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Convex functions and
the Hadamard inequality
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ABSTRACT. The Hadamard inequality is proven without resorting to any prop-
erties of the derivative. Only the convexity of the function in a closed interval
is needed. Furthermore, if the existence of the integral is assumed, then the
convexity requirement is weakened to convexity in the sense of Jensen. Both
the Hadamard inequality and a corresponding upper bound are generalized for
integrals of the Stieljes type.
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§1

Definition 1. The function f : [a,b] — R is convex in [a,b] if for any
a,B €[0,1,a+ B =1, and any z,y € [a,b)],

flaz + By) < af(z) + Bf(y) (1)
If — f is convex then f is called concave.
Theorem 1. If f is convex in [a,b], then

(7) f is continuous in (a,b), and
(1) f is bounded in [a,b)]
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Proof. (i) The proof of this part is adapted from [3], p.110.

Let I = [zo — 6,20 + 6] C (a,b),6 > 0 and M = max{f(zo — ¢), f(zo +46)}. For
any z € (zo,Zo + 0) there is t € (0,1) such that z = (1 — t)zo + {(zo + 6) and
therefore

1 ¢
W —4).
T0 = 737 T —9)

Because of the convexity of f, it follows from these two equalities and from the
definition of M that

£@) < (1= 0f (@) + tfzo +6) < (L= Of @) + M (2)
and 1 t tM
fla) € o fla) + o fa — 8) < L ©

From (2) and (3), successively, we obtain
t(M — f(z0)) > f(z) = f(xo) 2 t(f(z0) — M)
and recalling that x — 29 = 6 T, we get

@) - Flao)l < | €M - flaoy| = LL=EEE=nl

The same proof shows that (4) is also valid if z € (zo — 6, Zo)-
Therefore the incremental quotient

|f(z) — f(zo)l

lz — zo|

is bounded for all z € I,z # xo. This implies the continuity of f at any point
xo of the open interval (a,b).
(Another proof of the continuity can be found in [5], pp. 82-92)

(ii) To prove boundedness, first remark that f is obviously bounded above
because of the definition of convexity in a closed interval.

Next, consider any p < g such that [p,q] C (a,b). The continuity proven
in part (i) implies that f is bounded in [p,q]. It remains to prove that it is
bounded below in [a,p] and in [g,b]. The proof, which is the same in both
cases, is as follows. If z € [a,p] C [a,q] then

p=7z+(1-7)g with g—:—ZSVSL (5)

as it can be easily seen by noting that if z = a then the equality in (5) becomes
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Now, from the convexity of f it follows that

f(p) <f(x) + (1 —v)f(q)
and

1
#@) 2 L1+ (1 - —) f(@) (6)

Since (¢ —a)/(g — p) > 1/~ > 1, the right side of (6) gives a lower bound for f
over the closed interval [a,p]. O

§ 2
Now we prove the main result

Theorem 2. If f is convex in [a,b] then

b
f(a-;b>sb_%z/a f(m)dxsf(a);f(b)

(The left inequality was established by Hadamard using the monotonicity of
the derivative, cf. [4], p. 186)

Proof. The existence of the integral follows from Theorem 1. Next we prove the
right inequality, although it is intuitively obvious from the geometric meaning
of convexity. Let x = a(1 —t) + bt,0 <t < 1. Then

“i—a/bf(x)dx=/lf(a(1—t)+bt)dt
<f(a)/ 1—t)dt+fb)/ (= {@+10)

Now we prove the left inequality. Writing the integral in the form
a+b

bia/‘lbf(x)dzz 1a [/¢1+

and making the sustitution z = a+t(b—a)/2, the first term in the last bracket
becomes

b
f(z)dz + /H_b f(x)dx] (7

a+b

/a+f(z)dx=b;a/()lf<a+t—(b—2_j—)) dt

and the second term, with z = b — ¢(b — a)/2, can be written as

/;f(w)dJE:—b;a/lof(b—t(b;a)> dt
=b;a/01f<b—'@) dt
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Therefore, replacing these results in (7) and applying the definition of convexity,
it follows that

ot [ (o 52) 0 (- 250
2 [1(53) e (t5)

Remark 1. It is now of interest to point out that for the proof of the left
inequality, definition 1 of convexity has been only used with a = 8 = %
Therefore, if the existence of the integral is assumed, then the Hadamard in-
equality is valid for any convex (J) function in the sense of, that is, for any
function f such that f(%f) < 1[f(z)+ f(y)] for all z,y € [a,b] (cf. [1], pp.
440-441)

It is possible to prove (see for example [2], p. 164) that ordinary convex-
ity and convexity in the sense of Jensen become equivalent if the function is

assumed to be continuous.

§ 3
We now extend some of the previous conclussions to integrals of the Stieljes
type. First we prove two lemmas.
Lemma 1. If h is strictly increasing and convex in [a,b] and h~! has domain
I = [h(a), h(b)], then h~! is concave and strictly increasing.
Proof. That h~! is strictly increasing is clear. Now, for any y;,y» € I there are
unique z1,2, € [a,b] such that y; = h(x;), i = 1,2. Therefore, if o, 3 € [0, 1]
and a + 3 =1, then

h™'(ay + Byz) = k™! (ah(z1) + Bh(z2)) > ™! (h(az) + Bzs)) =
azy + fzy = ah™ (y1) + B (y2) O

Lemma 2. If h is convex and increasing in ¢([a,b]), with ¢ convex in [a,b],
then the composition h(y(z)) is convex.

Proof. h(p(az1 + Bz2)) < h(ap(z1) + Be(z2)) < ah(e(z1) + Bh(p(x2)) for
any 1,3 € [a,b] O

Theorem 3. If f is convex in [a,b] and if g is concave and strictly increasing
in [a,b] with g~ having domain [g(a), g(b)], then

(9(b) — g(a)) f (g—l (M))

b
: / f@)dg(z) < (9(b) - g(a))w (8)
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Proof. We first observe that the integral is to be understood in the Stieltjes
sense. Equivalently, it can be defined by means of the sustitutions g(z) =

L g(a) =t, g(b) =t,, as

b 12}
/ f(z) dg(z) = / g ()) de (9)

The proof of the Theorem is now as follows: from (9), Lemma 1 and Theorem
1, we get

b ta flg71 (1)) + fo7' (1)
| #a)dgta) = PARE IR (L — )

a b
= (50 - gt L IO

and therefore the right hand side inequality in (8) is proven. The proof of the
left inequality follows from the Hadamard inequality and from Lemma 2, since
the convexity of fog~! gives

/:f(g—l(t)) at> (ty —t1) f\g“(t 5 2))
= (o) - g(@) £ (s (£2322)). o

Remark 2. The function ¢! (M) :IxI — R, I CR, is a direct

generalization of the arithmetic mean (consider for example g(z) = z). Some
of its properties are easily proven, such as:

Proposition 1. If ¢g: (p,q) — R has an inverse and they are both increasing,
and if G(a,b) = g7! ((g(a) + g(b))/2) for all a,b such that p < a < b < g, then
(1) a<G(a,b) <b
(i1) If, in addition, g is convex, then
a+b

<G(a,b)<b
Corolary. If f is increasing, then the conclusion of Theorem 3 can be modified

to read

(9(b) — g(a)) f(a) < /b F(z)dg(z) < (9(b) - g(a))z(f(a) + (b))

(9(b) — g(a)) £(b)

IA



/

i

al
12 ALFONSO G. AZPEITIA

§ 4

I am indebted to my colleague, Prof. MATTHEW GAFFNEY of the Univer-
sity of Massachusetts at Boston, for his critical review of the original and for
suggestions that led to significant improvements.
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