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MULTIPLE RADIAL SOLUTIONS FOR A
SEMILINEAR DIRICHLET PROBLEM IN A BALL

ALFONSO CASTRO AND JORGE COSSIO

ABSTRACT. We prove that a semilinear elliptic boundary value problem in a
ball has 4j -1 radially symmetric solutions when the nonlinearity has a positive
zero and the range of the derivative of the nonlinearity includes at least the
first j eigenvalues. We make extensive use of the global bifurcation theorem,
bifurcation from infinity, and bifurcation from simple eigenvalues.

1. INTRODUCTION

The purpose of this paper is to prove the existence of radially symmetric
solutions to the semi linear elliptic problem

{r': =0
=0

III n
on on (1.1)

where I: ~ -+ ~ is a differentiable function such that 1(0) = 0,

1'(00) = lim I(u) E ~,
lul-oo u

n c ~N is the unit ball in ~N centered at the origin, and ~ is the Laplacian
operator.

Existence of radial solutions to problem (1.1) has been extensively studied
(see [8], [9], [11], [12]). M. Esteban in [8] obtained the existence of radial
solutions based on a priori estimates for solutions of (1.1). For studies on the
existence of positive solutions of (1.1) we refer the reader to [7] and [13]. For
other results see also [1], [2], [3], [4], and [14].

Let Ai < A2 < ... < Ak < be the eigenvalues of (-~) acting on radial
functions of HJ and !Pi, !P2, , !Pk, ... be the corresponding eigenfunctions,
with !Pk(O) = 1.

Here we prove:

(1.2)
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Theorem A. If/has a positive zero, ant! /'(0) = /'(00) > Aj, then (1.1)
posseses at least 4j - 1 radially symmetric solutions.

We also give a simpler proof of the following result due to M. Esteban [8].

Theorem B. If 0 < /,(0) < Aj+l' and Aj+k < /,(00), then (1.1) posseses
at least 2k + 1 radially symmetric solutions.

We prove Theorems A and B by obtaining a description of the graph of the
set of solutions to

{
~u+>.f(uY=O

u=O

in 0
on 80,

(1.3)

where A E ~ is a parameter (see figures 1 and 2). The main ingredients in
arriving to these figures are the global bifurcation theorem (see [15]), bifurcation
from a simple eigenvalue (see [5]), bifurcation from infinity (see [15]), as well
as unique continuation properties of radial solutions to (1.3).

2. PROPERTIES OF BRANCHES OF SOLUTIONS.

Let E be the Banach space of radially symmetric functions in Cl(O) satis-
fying u(x) = ° if IIxll = 1. For u E E we will denote by u(r) the value of u on
the sphere of radius r E [0,1]. Let J denote the closure in ~ x E to the set of
nontrivial solutions to (1.3). First we prove:

Lemma 2.1. If (A, U) is a solution to (1.3) with U of 0, then there exists
i> 0 'Such that if(A, 1.1) is also a solution to (1.3) and II(A,u) - (A, U)IIIxE < e
,then 1.1 has as many zeroes as U in (0,1).

Proof. First we recall that the radial solutions to (1.3) are the solutions to the
ordinary differential equation

N-l
1.1" + --u' + >.f(u) = 0

r
0< r ~ 1, (2.1)

1.1'(0) = 0,

u(l) = 0.

(2.2)

(2.3)

By uniqueness of solutions to initial value problems we know that if u satisfies
(2.1), and u(r) = u'(r) = 0 for some r E [0,1] then 1.1 == 0. Thus, in particular,
(u(r))2 + (u'(r))2 > 0 for all r E [0,1]. Hence u has finitely many zeroes
and they are nondegenerate. Without loss of generality we can assume that
F(O) > O. Let 0 = ao < ~l < a2 < ... < ak < 1 = ak+l be the zeroes of U in
(0,1), bl = max U, b2 = min U, b3 = max U, ... , and b = min be-

[O,ad [at,a,] . [a"a,] 15i$k+l
b

Let ° < il < 4' If II(A,u) - (A, U)II:axE < il then 1.1 and U have same
sign on the set {ci. C2, .. " Ck} of critical points of U. Therefore 1.1(0) > 0, and'
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u( Cj) U (Cj) > 0 for all j = 1, ... , k. By the mean value theorem there exist num-
bers 0'1,0'2, ... ,O'k with 0'1 E (0,cI),0'2 E (Cl,C2), .. ·,O'k E (Ck-l,Ck) so that
u(O'I) = U(0'2) = ... = U(O'k) = O. Thus, u has at least k zeroes in (0,1).

We prove now that u has exactly k zeroes in (0,1). Let 8> 0 be sufficiently
small such that for some 11 > 0 and 12 > 0

(i) IU'(x)1 ~ 11 Vx E C = [a1 - 8, a1 + 8) U··· U [1 - 8, 1)
(ii) IU(x)1 ~ 12 Vx E D := [0,1)- C.

. 11 12
Let e mm{ 4' 4' (d· If xED

lu(x)1 ~ IU(x)l- lu(x) - U(x)1 ~ 12 - ~ > O.

Suppose there exist t1, t2 E raj - 8, aj + 8), for some 1 ~ j ~ k, so that
u(t1) = U(t2) = O. By the mean value theorem there exists t E [t1, t2) C C such
that u'(t) = O. Thus

IU'(t)1 = lu'(t) - U'(t)1 < 11
4

which is a contradiction. Thus Lemma 2.1 is proven. 0

Lemma 2.2. If I' is a connected component of {(A, u) E !PI, x E;
(A, u)satisfies (1.3) and u f- O} then there exists a positive integer k such that
if
(A, u) E I' then u has exactly k zeroes in [0,1).

Proof. Let (A, U) E f. Since solutions to (2.1)-(2.3) can not have degener-
ate zeroes, U has finitely many zeroes in [0,1), say k. We let ~ = {(A, u) E
I'; u has k zeroes in [O,l)}. From Lemma 2.1 it follows that ~ is an open subset
of f. Let us see now that ~ is also closed.

Let {(An, un)}~=! be a sequence in ~ such that (An, Un) --t (\ u) with
(A, u) E f. We' prove now that u has a finite number of zeroes in (0,1). In
fact, assume, on the contrary, that u has infinitely many zeroes in (0,1). Then,
there exists a sequence {tn}~=l C [0,1) such that u(tn) = O. Without loss of
generality we can assume tn --t t where t E [0,1). By continuity of u we have
u(t) = O. The mean value theorem gives the existence of a sequence {sn }~=1
so that Sn E (tn, t) U (t, tn) and u'(sn) = O. Since u' is continuous we see that
u'(t) = O. Because u is a radial solution of (1.3), u satisfies

{

N-1
u" + --u' + Af(u) = 0

r u'(O) = u(l) = O.

Therefore by uniqueness of solutions to the initial value problem we have u == 0;
which is a contradiction. This proves u has only a finite number of zeroes in
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(0,1). Since ('\n, un) --. ('\, u), by Lemma 2.1 it follows that u has exactly
(k - 1) zeroes in (0,1). Thus (.x, u) E E. This proves that E is closed in r, and
the Lemma follows. 0

For d E ~ and ,\ > 0 we will denote by u( . ,'\, d) the solution to (2.1) with
u(O) = d, and u'(O) = O. Standard arguments on dependence on parameters
show that u is a differentiable function in the variable (r, A, d).

An elementary calculation shows that if a> 0 then u(!:.,'\, d) = u(r, '\2' d).
a a

Differentiating this relation with respect to a and taking a = 1 we obtain

ru'(r,'\, d) = 2'\u~(r,'\, d). (2.4)

Lemma 2.3. H J is a connected component of H,\, d)j d:f:. 0, u(I,'\, d) = O}
then there exist an open interval (a, b) C ~ - {a} and a continuous function
h : (a, b) --. (0,00) such that ('\, d) E J if and only if dE (a, b) and'\ = h(d).
Moreover, if a E ~ - {a} then lim h(d) = 00. Similarly, if b E ~ - {a} then

d-.a
lim h(d) = 00.
d-b

Proof. Let (" w) E J. Since solutions to (2.1)-(2.3) can not have degenerate
zeroes, from (2.4) we see that u~(I", w) :f:. 0. Thus, by the implicit function
theorem there exists (1'> ° such that ('\, d) E J, with 1'\-,1 < (1'and Id-wl < (1'
if and only if,\ = b: (d) with hI ; (w - (1',w + (1')--. ~ continuous. By continuous
dependence on parameters we see that ifw+(1' E ~-{o} and liminf hl(d). < 00,

d_w+u
then (z, w + (1') E J, where z is any accumulation point of any sequence of
the form {hl(Sk)jSk --. w+(1'}. Because u(I,O,w+(1') = W+(1' whereas
u(l, z, w,j- (1')= 0 we see that z :f:. 0. Since (2.4) also applies to ( . ,z, w + 0"),
using again the implicit function theorem, it follows that hI can be extended
to (w - O",w + 0" + 8) until either b E {O,oo} or limhl(d) = 00. Similarly

d-b
it is proven that either a E {O,oo} or limhl(d) = 00. Letting h denote the

d_a
maximal extension of b: and noting that the graph of h is open and closed in J
we"conclude that J coincides with the graph of h, which proves the lemma. 0

Remark 2.4. We denote by {3 the positive zero of f. For future reference
we observe that, by uniqueness of solutions to the initial value problem for
equation (2.1), if u(s,'\, d) = {3 and u'(s,'\, d) = ° for some s E [0,1] then
u(t, '\, d) = {3 for all t E [0,1]. Thus if J is as in Lemma 2.3 then the domain
of h can not include {3.

3. PROOF OF THEOREMS A AND B

Because '\n (1 ~ n < 00) is a simple eigenvalue of -8 with Dirichlet bound-

ary condition we have that 0 is a simple eigenvalue of 8 + (f~nO» I and
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{)+ (f'~:O)) I with Dirichlet boundary condition. From general properties

of bifurcation from simple eigenvalues (see [5]) and bifurcation from infinity
A A

(see [15]) it follows that (I' (~) , 0) and (I' (:0)' 00) are points of bifurcation of

(2.1). More precisely there exists a > 0 such that for 17'1 E (0, o ) the prob-
lem (2.1) has solutions of the form (A, r<pn + tJ;(r)) with J0

1 rn-1<pn tJ; dr = 0,
A11tJ;1I= oCr), and IA - f'(~) 1= oCr) as r --+ O. Similarly, if (A, u) is a solution

to (2.1) on the branch bifurcating from ( A(n), 00) then u = r<pn + tJ;(r) with
I' 00

Jo1 sn-l<pn tJ; ds = 0, 11tJ;11= oCr), and IA - f'~:o) 1= oCr) as r --+ 00. We will

denote by rt the connected component of nontrivial solutions to (2.1)-(2.3)
A

bifurcating from (f'(~)' 0) and containing elements of the form (A, r<pn + tJ;(r))

with r > O. Similarly we define r;;. Also we define Gt as the connected com-

ponent of nontrivial solutions to (2.1)-(2.3) bifurcating from ( A(n), 00) andI' 00

containing elements of the form (.\, r<pn + tJ;(r)) with r > O. Similarly we define
G;; .

Lemma 3.1. Let J = {(A, u(O)); (A, u) E G;}. If h, a, and b are as in
Lemma 2.3, then a = -00 andb < O.

Proof. Since G; contains elements of the form (A, S<P2+ tJ;(s)) with s < 0 and
. A2 . A2

large, and A IS near -(-) we have a = -00 and lim h( d) = -I ( ). SinceI' 00 d~-oo I 00

1ItJ;(s)1I = o(s) as s --+ -00 we have .

lim s<p2(a) + tJ;(s) (a) = +00
j--OO

(3.1)

where a is the critical point of <P2in (0,1].
Let us see now that g(d) = max{ u(r, h(d), d); r E [0, I]} is a continuous

function. In fact, Let do E (a,b) and {dn} a sequence converging to do. Of
course {h(dn)} converges to h(do). Let tn be such that g(dn) = u(tn, h(dn), dn).
Let i be a limit point of {tn}. Since u(t, h(do), do) = lim u(tn, h(dn), dn) 2: 0,

n~oo

we have t > O. By continuous dependence on parameters u'(t, h(do), do) =
lim u'(tn, h(dn), dn) = O. Thus t is a critical point of u( " h(do), do). Since

n~oo
elements in G; have only one zero in (0,1) they have only one critical point.
Thus t is the maximum of u(-, h(do), do), which proves that 9 is continuous.
By (3.1) we see that lim g( d) = +00. If b = 0 then lim g( d) = 0, Thus by

d~-oo d~O

the intermediate value theorem there exists d1 < 0 such that g(d1) = (3, i.e.,
there exists tl E (0,1) with u(t1, h(d1), d1) = (3, and U'(t1, h(d1), dd = o. By
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uniqueness of solutions to initial value problem we have u(t, h(dI), dI) == 13,
which contradicts that d1 < 0; thus b < 0, which proves the Theorem. 0

Notation. We will denote by b: and b1 < 0 the continuous function and the
number such that {(A,U(O));(A,U) E G2"} = {(h1(d),d);dE (-oo,bI)}.

Corollary 3.2. If J = {(A, u('O)); (A,U) E r;;-} with n:2: 2, and a.b are as in
Lemma 2.3 then a :2:b1.

Proof Suppose a = -00. Let h be as in Lemma 2.3. For d < b1 we see that
h(d) < h1(d), otherwise r;;- nG2" ¢ 0, which contradicts that b1 < O. Let {dn}

be a sequence converging to -00 with {h(dn)} converging to A. Thus (A, -00)

. bif . . H A Al A A2 S· 1 . J
IS a 1 urcation point. ence = f' (00) or = f' (00) . mce e ements m

correspond to solutions with at least one interior zero A of ,,~:x,).Also since

b1 < 0 it follows that A of f'~~). This contradiction shows that a > -00.

If a < b1 then h - hI : (a, bI) -+ ~ is such that lim(h - hI)(d) = +00 and
d-+a

lim (h - ht}(d) = -00. Hence by the intermediate value theorem there exists
d-+b,

d < b1 with h( d) = h1 (d) which contradicts that r;;- n G2" = 0, this proves the
Corollary. 0

Imitating the proof of Corollary 3.2 we also have

Corollary 3.3. If J = {(A, u(O)); (A,U) E G;;-} with n > 2 and a.b are as in
Lemma 2.3 then b s bs .

Proof qf Theorem A. Our proof consists of showing that the sets r~ and G~,
for k = 2, ... .i, as well as rt and o; contain each a solution to (1.1). These
4j - 2 solutions together with 0 yield the result.

Let k E {I, ... ,j} and J = {(A, u(O)); (A, u) E rt}. Let (a, b) and h be as in

Lemma 2.3. By the definition of rt we see that a = 0, and lim h(d) = fA(k) <
d-+O ' 0

i. By Remark 2.4 we also have b < 13. Thus by Lemma 2.3 lim h(d) = 00.
d-+b

Hence by the intermediate value theorem there exists dk E (a, b) such that
h(dk) = 1. Thus (1, u( ., 1, dk)) E rt is a solution to (1.1).

Let now J = {(A,U(O));(A,U) E r;} with k E {2, ... ,j} and a,b and h
be as in Lemma 2.3. Since by Corollary 3.2 and Lemma 2.3 a > b1 and
lim h( d) = 00 we see that there exists Ok E (a, 0) such that h( Ok) = 1. Thus
d-+a

(1, u( ., 1, Ok)) E r; is a solution to (1.1) with k zeroes in (0,1].
Similar arguments show that G; for k = 2, ... , i, and c; for k = 1, ... , j

contain a solution to (1.1). This proves Theorem A. 0

We summarize the above result in the following bifurcation diagram
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f3

c+
1

- - - - - - - - - - - - 1- _
I
I
I
I
I

r+
1

~ -------------------------

~ A
f' (00) f' (:x,)

FIGURE 1. Bifurcation diagram for problem (1.3)

Proof of Theorem B. If there exists x -# 0 such that f(x) = O. Arguing as in
the proof of Theorem A it follows that G~ and G;; (n E {j+ 1, ... ,j + k}) has
a solution to (1.1) (see figure 2).

On the other hand if f( x) -# 0 for x -# 0, then there exists m > 0 such that
xf(x) - mx2 > 0 for x -# O. We claim now that r~ = G~ and r;; = G;; for
all n = 1,2, ....

Let J = {(A, u(O)); (A, u) E r~}. Let a, b, and h be as in Lemma 2.3. By
the definition of r~ we have a = O. We claim that h is a bounded function. If
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d -.&±!...~~
1'(00) 1'(00) 1'(00)

- - - - - - - - - - - - 1- _
I
I
I
I
I

~~~
1'(00) 1'(00) 1'(00)

FIGURE 2. Bifurcation diagram for problem (1.3)

not there exists s e (a, h) with h(d) > An. Thus comparing
m

1/ N - 1 I (h(d) !(u)) 0u +--u+ u=
r u

with
1/ N-1 I \

tpn + -- tpn + An tpn = O.
r

We see that u has at least (n + 1) zeroes in [0,1] which contradicts that if
(A, u) E r;t then u has n zeroes in [0,1]. Thus, h is bounded and, in particular,
b = 00.
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Let {dn} be a sequence tending to +00 such that {h(dn)} converges. Thus
( lim h(dn), +00) is a point of bifurcation of (1.3) and u(·, h(dn), dn) has n
n-oo

zeroes in [0,1]. Hence h(dn) = I'~:O) and (h(dn), u(·, h(dn), dn)) E G~. Thus

r~ = G~. Similar arguments show that r;;- = G;; .
Let now n = j + 1, ... , j + k. By the definition of r~ and G~ we have,

lim
d-++oo

An
h(d) = 1'(00) < 1

and
. () AnJ~ h d = 1'(0) > 1.

Thus by the intermediate value theorem there exists dn E (0,00) such that
h(dn) = 1. Hence (1, u( " 1, dn)) E G~ = r~ is a solution to (1.1). Similarly
it can be seen that there exists 6n < ° with (1, u( " 1, 6n)) E G;; = r;;, which
proves Theorem B. 0
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