MULTIPLE RADIAL SOLUTIONS FOR A SEMILINEAR DIRICHLET PROBLEM IN A BALL

Alfonso Castro and Jorge Cossio

Abstract

We prove that a semilinear elliptic boundary value problem in a ball has $4 j-1$ radially symmetric solutions when the nonlinearity has a positive zero and the range of the derivative of the nonlinearity includes at least the first j eigenvalues. We make extensive use of the global bifurcation theorem, bifurcation from infinity, and bifurcation from simple eigenvalues.

1. Introduction

The purpose of this paper is to prove the existence of radially symmetric solutions to the semilinear elliptic problem

$$
\left\{\begin{array}{llll}
\Delta u+f(u) & =0 & \text { in } \quad \Omega \tag{1.1}\\
u & =0 & \text { on } \quad \partial \Omega
\end{array}\right.
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function such that $f(0)=0$,

$$
\begin{equation*}
f^{\prime}(\infty)=\lim _{|u| \rightarrow \infty} \frac{f(u)}{u} \in \mathbb{R}, \tag{1.2}
\end{equation*}
$$

$\Omega \subset \mathbb{R}^{N}$ is the unit ball in \mathbb{R}^{N} centered at the origin, and Δ is the Laplacian operator.

Existence of radial solutions to problem (1.1) has been extensively studied (see [8], [9], [11], [12]). M. Esteban in [8] obtained the existence of radial solutions based on a priori estimates for solutions of (1.1). For studies on the existence of positive solutions of (1.1) we refer the reader to [7] and [13]. For other results see also [1], [2], [3], [4], and [14].

Let $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{k}<\ldots$ be the eigenvalues of $(-\Delta)$ acting on radial functions of H_{0}^{1} and $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k}, \ldots$ be the corresponding eigenfunctions, with $\varphi_{k}(0)=1$.

Here we prove:
1980 Mathematics Subject Classification (1985 Revision). 35B32, 35J25.
Key words and phrases. Nonlinear elliptic equations, bifurcation, multiplicity of solutions.
This research was partially supported by NSF grant DMS-8905936, the Texas Advanced Research Program and COLCIENCIAS, The Colombian Institute for Science) .

Theorem A. If f has a positive zero, and $f^{\prime}(0)=f^{\prime}(\infty)>\lambda_{j}$, then (1.1) posseses at least $4 j-1$ radially symmetric solutions.

We also give a simpler proof of the following result due to M. Esteban [8].
Theorem B. If $0<f^{\prime}(0)<\lambda_{j+1}$, and $\lambda_{j+k}<f^{\prime}(\infty)$, then (1.1) posseses at least $2 k+1$ radially symmetric solutions.

We prove Theorems A and B by obtaining a description of the graph of the set of solutions to

$$
\left\{\begin{align*}
& \Delta u+\lambda f(u)=0 \tag{1.3}\\
& \text { in } \Omega \\
& u=0 \\
& \text { on } \partial \Omega
\end{align*}\right.
$$

where $\lambda \in \mathbb{R}$ is a parameter (see figures 1 and 2). The main ingredients in arriving to these figures are the global bifurcation theorem (see [15]), bifurcation from a simple eigenvalue (see [5]), bifurcation from infinity (see [15]), as well as unique continuation properties of radial solutions to (1.3).

2. Properties of branches of solutions.

Let E be the Banach space of radially symmetric functions in $C^{1}(\Omega)$ satisfying $u(x)=0$ if $\|x\|=1$. For $u \in E$ we will denote by $u(r)$ the value of u on the sphere of radius $r \in[0,1]$. Let J denote the closure in $\mathbb{R} \times E$ to the set of nontrivial solutions to (1.3). First we prove:

Lemma 2.1. If (λ, U) is a solution to (1.3) with $U \neq 0$, then there exists $\epsilon>0$ such that if (λ, u) is also a solution to (1.3) and $\|(\lambda, u)-(\Lambda, U)\|_{\mathbf{~} \times E}<\epsilon$ then u has as many zeroes as U in $(0,1)$.
Proof. First we recall that the radial solutions to (1.3) are the solutions to the ordinary differential equation

$$
\begin{align*}
u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+\lambda f(u) & =0 \quad 0<r \leq 1, \tag{2.1}\\
u^{\prime}(0) & =0, \tag{2.2}\\
u(1) & =0 . \tag{2.3}
\end{align*}
$$

By uniqueness of solutions to initial value problems we know that if u satisfies (2.1), and $u(r)=u^{\prime}(r)=0$ for some $r \in[0,1]$ then $u \equiv 0$. Thus, in particular, $(u(r))^{2}+\left(u^{\prime}(r)\right)^{2}>0$ for all $r \in[0,1]$. Hence u has finitely many zeroes and they are nondegenerate. Without loss of generality we can assume that $U(0)>0$. Let $0=a_{0}<a_{1}<a_{2}<\cdots<a_{k}<1=a_{k+1}$ be the zeroes of U in $(0,1), b_{1}=\max _{\left[0, a_{1}\right]} U, b_{2}=\min _{\left[a_{1}, a_{2}\right]} U, b_{3}=\max _{\left[a_{2}, a_{3}\right]} U, \ldots$, and $b=\min _{1 \leq i \leq k+1} b_{i}$.

Let $0<\epsilon_{1}<\frac{b}{4}$. If $\|(\lambda, u)-(\Lambda, U)\|_{\mathbf{\Phi} \times E}<\epsilon_{1}$ then u and U have same sign on the set $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ of critical points of U. Therefore $u(0)>0$, and
$u\left(c_{j}\right) U\left(c_{j}\right)>0$ for all $j=1, \ldots, k$. By the mean value theorem there exist numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ with $\alpha_{1} \in\left(0, c_{1}\right), \alpha_{2} \in\left(c_{1}, c_{2}\right), \ldots, \alpha_{k} \in\left(c_{k-1}, c_{k}\right)$ so that $u\left(\alpha_{1}\right)=u\left(\alpha_{2}\right)=\cdots=u\left(\alpha_{k}\right)=0$. Thus, u has at least k zeroes in $(0,1)$.

We prove now that u has exactly k zeroes in $(0,1)$. Let $\delta>0$ be sufficiently small such that for some $\gamma_{1}>0$ and $\gamma_{2}>0$
(i) $\left|U^{\prime}(x)\right| \geq \gamma_{1}$
$\forall x \in C=\left[a_{1}-\delta, a_{1}+\delta\right] \cup \cdots \cup[1-\delta, 1]$
(ii) $|U(x)| \geq \gamma_{2} \quad \forall x \in D:=[0,1]-C$.

Let $\epsilon<\min \left\{\frac{\gamma_{1}}{4}, \frac{\gamma_{2}}{4}, \epsilon_{1}\right\}$. If $x \in D$

$$
|u(x)| \geq|U(x)|-|u(x)-U(x)| \geq \gamma_{2}-\frac{\gamma_{2}}{4}>0
$$

Suppose there exist $t_{1}, t_{2} \in\left[a_{j}-\delta, a_{j}+\delta\right]$, for some $1 \leq j \leq k$, so that $u\left(t_{1}\right)=u\left(t_{2}\right)=0$. By the mean value theorem there exists $t \in\left[t_{1}, t_{2}\right] \subset C$ such that $u^{\prime}(t)=0$. Thus

$$
\left|U^{\prime}(t)\right|=\left|u^{\prime}(t)-U^{\prime}(t)\right|<\frac{\gamma_{1}}{4}
$$

which is a contradiction. Thus Lemma 2.1 is proven.
Lemma 2.2. If Γ is a connected component of $\{(\lambda, u) \in \mathbb{R} \times E$; (λ, u) satisfies (1.3) and $u \neq 0\}$ then there exists a positive integer k such that if
$(\lambda, u) \in \Gamma$ then u has exactly k zeroes in $[0,1]$.
Proof. Let $(\Lambda, U) \in \Gamma$. Since solutions to (2.1)-(2.3) can not have degenerate zeroes, U has finitely many zeroes in [0,1], say k. We let $\Sigma=\{(\lambda, u) \in$ $\Gamma ; u$ has k zeroes in $[0,1]\}$. From Lemma 2.1 it follows that Σ is an open subset of Γ. Let us see now that Σ is also closed.

Let $\left\{\left(\lambda_{n}, u_{n}\right)\right\}_{n=1}^{\infty}$ be a sequence in Σ such that $\left(\lambda_{n}, u_{n}\right) \rightarrow(\lambda, u)$ with $(\lambda, u) \in \Gamma$. We prove now that u has a finite number of zeroes in $(0,1)$. In fact, assume, on the contrary, that u has infinitely many zeroes in $(0,1)$. Then, there exists a sequence $\left\{t_{n}\right\}_{n=1}^{\infty} \subset[0,1]$ such that $u\left(t_{n}\right)=0$. Without loss of generality we can assume $t_{n} \rightarrow \bar{t}$ where $\bar{t} \in[0,1]$. By continuity of u we have $u(\bar{t})=0$. The mean value theorem gives the existence of a sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ so that $s_{n} \in\left(t_{n}, \bar{t}\right) \cup\left(\bar{t}, t_{n}\right)$ and $u^{\prime}\left(s_{n}\right)=0$. Since u^{\prime} is continuous we see that $u^{\prime}(\bar{t})=0$. Because u is a radial solution of (1.3), u satisfies

$$
\left\{\begin{aligned}
u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+\lambda f(u) & =0 \quad 0<r \leq 1 \\
u^{\prime}(0)=u(1) & =0
\end{aligned}\right.
$$

Therefore by uniqueness of solutions to the initial value problem we have $u \equiv 0$; which is a contradiction. This proves u has only a finite number of zeroes in
$(0,1)$. Since $\left(\lambda_{n}, u_{n}\right) \rightarrow(\lambda, u)$, by Lemma 2.1 it follows that u has exactly $(k-1)$ zeroes in $(0,1)$. Thus $(\lambda, u) \in \Sigma$. This proves that Σ is closed in Γ, and the Lemma follows.

For $d \in \mathbb{R}$ and $\lambda>0$ we will denote by $u(\cdot, \lambda, d)$ the solution to (2.1) with $u(0)=d$, and $u^{\prime}(0)=0$. Standard arguments on dependence on parameters show that u is a differentiable function in the variable $(r, \dot{\lambda}, d)$.

An elementary calculation shows that if $\alpha>0$ then $u\left(\frac{r}{\alpha}, \lambda, d\right)=u\left(r, \frac{\lambda}{\alpha^{2}}, d\right)$. Differentiating this relation with respect to α and taking $\alpha=1$ we obtain

$$
\begin{equation*}
r u^{\prime}(r, \lambda, d)=2 \lambda u_{\lambda}(r, \lambda, d) . \tag{2.4}
\end{equation*}
$$

Lemma 2.3. If J is a connected component of $\{(\lambda, d) ; d \neq 0, u(1, \lambda, d)=0\}$ then there exist an open interval $(a, b) \subset \mathbb{R}-\{0\}$ and a continuous function $h:(a, b) \rightarrow(0, \infty)$ such that $(\lambda, d) \in J$ if and only if $d \in(a, b)$ and $\lambda=h(d)$. Moreover, if $a \in \mathbb{R}-\{0\}$ then $\lim _{d \rightarrow a} h(d)=\infty$. Similarly, if $b \in \mathbb{R}-\{0\}$ then $\lim _{d \rightarrow b} h(d)=\infty$.
Proof. Let $(\gamma, w) \in J$. Since solutions to (2.1)-(2.3) can not have degenerate zeroes, from (2.4) we see that $u_{\lambda}(1, \gamma, w) \neq 0$. Thus, by the implicit function theorem there exists $\sigma>0$ such that $(\lambda, d) \in J$, with $|\lambda-\gamma|<\sigma$ and $|d-w|<\sigma$ if and only if $\lambda=h_{1}(d)$ with $h_{1}:(w-\sigma, w+\sigma) \rightarrow \mathbb{R}$ continuous. By continuous dependence on parameters we see that if $w+\sigma \in \mathbb{R}-\{0\}$ and $\liminf _{d \rightarrow w+\sigma} h_{1}(d) .<\infty$, then $(z, w+\sigma) \in J$, where z is any accumulation point of any sequence of the form $\left\{h_{1}\left(s_{k}\right) ; s_{k} \rightarrow w+\sigma\right\}$. Because $u(1,0, w+\sigma)=w+\sigma$ whereas $u(1, z, w+\sigma)=0$ we see that $z \neq 0$. Since (2.4) also applies to ($\cdot, z, w+\sigma$), using again the implicit function theorem, it follows that h_{1} can be extended to ($w-\sigma, w+\sigma+\delta$) until either $b \in\{0, \infty\}$ or $\lim _{d \rightarrow b} h_{1}(d)=\infty$. Similarly it is proven that either $a \in\{0, \infty\}$ or $\lim _{d \rightarrow a} h_{1}(d)=\infty$. Letting h denote the maximal extension of h_{1} and noting that the graph of h is open and closed in J we conclude that J coincides with the graph of h, which proves the lemma.

Remark 2.4. We denote by β the positive zero of f. For future reference we observe that, by uniqueness of solutions to the initial value problem for equation (2.1), if $u(s, \lambda, d)=\beta$ and $u^{\prime}(s, \lambda, d)=0$ for some $s \in[0,1]$ then $u(t, \lambda, d)=\beta$ for all $t \in[0,1]$. Thus if J is as in Lemma 2.3 then the domain of h can not include β.

3. Proof of Theorems A and B

Because $\lambda_{n}(1 \leq n<\infty)$ is a simple eigenvalue of $-\delta$ with Dirichlet boundary condition we have that 0 is a simple eigenvalue of $\delta+\left(\frac{\lambda_{n}}{f^{\prime}(0)}\right) I$ and
$\delta+\left(\frac{\lambda_{n}}{f^{\prime}(\infty)}\right) I$ with Dirichlet boundary condition. From general properties of bifurcation from simple eigenvalues (see [5]) and bifurcation from infinity (see [15]) it follows that $\left(\frac{\lambda_{n}}{f^{\prime}(0)}, 0\right)$ and $\left(\frac{\lambda_{n}}{f^{\prime}(\infty)}, \infty\right)$ are points of bifurcation of (2.1). More precisely there exists $\sigma>0$ such that for $|r| \in(0, \sigma)$ the problem (2.1) has solutions of the form $\left(\lambda, r \varphi_{n}+\psi(r)\right)$ with $\int_{0}^{1} r^{n-1} \varphi_{n} \psi d r=0$, $\|\psi\|=\circ(r)$, and $\left|\lambda-\frac{\lambda_{n}}{f^{\prime}(0)}\right|=\circ(r)$ as $r \rightarrow 0$. Similarly, if (λ, u) is a solution to (2.1) on the branch bifurcating from $\left(\frac{\lambda_{n}}{f^{\prime}(\infty)}, \infty\right)$ then $u=r \varphi_{n}+\psi(r)$ with $\int_{0}^{1} s^{n-1} \varphi_{n} \psi d s=0,\|\psi\|=\mathrm{o}(r)$, and $\left|\lambda-\frac{\lambda_{n}}{f^{\prime}(\infty)}\right|=\mathrm{o}(r)$ as $r \rightarrow \infty$. We will denote by Γ_{n}^{+}the connected component of nontrivial solutions to (2.1)-(2.3) bifurcating from $\left(\frac{\lambda_{n}}{f^{\prime}(0)}, 0\right)$ and containing elements of the form $\left(\lambda, r \varphi_{n}+\psi(r)\right)$ with $r>0$. Similarly we define Γ_{n}^{-}. Also we define G_{n}^{+}as the connected component of nontrivial solutions to $(2.1)-(2.3)$ bifurcating from $\left(\frac{\lambda_{n}}{f^{\prime}(\infty)}, \infty\right)$ and containing elements of the form $\left(\lambda, r \varphi_{n}+\psi(r)\right)$ with $r>0$. Similarly we define G_{n}^{-}.

Lemma 3.1. Let $J=\left\{(\lambda, u(0)) ;(\lambda, u) \in G_{2}^{-}\right\}$. If h, a, and b are as in Lemma 2.3, then $a=-\infty$ and $b<0$.
Proof. Since G_{2}^{-}contains elements of the form $\left(\lambda, s \varphi_{2}+\psi(s)\right)$ with $s<0$ and large, and λ is near $\frac{\lambda_{2}}{f^{\prime}(\infty)}$ we have $a=-\infty$ and $\lim _{d \rightarrow-\infty} h(d)=\frac{\lambda_{2}}{f^{\prime}(\infty)}$. Since $\|\psi(s)\|=\circ(s)$ as $s \rightarrow-\infty$ we have

$$
\begin{equation*}
\lim _{s \rightarrow-\infty} s \varphi_{2}(\alpha)+\psi(s)(\alpha)=+\infty \tag{3.1}
\end{equation*}
$$

where α is the critical point of φ_{2} in $(0,1]$.
Let us see now that $g(d)=\max \{u(r, h(d), d) ; r \in[0,1]\}$ is a continuous function. In fact, Let $d_{0} \in(a, b)$ and $\left\{d_{n}\right\}$ a sequence converging to d_{0}. Of course $\left\{h\left(d_{n}\right)\right\}$ converges to $h\left(d_{0}\right)$. Let t_{n} be such that $g\left(d_{n}\right)=u\left(t_{n}, h\left(d_{n}\right), d_{n}\right)$. Let \bar{t} be a limit point of $\left\{t_{n}\right\}$. Since $u\left(\bar{t}, h\left(d_{0}\right), d_{0}\right)=\lim _{n \rightarrow \infty} u\left(t_{n}, h\left(d_{n}\right), d_{n}\right) \geq 0$, we have $\bar{t}>0$. By continuous dependence on parameters $u^{\prime}\left(\bar{t}, h\left(d_{0}\right), d_{0}\right)=$ $\lim _{n \rightarrow \infty} u^{\prime}\left(t_{n}, h\left(d_{n}\right), d_{n}\right)=0$. Thus \bar{t} is a critical point of $u\left(\cdot, h\left(d_{0}\right), d_{0}\right)$. Since elements in G_{2}^{-}have only one zero in $(0,1)$ they have only one critical point. Thus \bar{t} is the maximum of $u\left(\cdot, h\left(d_{0}\right), d_{0}\right)$, which proves that g is continuous. By (3.1) we see that $\lim _{d \rightarrow-\infty} g(d)=+\infty$. If $b=0$ then $\lim _{d \rightarrow 0} g(d)=0$, Thus by the intermediate value theorem there exists $d_{1}<0$ such that $g\left(d_{1}\right)=\beta$, i.e., there exists $t_{1} \in(0,1)$ with $u\left(t_{1}, h\left(d_{1}\right), d_{1}\right)=\beta$, and $u^{\prime}\left(t_{1}, h\left(d_{1}\right), d_{1}\right)=0$. By
uniqueness of solutions to initial value problem we have $u\left(t, h\left(d_{1}\right), d_{1}\right) \equiv \beta$, which contradicts that $d_{1}<0$; thus $b<0$, which proves the Theorem.

Notation. We will denote by h_{1} and $b_{1}<0$ the continuous function and the number such that $\left\{(\lambda, u(0)) ;(\lambda, u) \in G_{2}^{-}\right\}=\left\{\left(h_{1}(d), d\right) ; d \in\left(-\infty, b_{1}\right)\right\}$.

Corollary 3.2. If $J=\left\{(\lambda, u(0)) ;(\lambda, u) \in \Gamma_{n}^{-}\right\}$with $n \geq 2$, and a, b are as in Lemma 2.3 then $a \geq b_{1}$.

Proof. Suppose $a=-\infty$. Let h be as in Lemma 2.3. For $d<b_{1}$ we see that $h(d)<h_{1}(d)$, otherwise $\Gamma_{n}^{-} \cap G_{2}^{-} \neq \emptyset$, which contradicts that $b_{1}<0$. Let $\left\{d_{n}\right\}$ be a sequence converging to $-\infty$ with $\left\{h\left(d_{n}\right)\right\}$ converging to Λ. Thus $(\Lambda,-\infty)$ is a bifurcation point. Hence $\Lambda=\frac{\lambda_{1}}{f^{\prime}(\infty)}$ or $\Lambda=\frac{\lambda_{2}}{f^{\prime}(\infty)}$. Since elements in J correspond to solutions with at least one interior zero $\Lambda \neq \frac{\lambda_{1}}{f^{\prime}(\infty)}$. Also since $b_{1}<0$ it follows that $\Lambda \neq \frac{\lambda_{2}}{f^{\prime}(\infty)}$. This contradiction shows that $a>-\infty$. If $a<b_{1}$ then $h-h_{1}:\left(a, b_{1}\right) \rightarrow \mathbb{R}$ is such that $\lim _{d \rightarrow a}\left(h-h_{1}\right)(d)=+\infty$ and $\lim _{d \rightarrow b_{1}}\left(h-h_{1}\right)(d)=-\infty$. Hence by the intermediate value theorem there exists $d<b_{1}$ with $h(d)=h_{1}(d)$ which contradicts that $\Gamma_{n}^{-} \cap G_{2}^{-}=\emptyset$, this proves the Corollary.

Imitating the proof of Corollary 3.2 we also have
Corollary 3.3. If $J=\left\{(\lambda, u(0)) ;(\lambda, u) \in G_{n}^{-}\right\}$with $n>2$ and a, b are as in Lemma 2.3 then $b \leq b_{1}$.
Proof of Theorem A. Our proof consists of showing that the sets $\Gamma_{k}^{ \pm}$and $G_{k}^{ \pm}$, for $k=2, \ldots, j$, as well as Γ_{1}^{+}and G_{1}^{+}contain each a solution to (1.1). These $4 j-2$ solutions together with 0 yield the result.

Let $k \in\{1, \ldots, j\}$ and $J=\left\{(\lambda, u(0)) ;(\lambda, u) \in \Gamma_{k}^{+}\right\}$. Let (a, b) and h be as in Lemma 2.3. By the definition of Γ_{k}^{+}we see that $a=0$, and $\lim _{d \rightarrow 0} h(d)=\frac{\lambda_{k}}{f^{\prime}(0)}<$ 1. By Remark 2.4 we also have $b<\beta$. Thus by Lemma $2.3 \lim _{d \rightarrow b} h(d)=\infty$. Hence by the intermediate value theorem there exists $d_{k} \in(a, b)$ such that $h\left(d_{k}\right)=1$. Thus $\left(1, u\left(\cdot, 1, d_{k}\right)\right) \in \Gamma_{k}^{+}$is a solution to (1.1).

Let now $J=\left\{(\lambda, u(0)) ;(\lambda, u) \in \Gamma_{k}^{-}\right\}$with $k \in\{2, \ldots, j\}$ and a, b and h be as in Lemma 2.3. Since by Corollary 3.2 and Lemma $2.3 a>b_{1}$ and $\lim _{d \rightarrow a} h(d)=\infty$ we see that there exists $\delta_{k} \in(a, 0)$ such that $h\left(\delta_{k}\right)=1$. Thus $\left(1, u\left(\cdot, 1, \delta_{k}\right)\right) \in \Gamma_{k}^{-}$is a solution to (1.1) with k zeroes in $(0,1]$.

Similar arguments show that G_{k}^{-}for $k=2, \ldots, j$, and G_{k}^{+}for $k=1, \ldots, j$ contain a solution to (1.1). This proves Theorem A.

We summarize the above result in the following bifurcation diagram

Figure 1. Bifurcation diagram for problem (1.3)

Proof of Theorem B. If there exists $\bar{x} \neq 0$ such that $f(\bar{x})=0$. Arguing as in the proof of Theorem A it follows that G_{n}^{+}and $G_{n}^{-}(n \in\{j+1, \ldots, j+k\})$ has a solution to (1.1) (see figure 2).

On the other hand if $f(x) \neq 0$ for $x \neq 0$, then there exists $m>0$ such that $x f(x)-m x^{2}>0$ for $x \neq 0$. We claim now that $\Gamma_{n}^{+}=G_{n}^{+}$and $\Gamma_{n}^{-}=G_{n}^{-}$for all $n=1,2, \ldots$.

Let $J=\left\{(\lambda, u(0)) ;(\lambda, u) \in \Gamma_{n}^{+}\right\}$. Let a, b, and h be as in Lemma 2.3. By the definition of Γ_{n}^{+}we have $a=0$. We claim that h is a bounded function. If

Figure 2. Bifurcation diagram for problem (1.3)
not there exists $d \in(a, b)$ with $h(d)>\frac{\lambda_{n}}{m}$. Thus comparing

$$
u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+\left(\frac{h(d) f(u)}{u}\right) u=0
$$

with

$$
\varphi_{n}^{\prime \prime}+\frac{N-1}{r} \varphi_{n}^{\prime}+\lambda_{n} \varphi_{n}=0
$$

We see that u has at least $(n+1)$ zeroes in $[0,1]$ which contradicts that if $(\lambda, u) \in \Gamma_{n}^{+}$then u has n zeroes in $[0,1]$. Thus, h is bounded and, in particular, $b=\infty$.

Let $\left\{d_{n}\right\}$ be a sequence tending to $+\infty$ such that $\left\{h\left(d_{n}\right)\right\}$ converges. Thus $\left(\lim _{n \rightarrow \infty} h\left(d_{n}\right),+\infty\right)$ is a point of bifurcation of (1.3) and $u\left(\cdot, h\left(d_{n}\right), d_{n}\right)$ has n zeroes in $[0,1]$. Hence $h\left(d_{n}\right)=\frac{\lambda_{n}}{f^{\prime}(\infty)}$ and $\left(h\left(d_{n}\right), u\left(\cdot, h\left(d_{n}\right), d_{n}\right)\right) \in G_{n}^{+}$. Thus $\Gamma_{n}^{+}=G_{n}^{+}$. Similar arguments show that $\Gamma_{n}^{-}=G_{n}^{-}$.

Let now $n=j+1, \ldots, j+k$. By the definition of Γ_{n}^{+}and G_{n}^{+}we have,

$$
\lim _{d \rightarrow+\infty} h(d)=\frac{\lambda_{n}}{f^{\prime}(\infty)}<1
$$

and

$$
\lim _{d \rightarrow 0} h(d)=\frac{\lambda_{n}}{f^{\prime}(0)}>1 .
$$

Thus by the intermediate value theorem there exists $d_{n} \in(0, \infty)$ such that $h\left(d_{n}\right)=1$. Hence $\left(1, u\left(\cdot, 1, d_{n}\right)\right) \in G_{n}^{+}=\Gamma_{n}^{+}$is a solution to (1.1). Similarly it can be seen that there exists $\delta_{n}<0$ with $\left(1, u\left(\cdot, 1, \delta_{n}\right)\right) \in G_{n}^{-}=\Gamma_{n}^{-}$, which proves Theorem B.

References

1. H. Amann, Ljusternik-Schnirelman theory and nonlinear eigenvalue problems, Math. Ann. 199 (1972), 55-72.
2. H. Berestycki, P. L. Lions, and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in \mathbb{R}^{N}, Indiana Univ. Math. J. 30 (1981), 141-157.
3. H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
4. A. Castro and A. Kurepa, Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball, Proc. Amer. Math. Soc. 100 (1987), 1-8.
5. S. Chow and J. Hale, Methods of bifurcation theory, A series of comprehensive studies in Mathematics 251, Springer-Verlag, New York, 1982.
6. D. Costa and D. G. De Figueiredo, Radial solutions for a Dirichlet problem in a ball, J. Differential Equations 60 (1985), 80-89.
7. D. G. De Figueiredo, P. L. Lions, and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pure Appl. 61 (1982), 41-63.
8. M. Esteban, Multiple solutions of semilinear elliptic problems in a ball, J. Differential Equations 57 (1985), 112-137.
9. M. Grillakis, Existence of nodal solutions of semilinear equations in \mathbb{R}^{N}, J. Differential Equations 85 (1990), 367-400.
10. A. Haraux and F. B. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. 31 (1982), 167-189.
11. S. Kichenassamy, Local index of potential operators of monotone type, Houston J. Math. 16 (1990), 139-149.
12. S. Kichenassamy and J. Smoller, On the existence of radial solutions of quasi-linear elliptic equations, Nonlinearity 3 (1990), 677-694.
13. P. L. Lions, On the existence of positive solutions in semilinear elliptic equations, SIAM Review 24 (1982), 441-467.
14. S. I. Pohozaev, Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Soviet Matl. Dokl. 5 (1965), 1408-1411.
15. P. Rabinowitz, Topological Methods in Bifurcation Theory, Séminaire de Mathématiques Supérieures, Séminaire Scientifique OTAN, Les Presses de l'Université de Montreal, Montreal, 1985.

First author: Department of Mathematics, University of North Tezas, Denton TX 76203-5116-U.S. A.
Second author: Departamento de Matemáticas, Universidad Nacional de Colombia, Apartado aÉreo 568, Medellín - COLOMBIA

