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TOT-AL ABSOLUTE CURVATURE OF

CURVES IN LORENTZ MANIFOLDS

GRACIELA SILVIA BIRMAN

§1. INTRODUCTION

The total absolute curvature of manifolds has been discussed several times
and some papers about it already belong to the classical literature on that
topics. All of them deal with manifolds inmersed in Riemannian spaces. Even
[7], is related to spaces of constant curvature with positive definite metric. The
total absolute curvature has not been studied on spaces with indefinite metrics
or more simply, on Lorentz manifolds or Minkowski n-spaces. Every semi-
riemannian submanifold has a normal neighborhood in the manifold where it
is contained, but that is not true, in general, for immersed submanifolds, [5],
p. 200. In this note we want to show the total absolute curvature of a curve
imbedded into a Lorentz manifold ~f+l .

§2. THE TOTAL ABSOLUTE CURVATURE

Let! : --> ~f+l be an imbedding of a curve into the (n+ 1)-Minkowski space
with semi-riemannian metric 9 and inner product denoted by (,), of signature
(1, N). From the imbedding, bundles are induced according to the following
diagram

i j
F(~f+l)B --+ F1(X) --+

1~l 1~
f ~N+lX --+ 1

(1)

where F1 (X) is the bundle of unit normals, F(~~+l) is the bundle of orthonor-
mal frames, B is the sub-bundle of (p, qel,"" eN+I) for p E X, q = !(p), el
tangent vector and e2, ... , eN+l orthogonal vectors to F(X) at q, or the indef-
inite sphere bundle.
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It seems appropiate to express explicitly that there are three classes of or-
thonormal frames attached to a curve in lRf+1. For an orthonormal frame
e1, ... ,eN+1, they are:

1) Null frame: (for null curves) if e1 and E2 are nulls ((e1, ei) = (e2, e2) =
0), (e1, e2) = -1 and (ei, ei) = 1for i= 3, ... , n + 1.

2) Time/ike frame: (for timelike curves) if e1 is a timelike vector
( (e 1, e 1) = -1) tangent to the curve and the others are spacelike
vectors, i.e., (e., ei) = 1 for i = 2, ... , N + 1.

3) Space/ike frame: (for spacelike curves) if e1 is tangent to the curve,
(eiei) = 1for i = 1,... ,Nand (eN+l,en+1) = -1, i.e., timelike vector.

The pullback of 9 by f, /*(g), will be the semi-riemannian metric on X
induced by f from g.

Let w~ and w~b be the forms on f(lRf +1) associated to the semi-riemannian
connection of g, 1 ::; a, b ::; N + 1. These forms satisfy the structure equstions

{
dw~ = :Ebw~ /\ w~b ,

dW~b = :Ecw~c /\ w~b + n~b .

From the diagram (1) we have that

and

are forms on B which satisfy Wr = 0 for 2 ::; r~ N + 1.
Applying the structure equations and Wr = 0 we obtain

where Arij = Arji .

The function G(p, er) = (-1)det(Arij) is called the Lipschitz-Killing curva-
ture of f at 9 in the direction of the unitary vector e; at q. This function is
differentiable and bounded in F1(X), so we can consider the following integral:

where da is the volume element of the fiber over p, and according to [8] the
total absolute curvature of f is

f K*(p)dV
tac (I) = V-~ Ix c(N)dV '

where V is the volume of X and c(N) is the area of the unitary N-sphere.
As an example we consider the case of an imbedding of the circle 51 into

lR~ by f. We will distinguish three cases: a) I(Sl) is a pure spacelike curve,
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b) /(51) is a pure timelike curve, c) /(51) is timelike or spacelike by parts
(piece-pure). In [3], a pure curve was defined as a curve whose tangent vector
at every point is timelike or spacelik, and a piece-pure curve as one that has
only a finite number of null points.

For a), X(s) = /(51) in ~~ is a spacelike curve; we have the Frenet frame
(t, n, b) that satisfies (t, t) = 1, (b, b) = -1. Any other frame will satisfy

e1 = t(s)
ez = n(s) ch 0 +-b(s) sh 0 for 0 E ~

e3.= n(s) sh 0 + b(s) ch 0 .

We get

WI = (dX, el)
W12 = (del, e2) = (tl(s), (n(s) ch 0 + b(s) sh 0)) ,

and

A - (t',n)chO+(t',b)shO -k() hO
211 - ( ) - s c ,t, t

where k(s) is the curvature of X(s) at s. The Lipschitz-Killing curvature is

k*(p) = Ik(s)1J sh OdO ,

where the integral is over the unitary sphere in the osculator plane T, n), that
means that it is the euiclidean sphere 51. We obtain

11'
k*(p) = 4Ik(s)I' sh 2' .

For b), /(51) is a timelike curve and we take a timelike frame. The function
curvature is

f Ik(s)1 ch OdO ,lSI
I

but this integral is divergent. Also coming back to the expression tac(f) it
is not possible to compute c(N) because it corresponds to the area of non-
compact spheres. Remember that the only compact connected 2-dimensional
manifold which admits a Lorentz metric is the torus T.

For all above, the case c) disappears.
The diagram (1) can be shown with more detail and extented to

t/J
F1(X) Xp ----+ ---+

i1 <, I 1¢l
G(I, N)- 5f" ~ F(~i'+l) ---+ ~N+1

1 'p
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where F(lRf+1) is the Stiefel manifold of frames with one timelike vector and
the rest are spacelike vectors. Therefore, we can identify it with the sphere
sf'. Thus, the application ljJ i, in fact, the generalized Gauss map, [5] p. 196.

Let P be the bundle given by ljJ*(T(Sf')) over F(X) with projection t/J and
fiber Px = {y E T</>(x)(Sf') ; st», y) = I} which could be immersed by t in a
sphere of lRf+l. Following [7] step by step, it is not difficult to verify that

dljJ = IdGlda

and
di = Ig(t, f 0 7r 0 t/J)I(t/J*(dljJ t\ B) ,

B being the form on Px defined by

B(W1,'" ,wn) = det (ljJ(t/J(x),t(x),dt(W1),'" ,dt(WN))'

for x E P, and

where dG is the volume element of the indefinite Grassman manifold, [2].
Taking into account the last results we can transfer the integration to the

Grassman manifold. Thus, together with [6], p. 254, we find the following
expression for the total absolute cuervature of f:

tac (I) = -0
1 r I/NdL1 ,
N JG(l,N)

where I/N is the number of N-hyperplanes of lRf+1 that are orthogonal to L1

and contain the tangent vector of X, and ON is the volume element of the
unitary N -sphere (euclidean).

In particular, [1] and [4] give us the density of lines for N = 1 and 2,
respecti vely.

Finally, we want to remark that the integration is over the whole indefinite
Grasssman manifold.

In [2] we showed the measure of indefinite Grassman manifolds classified
according to its signature as well as its causal condition.
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