp-7 ~', 1 ~ p <. ao , is a Ieft

ihift and if .f} (T) :ll H, thenTis one-to-one. H is the set in

proposition 9.

Proof. Suppose T(Xl,XV"') = (x2! x., ..... ) = O.
Then xi = 0 for i = 2,3, •••• But if (xl' "l",,) Eo H, then

Xl =-E~ x .•1~1 I

Hence xl = O.

(11' 1111) Let T: et-+ej,JT(T) = Hand T is a left shift.

T is surjective for if (wi' wz, ••• ) .. .fi, then
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thenhy'll = lui.\ + lu.;\ + - •• =- 1/2(1u£1 +1 "s l" ...+ u2+ u3+···)

1/2( L7;1uj+ u2 + u
3
+ ... = 1/2( uj+ ut + ••• ) = 1/2 \Iy'\\.

We first note that by proposition 10, H is total in~, hence

'T exists. 'T:Co~ Co..o81'T) = Co' and 'T isarightshift.

(111, lilt) Let T:ft-~el be the operator in the above example

restri cted to An H. Note that A fl His total in -t1= C'o by

proposition 10.

'T:Co-?Coandb('T) = Coand'T is aright shift.

(12' 1111) Let T:~-t..e2,,1:''(T) = Hand T is again a left

shift. As is the example (11' lilt), T is surjective and one-to-one.

T-1 is unbounded for the sequence ~xnl where
1\+1)( =.In £'1-£' (1/Yri)Cj = (I'n,-k- ••• ; 1/1;;, 0, 0, ... )n 1=2 vn ~"

is contai ned in H =b' (T) and \\>en 11= ~ but '\rxn \l =
= V L:1 ( 1/n) = 1•.

'T :.f2. ~e2' $ ('T) =lind 'T is a right shift.

In the rest of the exampl es we shall use the subspace B

described as follows. If S is a subset of a linear space then sp(S>

is the subspace generated by S or equivalently the smallest subspace

containing S. Let Xo = (1, 1/2, 1/22, 1/23, ... ). Then

where E9 is t ~e al gebrai c di reet sum.

B is total in .ep for B contains the set

{xo~ €. 2. • E.~, ... !
which is total.

Proposition 12. If T:e'p-",ep is a leftshift and if
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.J(T) :8then T is one-to-one.

Proof. Suppose Tx = O. If xeB then x isoftheform

(k, xi + k/2, ... , x n + k/2", k/2n~1, ... ). Hence if

o = Tx = (xl + k/2, "', xnt V2'" , k/21\+1, ... )

then k = O. Thus xi = a for i = 1, 2, .•. , n, Hence x = OJ

{lIz, 1111)Let T:·t1-+4 J(T) = Band T be a left shift •.,
T is not surjective for all of the elements in R( T) are of the form

(uj + k/2, "" un + k/2n, k/2n-1, ... ). R(T) =

T(sp<{ez, t~,... }»Ef> T(sp(xo») = AS sp<Tfiwhich contains A.

Hen ce Tell. By the above propo si tion, Tis one-to-one. T E 2 for

sequence \ xn \ where

n "co n·xn = 2 it -L-' (2 121+1) Ei =
\ = l'I-t\:

(0, - z"/2, «<«» _211/2"+1, 0, ... )

is contained in B = ff(T) and' Xn \\ = 20+1,

n2 x·o +

but

Hence T-1 is unbounded.

'T:C()~ Co,.h('T) = Co and 'T is a right shift.

(l112, 1111) Let T:e.~e ~T) = Band T is a left shift.
00 00'

To see that T€III we note that T is continuous and .8-(T) is separable.

Hence R(T) is separable.

By propo si tion 12, Tis one-to-one. Let (xnJ be the sequence

of the previous example. We see that the norm of <n in fO>(> is 2" and

the norm of Txn is 2nl2nt-l which is less than 1. Hence T has an

unbounded inverse.

'T:ti~e1.,.8-('T) =.£1 and 'T is a right shift.

(1112, IIIZ) Let T:e.;;'t~4T) = Band T -= LD._ ....2-

T IS continuous, hence T(B) = R(T) is separable, thus TE:III.

T is one-to-one since it is the composite of two one-to-one maps.
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T E 2 by the corollary to proposition B.

'T :-es.-te1 1 ..tT(T) =~ and IT = DR.
(112,1112.)T:.f,~t"h(T)= Band T = LD.

'T:Co~ Co,b('T) = Co and 'T = DR.

Proposition 13. B is dense in Co'

Proof. Given x = (u1' u2,' ••• ) ~Co, the sequence\xnl

defined by

xn = u1Xo + L~l(Ui-ut 1I2'-1)Ci = (u1, "', un' ul 112", ... )
is in B.

Suppose E '> 0 is given. Since x ~ Co' there exists a

positive integer N' such that if n > N', then' Un \ < t!.12. There
al so exi sts a positive integer Nil such that if n) N" then

€.
1I2h < 2'"f\ij • Let N = max IN',N''} , Then if n '> N

\\xn -x 1I = \\L.oo (u1/2i-i -Uj) \\ = r:nax \ ut/2:' -ui+1 \ <
1:t1-1 ., ~t1

max lUll /2 i+l + , u i+1 \ < \ u1 \ ~ + £ 12 = E 1
i~ n - 2\\J1\

(1111, "2.) By the previous proposition B' is isomorphic to

c', ~ el.' Let,tQ bethis isometry mapping .f1 onto B'. Let

T : £j. ~ B',b-{T) = it, and 'T =.& R where R is a right shift. Te1
since it is the composite of functions which have continuous inverses.

f

'T: B ~ Co ,~('T) = Band 'T is a left shift. To see that

'T E 2 see the first half of example (1IIz,1111).

(1111, '2) Let s , = A ~sp ,(1/2, 112~ ... ).Itisclear
that Bo is dense in Co since it contains A. Hence B~ is equivalent
to ft' Let ~ 0 be thi s isometry from .f1onto B~ and as above let J)

be the isometry from ii onto B'.

I () s:Let'T : B~~B' ,~( T) = 80 and T =,.v R 0 .

'T: B-+ Bo,O('T) = Band 'T is a left shift. 'T is surjective_

for R( T) = T( B) = Bo'
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3. A P P Lie A T ION S

1 • The Con jugate and Precon jugate of a Di fferenti al Operator.

Lp(S), 1 ~ ,~1IOshall denote the set of cornpl ex-val ued

functions f on the set S with the property that I f \ Pis Lebesgue

integrable • .;(~S) is the set of equivalence classes of Lp under the

relafion --v defined by, f --..." 9 if and only if f = g a. e. (almost

everywhere). The equivalence class in£p containing f shall be

represented by i. .t'r is a Banach space under the normllflF (rS1fl p)Vp.

L 00 (S) is the set of complex-valued functions which are

bounded a. e.lf f is in l...co(S) and K is the set on which f is bounded,

then the Ieast upper bound on K of Ifl is call ed the es senti al bound of

that function.,;f._ is thespoced of equivalenceclasses of Leo under""',

defined above •.too i s a Banach space with the norm\\fll = essential

bound of f.

Let p' be the codimension of p, lip + lip' = 1 (11....= 0).

Then for 1 .s p<oo the map J):.f~(.tp')defined by.J) 9 (f) =
= S gf, g~-f' ;~cfr,is an isometry between ofp and (.,fp,)I.

A complex-valued function is absolutely continuous if its real

and imaginary parts are absolutely continuous. A function which has

a continuous derivative is absolutely continuous.

I shall denote a real interval, not necessari Iy bounded. Cn(I)

is the set of all complex-valued functions defined on I whose n"th
<>0

derivative exists and is continuous. Let Coo(l) = (\ C (I).
n-:.1 n

Wit h D as the deri veti ve operator, we define

An (I) = lf t.Lp(l) / Dn-1f is absolutely continuous on

every compact subinterval of I} •

We represent the formal di fferenti 01 expres si on

n n-i Dan D + an-1 D + ••• -a1 + 00 ,
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dj E Coo(l), by 7:. We shall assume that an(t)/ 0 for all tEl.

Tis the di fferenti al operator mcppl ng 4(1) to .t'q(1) defined by. .
Tf = 7; f (where feAnAf). The domain of T is

JJ(T) = {i E .tp(I) / f Eo An(l) and -r·f ~~( I)}.

The purpose of thi s chapter is to fi nd a restri ction of T whi ch

I s surjective and has a continuous inverse.

A function defined on a subset A of-the reai line has compact

support in the interior of A if there exi sts a compact set K contai ned

in the interior of A such that f(x) = 0 for all x¢K. Let

A~(I) = lf Eo An(l) / f has compact support in the interior of I }

and

~(I) = t f <: CQO(I) / f has compact support in the interior of I} .
Then Tc is the restri ction of T to the set

b(Tc) = tf EO:4I)/fEA~(I) and-r·fE[9(I)l·

The set, {f / fE:~(1)1 ' is dense in fr(l), i s.» (00 and total

In (~1(1))' '" J'gg(I). Thus Te' exists for 1 £ p<oo and '~exists

for 1< p ~ 00 •

2. THE FORMAL ADJOINT 'l*' AND ITS CORRESPONDING

OPERATOR T1f
•

,
From now on we shall omit I from expressions such as -\(1).

In order to investigate the preconjugate of Tc, we consider Tc

as an operator from (Jpf)l to (.[9')' when 1 < p, qioo.

We let J)F t~(tp$be the isometry defi ned above by J)1'9 (i) =

= S fg for f'9t:.{f and it: tp' • J)'l :t'l ~ (i~l)'

is defined similarly. Then

b(Te) = {,Jipf/ if:(p: f E: A~ and r"fct91

and TC J}p; = JJ9 t°f. Thus for all .op ; (,-!J(Tc) and all

h~1
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We now let I c:: 10 be the compact interval (a, b). Then

h ~ An (10) is bounded, soy by K. If fEAn(lo), then \Tf\ is

integrable, and thus ih r f Ii l'ldK, implies h l f is integrable.

We have

b b
~a 01h Of + ... .,. Ja anh Of' f.

Since Ok f is integrable and

int egrate by ports and for k =

b
~aaKh

aKh is absolutely continuous, we can

1, 2, «<>» n obtain

b b
OK f h K-lf] 1 oK-lf•= OK 0 a· Q 0 ( ole h )

If k-l ~ 1, we can integrot e by ports agai n, and after repeated

integrations we obtain

Thus

Let us denote the double sum by L.L
In the following lemma we shell show that if f has compact

support (which it does in J)(Tc)) then Lr.. = O. We define t:'~ the

tGrmal adjoint of 'C, by

40 "rn K k't h = L-K=o (-1) 0 (aKh).

The followi ng properti es are well known.
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(1)

(2)

b rb
If hand fE An' then JQ hTf - Ja
itc: (ag + bf) = a L*g + b 'C" h,

(3) t:" = 7:

(4) The leading coefficient of t:: is a constant multiple of an'

We define T"" mapPing~., to.if~ by T1r; = 'C··f with

If (T*) = l.f t: .f ql / f t: An and 't"f ~ L ~.
1".

Lemma 1. . As above let 10 = (a, b). If f cA~(Qand

h f: An(lo), then h L"f and f r""h are integrable and

~: hr f =t f C- h
Proo f. Since f ~ A~ (10), Dkf (a) = D"f (b) = 0 for

k = 0,1, "" n. Thus LL..= 0 ••

3. RELATIONS BETWEEN 'T., Tc and T ", ThefOllowing

theorem s stat ed, wit hout proof; are well-known. It is not necessari Iy

compact.

Theorem 7. Suppose 9 is complex-valued and integrable

over every compact subinterval of I, i, e., 9 is locally integrable.
n .

As usual 7: =Lj,.PiD' and ao(t) f:. 0 for all t ~ I. Then given to f:; I

and n orbi trury cornpl ex con sro-j g CO''''' cn_I' there exists a unique

f E An such that 'Lf = 9 a. e. and
KD f (to) = ck' k = 0, 1, ... I n - 1.

If f is continuous, 9 is obsol utely continuous, and Dg = fa. e.,
then Dg = f. If h Eo.t,m, l.i p c 0() then his locally integrabl e •

Thi s follows from the fact that for a cornpcct interval and for

1 ~ p, qi~ ,.r,(lol C Z'f (10)'

Theorem 2. The set of solutions in An tothedifferential

equation t'f = 0 is an n-dimensional subspace of Cd'.

Proof. Let to be a fixed point in I. By the previous

theorem there exists unique functions f1, ... , fn in An such that
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t fj = 0 a. e. and for j = 1, ••. , n ,

Oifj-r1 (to) = $ij (Kronecker delta).

To see that the fj's are linearly independent, observe that if

= 0, ... , n-l.

Suppose f E An and ~f = O. Let

Using the uniqueness establi shed in theorem 1, we shall show that

9 - f = O. We first observe thathr = 0, .•• , n-l

Alsosince 'tfK= 0 a.e., we have l:(f - g) = Oa.e. Hencef-g

and the zero function are both in An and sati sfy th~ conditions of

theorem 1, so they must be equal. Thus f is a linear combination of

the f1' s ,

To complete the proof we must show that all of the solutions

are in C ~ First note that if 'tf = 0, then

. n-;
On f = -( l/an) L- i=oaj 0' f.

Hence Oflf is conti nuous and di fferenti abl e. We take the derivati ve of

both sides and then On+1f is a linear combination of the first n

derivatives of f •Thus Dn-1f is continuous and differentiable.

Theorem 3. If l.ip, q<QQ, then Te' = T* and if

1 < p,q~oo ,then 'Te = T*.

Proof. We shall only prove the theorem for the preconjugate.
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The proof for the conjugate follows similarly.

We have Tc : (..tp,), -J (.;(~I)' with

aD' (Tc) = { ~ p i / f E:.;Cp , f to A~ and 'C-f E:.t~ }
and TcJ) pi =.J)9 't-f. Thus for 1 < p, q i 0,0 , 'T c :t'~1....,.tr,
exi sts and

U('Tc) ={g~..e"'1 Tc~i(g') =~r;(h) for some ht:o('fl

and all .J)pf E 1r(Tc ) }.
-p.p •••

Also T* : c{'J' ~o(rl and T*g = L 9 with

h(Ttt) = 19 t; £0,.' / 9 ~ An and "L-Jo..g ~ofp'\'

Suppose 9f; j}(T*). We must show that Te.J>pi(g) =

= ..:Or i ( r~·g) for all ~ piE: Jr(Tc). If ..;J)pf E: b\Tc),

and thus by lemma 1

c
then fE An

~gZ:-f = Sf L*9'

Hence Tc -<9pf (9) = .j}'fC·f (g) = f 9 z: f = S of r;4f 9 =..Dr; ('c*9 )

We have shown J-n·) C.l)('Tc) and T* = fTc on b(T*').

Now suppose 9 6.o('Tc)'

Letting i, = 'Tefl, we have Lh =~r;(;') =.J)pf ('T;g) = TeJ)pf(g)=

"::off (g) = S s c r for all J)rf f.JrnC)' Thus for J)pf in -blTcL

(1) SI (Cf) 9 = II f h.
To show 9 f: '&(T*), it suffices to show that for any

compact interval 10 = [a, b) contained in 1, that 9 is equal a. e. to

a function in An(1~ and t9 is equal to h a.e. or" Io•

Define Do = {f /.J)p; t:..b'(TC) and f has support in To}.
For FE: Do, it follows that o Kf(a) = DKf(b) = 0, 0 ~k 5.n-1, and
therefore successive inte.9ration by parts yields the formula

32



(2) Okf(t) =
~

t o-k-1.l t - s )
a (n-K-l) 1

no f(s) ds

Since f vanishes outside of 10, it follows from (1) and (2) that

rb 0-1 rb (t -r-k-1
(3) JQ an(s) g(s) OOf(s) ds +~)Qdt JQ al<.(t) g(t) ~~_~~I) ~ Onf(s) d s

56 st (t-sf-'= a dt Q h(t) {n-1) I O"f(s) ds .

Each of the integrands in (3) is in L1 (I: 1) since at( is continuous

on I, g~ L,\, (1o)cL1 (10) and fE': Lr(lo)cL1.(IJ. Thus by Fubini's

theorem we may change the order of integration in (3) and obtain

rb t n-1~blt ,"-k-1
(4) a = J Ohf(s) an(s) g(s) + L.. {~~k-1)\ alt\(t) g(t) dt -

a "-=0 Q n .

rb (t- h,n-I 1J
5
(n-1)! h(t) dt ds

for all f E Do.

Let F(s) be the expresion inside the square b ackets in (4).

We show that f is equivalent on To to a polynomial of degree at most n-},

Given Q e L .. (lo) such that Q is orthogonal to the subspace

9of L 91(1 0) of polynomials of degree at most n-I, the function r

defined by

It. I
(t-S\n-

r(t) = Q In-I)! 'Q(s) ds, tE:lo

and equal to a outside of 10 is easily seen to be in 00 with
no h = Q a. e. on 10, Thus setting r = f in equation (4), we have

t
a = L Q(s) F(s) ds(5)

00
for all Q E L,(Io) orthogonal to ~c L9,(lo), i.e., for all Q E: '1

when 1 -< q So co or for all Q c°(? when 1 = q , Since~ is of

33



dimension n, we have from (5)

FE o(<f0) = tr, 1 <. q ~ 00 ,f' C.L9, (10)

FE. (Of)o = ~, 1 = q, (Y c.Lco(!J

Thus F is equivalent on 10 to a polynomial p of degree at most

n - 1 or

(6)

b
n-~ (t-S)n-"-i

an(s) g(s) = p(s) -r.. \"I\-k-I)\ a~(t) g(t) dt
t:- ~ .

b
)

l T -~f-'+ . ( ) h(t) dt, a. e.a ,0-1

Since the right hand side of (6) and liOn are absolutely continuous

on 10' we redefine g on a set of measure zero so as to be absolutely

continuous on 10• Differentiating, we obtain

o p (s)

D(aog) (s) = a,,(s) Dg(s) + g(s) Da,,(s) =
1\-2 ) b )n-I<-1,. It-s

+ an_ds) g(s) + L k )\ a"t) 9 (t)dt
\(-0 In--2

b S'_r (t - ~,"-2 h ( t )d t
\ (0-2)!

Since g, Dan, liOn, and the right hand of (6) are absolutely

continuous on 10, it follows that Dg is also absolutely continuous on

10• Repeated di fferenti ation of both si des of (7) shows that D '\-1g is

absol tely continuous and c-g = h cv e, on '0 (Recall that p is

a polynomial of degree at most n-1.) •

Corollary. T is a closed operator; hence \is closable.

Proof. Let ~be the restriction of T- to the equivalence

classes containing functions with compact support. We then have for

15:. p', q'<oo ,(T;)' = (T*,)· = T which is closed,

andfor 1< p', q's-co ,'(T~) = (1"')11 = T which is closed.

T = (Tit1'" since ('L*). = L. •
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SUMARIO :

E ste articulo trata de operadores lineal es (no necesari amente

acotados) entre espacios lineales normados. EI conjugado T' de un

operador T es coso bien conocida. EI preconjugado 'T se define co-

mo sigue

Suponemos que el domino de T,.8'(T), es total en el espacio

dual Y' y que toma valores en el espacio dual X' Entonces 'T :X~ Y

y 'Tx se define como el elemento de Y para el cual y'('Tx) = (Ty')x

para todo y'~o&-(T). Si 'Tx existe es unico dada la totalidad de&(T) •

.,8-('T) consiste de los x ~ X para los cuales 'Tx existe.

'T es operador lineal cerrado y si ('T)' exi ste es entonces

una extension de T, donde T es la extension cerrada minimal de

T, Si X 'Y Y son refl exi vo s 0 si T es el conj ugado de 01 gun operador

entonc;es ('n' = T.

EI "estado" de un operador lineal A: X-X se describe en

terminos de 10 siguiente : I. R(A) (ran go de A) = Y, II. R(A) 4 Y

y R(A) = Y, III. R(A) :/: Y; 1. A-I exi ste y es continuo, 2. A- ~
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exi ste y no es continuo, 3. A-
1

no exi ste. Luego se muestra en cucnro

el estado de un operador determi no (es determi nodo por) el estado de

su precon j.ugado. Un .. di agrama de estado " se con struye para mo strar

que parejas de est ado son inodmi si bl e s ,

En la segunda parte damosejemplos de operadores lineales

de ...eft a !1i y de sus preconjugados mostrando que las parejas de

est cdo no clasidicadas como inadmisibles pueden existir.

Finalmente, en la ultima parte se determina el conjugado y el

preconjugado de un operador diferencial que op li co -efen e,.

,
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