Revista Colombiana de Mateuuiticas Volumen 28 (1994), *págs.* 35-37

The roots of a polynomial depend continuously on its coefficients

RAÚL NAULIN^{*} CARLOS PABST^t

Universidad de Valparaiso, **CHILE**

ABSTRACT. An elementary proof is given of the continuous dependence of the roots of a polynomial on its coefficients.

Keywords and phrases. Lexicographic order, metric space, normed space, symmetric functions, roots of a polynomial, Fundamental Theorem of Algebra, continuous dependence on coefficients.

1991 Mathematics Subject Classification. Primary llC99. Secondary 00A99.

Definition 1. We say that the complex number $u = \alpha + i\beta$ is lexicographically *less* than the complex number $v = \gamma + i\delta$ if $\alpha < \gamma$ or $\delta = \gamma$ and $\beta < \delta$. We *denote* this by writing $u \prec v$. The notation $u \prec v$ means that $u \prec v$ or $u = v$.

With \mathcal{C}_n we denote the set of *n*-tuples of complex numbers lexicographically ordered from less to greater. Thus $(x_1, x_2, \ldots, x_n) \in C_n$ iff $x_1 \preceq x_2 \preceq \ldots \preceq x_n$. With $\vec{0}$ we denote the *n*-tuple $(0,0,\ldots,0)$.

On the set \mathcal{C}_n we define the metric

$$
d(x,y) = \sqrt{\sum_{j=1}^{n} |x_j - y_j|^2}.
$$

[•] Supported by Proyecto Fondecyt 0028-92, Conicyt, Chile.

t Supported by Proyecto DIUV 09/93, Universidad de Valparaiso, Chile.

The pair (C_n, d) is a complete metric space. In fact, C_n is a closed subset of the normed complex euclidean space, *i.e.*, of $(\mathbb{C}^n, \|\cdot\|)$, where the norm of $\vec{a} \in \mathbb{C}^n$ is

$$
\|\vec{a}\| = \sqrt{\sum_{j=1}^{n} |a_j|^2}.
$$

Now let

$$
P(z) = zn - a1zn-1 + ... + (-1)nan
$$

be a polynomial, and consider its coefficients as a vector in \mathbb{C}^n :

$$
\vec{a}=(a_1,a_2,\ldots,a_n).
$$

From the fundamental theorem af algebra $[1]$ we know that $p(x)$ has n roots. We will denote these roots by $\lambda_i, i = 1, 2, ..., n$, and assume that $\lambda_i \leq \lambda_{i+1}$, so that the vector

$$
\vec{\lambda}=(\lambda_1,\ldots,\lambda_n)
$$

is in C_n . From the well known formulae of ViÈTE we have the identities

$$
a_1 = \lambda_1 + \lambda_2 + \dots + \lambda_n
$$

\n
$$
a_2 = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \dots + \lambda_{n-1} \lambda_n
$$

\n
$$
a_n = \lambda_1 \lambda_2 \cdots \lambda_n,
$$

by means of which we can define in an obvious manner a continuous map

$$
T: \mathcal{C}_n \to \mathbb{C}^n
$$
; $\vec{\lambda} \mapsto T(\vec{\lambda}) = \vec{a}$

From the fundamental theorem of algebra this function is one to one and onto, *i.e.,* \mathcal{T} establishes a biyective correspondence between \mathcal{C}_n and \mathbb{C}^n .

Let S denote the inverse mapping of T :

$$
\mathcal{S}:=\mathcal{T}^{-1}:\mathbb{C}^n\to\mathcal{C}_n
$$

Lemma 1.

$$
d(\mathcal{S}(\vec{a}),0) \le 2n \max\{1,\|\vec{a}\|\}
$$

Proof: Let $S(\vec{a}) = (\lambda_1, \ldots, \lambda_n)$. Then

$$
|\lambda_1|^n \le \sum_{j=i}^n |a_j| \left(1 + |\lambda_1|^{n-j} \right). \tag{1}
$$

Now, if $|\lambda_i| \leq 1$, then

$$
|\lambda_i| \le 2\sqrt{n} \max\{1, \|\vec{a}\|\},\tag{2}
$$

and if $|\lambda_i| \geq 1$, then, dividing (1) by $|\lambda_i|^{n-1}$, we obtain

$$
|\lambda_i| \le \sum_{j=1}^n |a_j| (1 + |\lambda_i|^{1-j})
$$

\n
$$
\le 2 \sum_{j=1}^n |a_j| \le 2\sqrt{n} ||\vec{a}||
$$

\n
$$
\le 2\sqrt{n} \max\{1, ||\vec{a}||\}. \tag{3}
$$

From (2) and (3) the proof follows. \Box

Theorem 1. The function $S: \mathbb{C}^n \to \mathcal{C}_n$ is continuous.

Proof: Assume that *S* is not continuous at a point \vec{a} . Then there exist $\delta > 0$ and a sequence $(\vec{a}_n)_{n=1}^{\infty}$ such that $\lim_{n\to\infty} \vec{a}_n = \vec{a}$ and

$$
d(S(\vec{a}_n), S(\vec{a})) \ge \delta. \tag{4}
$$

Because of Lemma 1, the sequence $(S(\vec{a}_n))_{n=1}^{\infty}$ is bounded, and therefore (passing to a subsequence, if necessary) we can assume that this sequence has a limit:

$$
\lim_{n\to\infty}\mathcal{S}(\vec{a}_n)=\vec{\xi}.
$$

But from the continuity of *T* we have

$$
\mathcal{T}(\xi) = \lim_{n \to \infty} \mathcal{T}(\mathcal{S}(\vec{a}_n)) = \lim_{n \to \infty} \vec{a}_n = \vec{a},
$$

and therefore $\vec{\xi} = \mathcal{S}(\vec{a})$. Hence, for *n* sufficiently large

$$
d(S(\vec{a}_n), S(\vec{a})) < \delta,
$$

which contradicts (4). \Box

References

1. S. Lang, *Linear Algebra,* Addison-Wesley, Reading, Mass., 1966.

(Recibido en enero de 1994)

RAÚL NAULIN INSTITUTO DE MATEMATICAS Y FfsICA (IMAFI) UNIVERSIDAD DE VALPARAISO CASILLA 1470, VALPARAISO, CHILE *e-mail:* rnaulin@udo.uunet.ve

CARLOS PABST INSTITUTO DE MATEMATICAS Y FfsICA (IMAFI) UNIVERSIDAD DE VALPARAISO CASILLA 1470, VALPARAISO, CHILE