On two properties of the numerical range of a bounded Hilbert space operator

JAIME RODRÍGUEZ MONTES
Universidad Nacional de Colombia, Bogotá

ABSTRACT. Necessary and sufficient conditions are given for the numerical range of a bounded Hilbert space operator to have an empty interior. A sufficient condition for this set to be open is also established.

Key words and phrases. Hilbert and pre-Hilbert spaces; bounded, self-adjoint and normal operators; interior of a set; numerical range and spectrum of an operator; functions of class C^1.

1991 Mathematics Subject Classification. Primary 47A12, Secondary 47B15.

1. Introduction

Let H be a complex vector space. Endowed with an inner Hermitian product \langle , \rangle, H will be called a pre-Hilbert space. The norm of H is $\|x\| = \sqrt{\langle x, x \rangle}$. If H is complete as a normed space (i.e., if H is a Banach space for $\| \|$, H will be called a Hilbert space.

By an operator on H we mean a linear map T of a subspace $D(T)$ of H, called the domain of T, into H. If $D(T) = H$ and there is a constant $C > 0$ such that $\|Tx\| \leq C\|x\|$, T will be called a bounded operator on H.

An operator T on H is symmetric if $\langle Tx, y \rangle = \langle x, Ty \rangle$ for all x, y in $D(T)$. An operator T is symmetric if and only if $\langle Tx, x \rangle$ is a real number for all x in $D(T)$.

83
If T is an operator and $D(T)$ is a dense subset of H, the adjoint T^* of T can be defined: it is the operator of $D(T^*)$ into H such that $(Tx, y) = (x, T^*y)$ for all $x \in D(T)$ and all $y \in D(T^*)$. It can be shown that $D(T^*)$ is also a dense subspace of H and that $D(T^*) = H$ if $D(T) = H$. If T is symmetric with dense domain then $D(T) \subseteq D(T^*)$. If T is symmetric and $D(T) = D(T^*)$, T is called a self-adjoint or Hermitian operator on H. If T is symmetric and $D(T) = H$, T is self-adjoint and bounded.

Let T be a bounded operator on H and let

$$T_1 = \frac{1}{2}(T + T^*), \quad T_2 = \frac{1}{2i}(T - T^*)$$ \hspace{1cm} (1.1)

Then T_1 and T_2 are bounded self-adjoint operators on H, and

$$T = T_1 + iT_2$$ \hspace{1cm} (1.2)

The operators T_1 and T_2 are called the Cartesian coordinates of T, and the decomposition (1.2), its Cartesian decomposition. Observe that

$$\Re\langle Tx, x \rangle = \langle T_1 x, x \rangle, \quad \Im\langle Tx, x \rangle = \langle T_2 x, x \rangle$$ \hspace{1cm} (1.3)

for all x in H.

We also recall that a bounded operator T on H is normal if $\|T^*x\| = \|Tx\|$ for all x in H. If T is an operator, the set

$$W(T) = \{ \langle Tx, x \rangle \mid x \in D(T), \|x\| = 1 \},$$

which is a subset of the set \mathbb{C} of complex numbers, is the numerical range of T. In recent literature much attention has been paid to topological and geometric properties of the numerical range. It is known for example that $W(T)$ is a convex set [2], [3], [5], [11], [12], [13], that the closure of $W(T)$ contains the spectrum of T and, moreover, that if T is normal, it really is the closed convex hull of the spectrum (see [12]). Topological properties of $W(T)$ are extremely important. For example, if T is normal and $W(T)$ is closed, the extreme points of $W(T)$ are eigenvalues of T (see [6]). Many of these basic results have been extended one way or another to more general classes of operators (hyponormal ([9],[10]), quasihyponormal ([1], [7], [8]) and the like). All this constitutes a very active field of research in operator theory. In this paper we give necessary and sufficient conditions for the interior of the numerical range of a bounded operator in Hilbert space to be empty. These conditions refer to the structure of the operator and to the Jacobian matrix of a certain C^1-function related to it. Sufficient conditions also involving that matrix and some other simple properties of T are established for $W(T)$ to be open (see [4], problem 168).
2. Main Results

We first give necessary and sufficient conditions for the numerical range of a bounded operator on a Hilbert space to have an empty interior. Then, sufficient conditions for that set to be open will also be given. Some preliminary results will be needed. With \(\mathbb{R} \) we denote the set of real numbers.

Lemma 2.1. Let \(T \) be a symmetric operator on a pre-Hilbert space \(H \). Then, for each pair \(x, y \) in \(D(T) \), the map \(f : \mathbb{R}^2 \to \mathbb{R} \) given by

\[
f(s, t) = \langle T(\tau x + (1 - \tau)y), \tau x + (1 - \tau)y \rangle, \quad \tau = s + it \tag{2.1}
\]

is in \(C^1 \). Furthermore

\[
\frac{\partial f}{\partial s}(0, 0) = 2\Re\langle T(x - y), y \rangle, \quad \frac{\partial f}{\partial t}(0, 0) = -2\Im\langle T(x - y), y \rangle \tag{2.2}
\]

Proof. From

\[
\frac{1}{h}(f(s + h, t) - f(s, t)) = \langle T(\tau x + (1 - \tau)y), x - y \rangle
\]

\[
+ \langle T(x - y), \tau x + (1 - \tau)y \rangle + h\langle T(x - y), x - y \rangle
\]

and

\[
\frac{1}{h}(f(s, t + h) - f(s, t)) = \langle T(\tau x + (1 - \tau)y), i(x - y) \rangle
\]

\[
+ \langle T(i(x - y)), \tau x + (1 - \tau)y \rangle + h\langle T(x - y), x - y \rangle
\]

it follows, letting \(h \to 0 \), that

\[
\frac{\partial f}{\partial s}(s, t) = 2\Re\langle T(x - y), \tau x + (1 - \tau)y \rangle \tag{2.3}
\]

and

\[
\frac{\partial f}{\partial t}(s, t) = -2\Im\langle T(x - y), \tau x + (1 - \tau)y \rangle \tag{2.4}
\]

which are continuous functions of \(\tau \). Relations (2.2) follow from (2.3) and (2.4) with \(\tau = 0 \). \(\square \)

Lemma 2.2. Let \(x, y \) be vectors in a pre-Hilbert space \(H \) and let \(g : \mathbb{R}^2 \to \mathbb{R} \) be the map

\[
g(s, t) = \|\tau x + (1 - \tau)y\|^2, \quad \tau = s + it. \tag{2.5}
\]

Then \(g \) is in \(C^1 \) and

\[
\frac{\partial g}{\partial s}(s, t) = 2\Re\langle x - y, \tau x + (1 - \tau)y \rangle \tag{2.6}
\]

\[
\frac{\partial g}{\partial t}(s, t) = -2\Im\langle x - y, \tau x + (1 - \tau)y \rangle.
\]

Proof. Let \(T \) be the identity operator in Lemma 2.1. \(\square \)
Lemma 2.3. Let T be a bounded operator on a pre-Hilbert space H and let x, y with $\|y\| = 1$ be linearly independent vectors in H. Denote with F the map of \mathbb{R}^2 into \mathbb{R}^2 given by

$$F(s, t) = \left(\frac{f_1(s, t)}{g(s, t)}, \frac{f_2(s, t)}{g(s, t)} \right)$$

(2.7)

where

$$f_i(s, t) = \langle T_i(\tau x + (1 - \tau)y), \tau x + (1 - \tau)y \rangle, \quad i = 1, 2$$

(2.8)

with T_1, T_2 as in (1.1) and g as in (2.5). Then F is in C^1, and the Jacobian matrix of F at $(0, 0)$ is

$$J_T(x, y) = \begin{bmatrix} 2\Re \langle (T_1 - (T_1y, y))(x - y), y \rangle & -2\Im \langle (T_1 - (T_1y, y))(x - y), y \rangle \\ 2\Re \langle (T_2 - (T_2y, y))(x - y), y \rangle & -2\Im \langle (T_2 - (T_2y, y))(x - y), y \rangle \end{bmatrix}$$

(2.9)

Proof. This follows from T_1, T_2 being self-adjoint (so that f_1, f_2 are C_1 of \mathbb{R}^2 into \mathbb{R}), from observing that $g(s, t)$, which is also C^1, never vanishes, and from relations (2.2) and (2.6). \qed

Lemma 2.4. Let T, T_1 be commuting bounded operators on a Hilbert space H. Assume that T_1 is self-adjoint and there is $f: H \to \mathbb{C}$ such that

$$Tx = f(x)T_1x$$

(2.10)

for all $x \in H$. Then $T = \beta T_1$ for some β in \mathbb{C}.

Proof. If $T = 0$, let $\beta = 0$. Now assume there is $x_0 \in H$ such that $Tx_0 \neq 0$ and let $\beta = f(x_0)$. If

$$H_0 = \{ x \in H \mid Tx = \beta T_1x \}$$

(2.11)

then H_0 is a non trivial closed subspace of H. We claim that $H_0 = H$. Since $T(T_1x) = T_1(Tx) = T_1(\beta T_1x) = \beta T_1(T_1x)$ for all $x \in H_0$, it follows that $T_1(H_0) \subseteq H_0$ and, T_1 being self-adjoint, also $T_1(H_0^\perp) \subseteq H_0^\perp$. Hence, from (2.10), $T(H_0) \subseteq H_0$ and $T(H_0^\perp) \subseteq H_0^\perp$.

Now let $x \in H_0, y \in H_0^\perp$. Since $T(x_0 + y) = f(x_0 + y)T_1(x_0 + y) = f(x_0 + y)T_1x_0 + f(x_0 + y)T_1y = Tx_0 + Ty$, we get

$$(f(x_0 + y) - \beta)T_1x_0 = (f(y) - f(x_0 + y))T_1y \in H_0 \cap H_0^\perp;$$

and, since $T_1x_0 \neq 0$, that $\beta = f(x_0 + y)$. Then

$$T(x + y) = T(x - x_0) + T(x_0 + y) = \beta T_1(x - x_0) + \beta T_1(x_0 + y) = \beta T_1(x + y),$$

which implies that $H = H_0 \cap H_0^\perp \subseteq H_0$, and completes the proof. \qed
Lemma 2.5. Let T be a bounded operator on a Hilbert space H and let T_1, T_2 as in (1.1) be the self-adjoint operators in the Cartesian decomposition of T. Assume there is a function $f : H \to \mathbb{R}$ such that

$$T_2 y = \langle T_2 y, y \rangle y + f(y)(T_1 y - \langle T_1 y, y \rangle y) \quad (2.12)$$

for each $y \in H$ with $\|y\| = 1$. Then, T is a normal operator on H.

Proof. Since $T = T_1 + iT_2$ and $T^* = T_1 - iT_2$ then

$$Ty = (1 + if(y))T_1 y + i(\langle T_2 y, y \rangle y - f(y)\langle T_1 y, y \rangle y)$$

and

$$T^* y = (1 - if(y))T_1 y - i(\langle T_2 y, y \rangle y - f(y)\langle T_1 y, y \rangle y)$$

for each y with $\|y\| = 1$. Let

$$\alpha(y) = 1 + if(y), \quad \beta(y) = \langle T_2 y, y \rangle - f(y)\langle T_1 y, y \rangle, \quad y \in H,$$

then

$$(1/\alpha(y)) Ty = T_1 y + i(\beta(y)/\alpha(y)) y$$

and

$$\left(1/\alpha(y)\right) T^* y = T_1 y - i\left(\beta(y)/\alpha(y)\right) y$$

whenever $\|y\| = 1$. But, T_1 being self-adjoint, we have $\|(T_1 + \alpha)y\| = \|(T_1 + \overline{\alpha})y\|$ for all $y \in H$ and $\alpha \in \mathbb{C}$. Thus

$$\|1/\alpha(y)Ty\| = \|(1/\alpha(y))T^*y\|, \quad \|y\| = 1$$

which implies that $\|Ty\| = \|T^*y\|$ for all y in H. Hence, T is normal. □

Lemma 2.6. Let H be a Hilbert space and let T, T_1 and T_2 be as in Lemma 2.5. Assume that the determinant $|J_T(x, y)|$ of the Jacobian matrix $J_T(x, y)$ vanishes for all linearly independent vectors x, y in H with $\|y\| = 1$. Then, T is a normal operator on H.

Proof. The assumptions imply that $|J_T(x + y, y)| = 0$ whenever x, y are linearly independent and $\|y\| = 1$. On the other hand, (1.2) yields

$$\Re \langle Tx, y \rangle = \Re \langle T_1 x, y \rangle - \Im m \langle T_2 x, y \rangle$$

$$\Im m \langle Tx, y \rangle = \Im m \langle T_1 x, y \rangle + \Re \langle T_2 x, y \rangle,$$

so that

$$|\langle Tx, y \rangle|^2 = |\langle T_1 x, y \rangle|^2 + |\langle T_2 x, y \rangle|^2 + RT(x, y)$$

$$\quad (2.14)$$

where

$$RT(x, y) = 2\left\{\Re \langle T_2 x, y \rangle \Im m \langle T_1 x, y \rangle - \Re \langle T_1 x, y \rangle \Im m \langle T_2 x, y \rangle\right\}$$

$$\quad (2.15)$$
Since
\[(T - \langle Ty, y \rangle) x = (T_1 - \langle T_1 y, y \rangle)x + i(T_2 - \langle T_2 y, y \rangle)x, \quad (2.16) \]
(2.14), with \(T - \langle Ty, y \rangle I \) in the place of \(T \), gives
\[|\langle (T - \langle Ty, y \rangle)x, y \rangle|^2 = |\langle (T_1 - \langle T_1 y, y \rangle)x, y \rangle|^2 + |\langle (T_2 - \langle T_2 y, y \rangle)x, y \rangle|^2 \]
\[+ \frac{1}{2} |J_T(x + y, y)| \quad (2.17) \]

Hence, if \(x \) and \(y \) are linearly independent with \(||y|| = 1 \), in which case \(|J_T(x + y, y)| = 0 \), we have that \(x \) is orthogonal to \((T^* - \overline{T y, y})y \) if and only if \(x \) is orthogonal to both \((T_1 - \langle T_1 y, y \rangle)y \) and \((T_2 - \langle T_2 y, y \rangle)y \), i.e.,
\[\{(T^* - \overline{T y, y})y\}^\perp = \{(T_1 - \langle T_1 y, y \rangle)y\}^\perp \cap \{(T_2 - \langle T_2 y, y \rangle)y\}^\perp \quad (2.18) \]

Since all three spaces in (2.18) are closed hyperplanes, this relationship is possible if and only if those spaces coincide, which ensures the existence of \(f(y) \in \mathbb{C} \) such that
\[(T_2 - \langle T_2 y, y \rangle)y = f(y)(T_1 - \langle T_1 y, y \rangle)y, \quad ||y|| = 1. \quad (2.19) \]

We claim that \(f(y) \) can be taken to be real. Indeed, let \(y \in H \) with \(||y|| = 1 \). If \((T_1 - \langle T_1 y, y \rangle)y = 0 \), take \(f(y) = 0 \). If \((T_1 - \langle T_1 y, y \rangle)y \neq 0 \), take \(x \) linearly independent of \(y \) and such that \(\langle (T_1 - \langle T_1 y, y \rangle)y, x \rangle \neq 0 \) (for instance, \(x = (T_1 - \langle T_1 y, y \rangle)y \) will do). From \(|J_T(x + y, y)| = 0 \) it follows that for some \(\alpha \in \mathbb{R} \),
\[\left(\Re \langle (T_2 - \langle T_2 y, y \rangle)x, y \rangle, \Im \langle (T_2 - \langle T_2 y, y \rangle)x, y \rangle \right) = \alpha \left(\Re \langle (T_1 - \langle T_1 y, y \rangle)x, y \rangle, \Im \langle (T_1 - \langle T_1 y, y \rangle)x, y \rangle \right), \]
so that
\[\langle (T_2 - \langle T_2 y, y \rangle)x, y \rangle = \alpha \langle (T_1 - \langle T_1 y, y \rangle)x, y \rangle, \]
which is the same as
\[\langle (T_2 - \langle T_2 y, y \rangle)y, x \rangle = \alpha \langle (T_1 - \langle T_1 y, y \rangle)y, x \rangle. \quad (2.20) \]

This, together with (2.19) and the assumption \(\langle (T_1 - \langle T_1 y, y \rangle)y, x \rangle \neq 0 \), ensures that \(f(y) = \alpha \). The conclusion now follows from Lemma 2.5. \(\square \)
Theorem 2.1. Let T be a bounded operator on a Hilbert space H and let $T = T_1 + iT_2$ be its Cartesian decomposition. The following assertions are equivalent:

1. There are α, β in \mathbb{C} and a bounded self-adjoint operator B on H such that
 \[T = \alpha I + \beta B \]

2. \(\text{Int} (W(T)) = \emptyset \).

3. For any pair of vectors x, y in H with $\|y\| = 1,$
 \[|J_T(x, y)| = 0 \]

4. For any pair of vectors x, y in H with $\|y\| = 1,$
 \[|\langle (T - \langle Ty, y \rangle)x, y \rangle|^2 = |\langle (T_1 - \langle T_1 y, y \rangle)x, y \rangle|^2 + |\langle (T_2 - \langle T_2 y, y \rangle)x, y \rangle|^2. \]

Proof. If (2.21) holds then $W(T) = \alpha + \beta W(B)$, so that $\text{Int} W(T) = \alpha + \beta \mathbb{S} = \emptyset$ (as $W(B) \subseteq \mathbb{R}$). Hence, (1) \implies (2).

To prove that (2) \implies (3), assume (2.22) does not hold for a couple of vectors x, y in H with $\|y\| = 1$. Then, x, y are linearly independent. Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be given by (2.7). Since $F(0, 0) = (\langle T_1 y, y \rangle, \langle T_2 y, y \rangle) = \langle Ty, y \rangle$, the Inverse Function Theorem, guaranties the existence of open sets U, V of \mathbb{R}^2 with $(0, 0) \in U$ and $F(0, 0) \in V$ such that $F(U) = V$. Since $F(\mathbb{R}^2) \subseteq W(T)$, $\text{Int} (W(T)) \neq \emptyset$.

To see that (3) \implies (4), just observe that (3) implies that $|J_T(x + y, y)| = 0$, and, from (2.17), this is equivalent to (2.23).

Now assume that (4) holds. Lemma 2.6 and (2.23), which imply (2.17) to hold, ensure that T is normal and that for each y with $\|y\| = 1$ the three vectors $T_2 y, T y$ and $T^* y$ are in the subspace spanned by y and $T_1 y$. Thus, for each y in H with $\|y\| = 1$, there are $\alpha(y)$ and $\beta(y)$ in \mathbb{C} such that

\[Ty = \alpha(y)y + \beta(y)T_1 y \]

(2.24)

Now, if y belongs to the subspace spanned by $T_1 y$, for all y with $\|y\| = 1$, (2.24) and Lemma 2.4 apply to give that $T = \alpha I$ for some α in \mathbb{C}. If on the contrary there is x_0 in H not belonging to the subspace spanned by Tx_0, and if $\alpha = \alpha(x_0), \beta = \beta(x_0)$ and

\[H_0 = \{ x \in H \mid Tx = \alpha x + \beta T_1 x \}, \]

then H_0 is a non trivial closed subspace of H which is readily seen to be, as well as H_0^\perp, invariant under $T_1, T_2, T,$ and T^*. Since $H = H_0 + H_0^\perp$, this implies, exactly as in Lemma 2.4, that $H_0 = H$. Hence $T = \alpha I + \beta T_1$ and, since T_1 is self-adjoint, this shows that (4) \implies (1) and completes the proof of the theorem.
Corollary 2.1. Let T be a bounded operator on the Hilbert space H and $T = T_1 + iT_2$ be its Cartesian decomposition. Each of the following conditions is sufficient for $W(T)$ to be open:

1. For each y in H with $||y|| = 1$, there is $x \in H$ such that
 \[|J_T(x + y, y)| \neq 0. \]
 (2.25)

2. For each y in H with $||y|| = 1$, there is $x \in H$ such that
 \[|\langle (T - \langle Ty, y \rangle)x, y \rangle|^2 \neq |\langle (T_1 - \langle T_1y, y \rangle)x, y \rangle|^2
 + |\langle (T_2 - \langle T_2y, y \rangle)x, y \rangle|^2 \]
 (2.26)

3. For each y in H with $||y|| = 1$, there is $\alpha \in \mathbb{C}$ such that
 \[||(T - \alpha)y|| \neq \|(T - \alpha^*)y|| \]
 (2.27)

4. For all $y \in H$ with $||y|| = 1$, the vectors y, Ty and T^*y are linearly independent.

Proof. Since $|J_T(x+y, y)| = |J_T(x, y)|$, it is clear, from (2.17), that (1) \iff (2). Now, if (2.25) holds, x and y are linearly independent, and arguing as in the proof of (2) \implies (3) in Theorem 2.1, we conclude that $\langle Ty, y \rangle$ is interior to $W(T)$. Now let ||$y|| = 1$ and assume $|J_T(x, y)| = 0$ for all x linearly independent of y. The argument in the proof of Lemma 2.6 shows, on the one hand, that y, Ty and T^*y are linearly dependent, and, on the other hand, that $T_2y = \langle T_2y, y \rangle y + \beta(T_1y - \langle T_1y, y \rangle y)$ for some β in \mathbb{R}. Then, as in the proof of Lemma 2.5, we can show that $||(T - \alpha)y|| = \|(T - \alpha^*)y||$ for all $\alpha \in \mathbb{C}$. Hence, if (3) or (4) holds, also (1) must hold, and the proof is complete. \qed

Acknowledgements. I thank Professors JAIRO A. CHARRIS and ALONSO TAKAHASHI (Universidad Nacional de Colombia) for their careful reading of the manuscript and for suggestions that were helpful for a better presentation of the material.

References

(Recibido en octubre de 1994)

Jaime Rodríguez Montes
Departamento de Matemáticas y Estadística
Universidad Nacional de Colombia
Bogotá, Colombia
e-mail: dc35745@unalcol.unal.edu.co