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THE RIESZ TRANSFORMS FOR GAUSSIAN MEASURES

CRISTIAN E. GUTIERREZ

§1. INTRODUCTION

This note concerns with the boundedness in LP -spaces of the Riesz trans-
forms associated with a class of second order elliptic differential operators. The
proof of the results described here can be found in [G] and [F-G-Sc].
It is a fundamental fact that the Hardy-Littlewood- maximal function M,

and the classical M. Riesz transforms are bounded in LP for p > 1, and of
weak-type 1-1. E. M. Stein discovered in 1983, [S2] that the strong type con-
stant of such operators can be bounded independently of the dimension n, and
shortly after, Stein and Stromberg [S-St] proved that the weak-type constant
of M can be bounded by a universal constant times the dimension n. This
last result is because it is possible to control M by a universal constant times
n times the Ergodic maximal operator E of the heat semigroup. Then by
the powerful theorem of Hopf-Dunford-Schwartz about the weak-type 1-1 of E
the result follows. It is a very interesting open problem to determine if the
weak-type 1-1 constants of the Hardy-Litlewood and of the Riesz transforms
can be bounded independently of n. By having dimensionless inequalitites we
can extend them to the infinite-dimensional space RN. However, the trouble is
that those inequalitites would be proved with respect to the Lebesgue measure
and unfortunately the Lebesgue measure does not extend to infinite dimen-
sions. The most typical infinite-dimensional measure is the Gaussian measure,
and the singular integrals naturally associated with this measure are the Riesz
transforms associated with the Ornstein-Uhlenbeck semigroup whose infinites-

imal generator is the "Laplacian" LB = ~Llx - Ex . gradj . The probability

measure IB (x) dx = C e-Bxx dx makes LB self-adjoint. The interest of the
infinite dimensional formulation comes from the Malliavin calculus.

In order to introduce and clarify this notion of Riesz's transforms, we shall
first construct the classical M. Riesz transforms by defining their action on the
eigenvectors of a boundary value problem for the Laplacian.
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Let Ll be the Laplacian in Rn and the eigenvalue problem

Llu = AU,

with boundary conditions

U(x) = 0(1), as Ilxll -+ 00.

The set of eigenvalues of this problem consists of all non-positive numbers, and
given A :S 0 the eigenvectors corresponding to A are

iy·xe , where IIyl12 = -A.

We define the j-th Riesz transform by

Given a function f and its Fourier transform j we write

f(x) = en f j(y)eiYX dy,JRn
and by "applying" Rj and "interchanging" the integral and Rj we get

which is the classical definition of the j-th Riesz transform.
Let B be an n x n positive definite symmetric matrix, and let LB be the

differential operator in H" defined by

1
LB = 2Ll- Bx . grad,

our purpose is to define a notion of Riesz 's transforms naturally associated with
LB. The operator LB is the infinite simal generator of an Ornstein-Uhlenbeck
process, which is obtained by subjecting the particles of a Brownian motion
to an elastic force. This force is reflected in the presence of the drift term
Bx . grad, see [Fe], p. 324. Also, the operator LB received attention from the
point of view of hypoellipticty, see [Hor].

We look atthe eigenvalue problem
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with boundary conditions

for some k ~ 0 as Ilxll --> 00.

These eigenvalues form a discrete set and are related to the Hermite polyno-
mials.

The one-dimensional Hermite polynomials are defined by

Ho(x) = 1, n ~ 1,

and some of their basic properties are

n = 0, 1, ...

1
+00 2 1+00

2-00 Ho(x)e-X dx = -00 e-x dx = ..[ii,

and

for n > 1.

Also
H~+l(X) = -2(n + I)Hn(x)

Hn+l(x) + 2xHn(x) + 2nHn_l(x) = 0, n ~ 0,

and
H~(xl- 2xH~(x) + 2nHn{x) = O.

If we assume that the matrix B is diagonal, i.e.,

(1-1 )

o
then by using the properties of the Hermite polynomials mentioned above is
not difficult to see that the eigenvalues of LD are of the form .\ = -(a· d),
where a = (aI, ... ,an), ai are non-negative integers, and d = (dl, ... ,dn). The
corresponding eigenfunctions are the multidimensional Hermite polynomials
defined by

where Hai(.) are one-dimensional Hermite polynomials of degree ai·
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In the general case B is symmetric and positive definite, then there exists
an orthogonal matrix A such that ABAt is diagonal, i.e.,

(

d1

ABA' = D= r
o

In such case, the eigenvalues of LB are again of the form -(a· d) and the
corresponding eigenfunctions now are H!! (x) = H:; (Ax).

The Riesz transforms associated with LB are defined as follows. Given
j,l :S j :S n, and H!!(x) a multidimensional Hermite polynomial, the j-th
Riesz transform 1lf of H!! is defined by

B B 1 a BRj (Ha )(x) = - r-J~Ha (x),
va· duxj

and by linearity the definition of Rj extends to any polynomial in Rn

The measure e-Bxx dx makes the operator LB selfadjoint and therefore it
is the natural measure to study the boundedness properties of the operators
associated to LB. Note that if A = (aij) then we ,have

n

Rf(H!!)(x) = L aij 1lf(H/j)(Ax).
i=l

Therefore, if we define the vector

(1-2)

then we have
(1-3)

In view of the last formula it will be enough to consider the case when B is
diagonal and to prove the inequalities for the vector defined by (1-2).

As in the case of the Laplacian there is a notion of Poisson semigroup associ-
ated to LB. We assume for simplicity that B = D as in (1-1). In fact, let T; be
the n-dimensional realization of the Ornstein-Uhlenbeck semigroup associated
with D defined by

Ttf(x) = r kD(t, x, y)f(y) dy,inn
where
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t > O,X ERn. If we set u(x,t) = Tif(x) then u is a solution of the equation

and therefore the infinitesimal generator of the semigroup T; is LD.
By using the principle of subordination we define the Poisson semigroup P,

associated with T; by

We now introduce the following semigroups, which we shall see play an
important role in the study of RD:

'T'i -d;trp
.1t=e -Lt, i = 1, ... ,n,

and let p/ be the Poisson semigroup associated with T/.
Given a general semigroup T; bounded in Lt, the Poisson semigroup P,

associated with T; is given by the subordinati. formula above. The maximal
operator associated with-the semigroup P, is defined by

P* f(x) = J*(x) = sup IIPd(x)11 ,
t>o

and from the general theory of Poisson semigroups, this operator is of strong-
type (p,p),p > 1 with respect to the measure u, and the strong-type constant is
bounded independently of the dimension n, see [SI], p. 48. In our case, these
results apply to the semigroups P; and p/ defined above with the measure
~Dx,x dx.

By using the properties of the Hermite polynomials mentioned above it is
easy to see that

ltD H~(x) = -(a· d)H~(x)

TtH~(x) = e-(ad)tH~(x)

PtH~(x) = e-Va.dt H~(x)

t;H~(x) = e-(ad+d;)t H~(x)

and

i = 1, ... ,n.
Given a polynomial f in Rn and RP f, ... , R~ fits Riesz's transforms we set

uo(x, t) = Pd(x)
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Uj(x, t) = pI (Rf f)(x), j = 1, ... ,n,

and we have
OUo OUi
OXi - fit' i = 1, ... , n (1-4)

In fact, it is enough to check (1-4) in the case that f = H[!. In such case we
have

Uo(x, t) = e-..;c;dt H[!(x)

. _ -..;c;dt 1 a D(uJ(x, t) - -e c-J~HCt x),
v a- d UXj

and (1-4) inmmediatly follows. Note that u(x, t) = Ptf(x) satisfies the equation

j = 1, ... ,n,

1
Utt + 2~xU - Dx . gradxu = °

and Vi(X, t) = pi f(x) satisfies

1
Vtt + 2~xV - Dx . gradxv - div = 0,

i = 1, ... , n.

§2.THE RESULTS IN LP, P > 1

(detB)1/2
We define ,;;(x) = Jrn/2 e-Bxx, and note that JRn ,;;(x)dx = 1. By

Ilfllp,')';' 'Ne denote the LP-norm of the real-valued function f with respect to
the measure ,;;(x) dx, Given a vector-valued function h(x) = (h1(x), ... , hd(x)),
we set

(
d) 1/2

Ilh(x)112 = ~ Ilhi(x)112

The main result concerning the boundedness of Rj in LP for p > 1 is the
following.

Theorem 1. Let B be an n x n positive definite symmetric matrix with k
different eigenvalues, and let 1 < P < 00. There exists a constant Cp depending
only on p such that

IIRB f21Ip,')';' ~ c, k IIfllp,')';',
for all polynomials f in R",

This theorem is proved in [G]. The proof is analytic and uses the Littlewood-
Paley-Stein theory in [SI]. The idea is to construct appropriate g-functions
defined in terms of the sernigroups P, and pi that relate f and its Riesz's
transforms by means of the equation (1-4), and to prove that these g-functions
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are bounded in LP. Theorem 1 contains as a particular case the inequalities
proved by P. A. Meyer using probabilistic methods for the case when B = I,
the identity matrix, see [Me], [Gn] and [Pi]. We mention that the study of the
boundedness properties of Rj began with the work of B. Muckenhoupt, [Mu] ,
when the dimension n = 1. By using methods which seem to be applicable in
one dimension only, he proved the boundedness of this transformation (in this
case is only one operator) when p > 1 and the weak-type (1,1), the case he
considered was when B = 1 and consequently the underlying measure is e-x2

.

By changing variables these imply the results in the case when B = p > 0 with
2

the measure e-PX •

For a diagonal matrix D as is (1-1) we introduce the following Littlewood-
Paley-Stein functions

with the notation
1

V'u = (Ut, J2gradxu).

If f = (iI, ... ,fn), we define the vector-valued Littlewood-Paley function

Theorem 1 is a consequence of the following.

Theorem 2. Let 1< P < 00, and let D be a positive definite diagonal matrix
with k different eigenvalues. Then there exists a constant Cp only depending
on p such that for every polynomial f in R" we have

and
Ilgi(j)llp,-y;' ~ c, Ilfllp,-y;',

Also, if f = (iI, ... ,fn) then

i = 1, ... , n.

(1-7)

and
i = 1, ... , n. (1-8)
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§3. THE RESULTS IN IN L1

It has been an open problem, to determine if the Riesz transforms 1lj are
of weak-type 1-1. In [F-G-Sc] we solved this problem in the affirmative when
B = I, the identity matrix, by showing a stronger result: the maximal singular
operator(supremum over all e-truncations) is of weak-type 1-1 with respect
to Gaussian measure. The proof of this result is technically difficult, and we
need to show pointwise estimates of the kernel of the operator in appropriate
regions. This involves careful estimations of integrals involving the Gaussian
measure and the study of maximal and singular integral operators appropriatly
truncated. The techniques from spaces of homogeneous type, make it possible
to extend the Calder6n-Zygmund theory of singular integrals to that setting. In
our case, however, they do not work due to the fact that the Gaussian measure
is not doubling. The ideas developed in [G] and [F-G-Sc] can be very useful
to deal non-doubling weights.

In order to prove the weak-type 1-1 result, the operator 1lj is defined as the
principal value of an integral operator. This definition is equivalent to the one
previously given.

Let Ttl be the semigroup associated with L[, i.e., utx, t) = TtI( x) is a solu-
tion of Ut = Lju, and u(x,O) = f(x). By using the principle of subordination
mentioned in §2, let P, be the Poisson semigroup associated with Ti, We now
define the "fractional integral" of order 1

Jd(x) =100

PtI(x) dt,

and then the vector "Riesz transform" is

1lf(x) = gradxJ1f(x).

By using the explicit formula for the kernel of 11 and by performing the inte-
grations it follows that

Rjf(x) = lim f kj(x, z)f(z) dz,
<;0 lllx-zll><

where

liz - rxW
1- 1'2 dr, j = 1, ... ,n.

We consider the maximal singular operator defined by

R;f(y) =supll f kj(y, z)f(z) dzll·
<>0 llly-zll><

The main result of [F-G-Sc] is the following.
I
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Theorem 3. There exists a constant C = C(n) such that jf f E L~(Rn)
then

C
i{X E R" : Ilnjf(x)11 >.\} ~ -:xllfIIL~'

for an .\ > 0, j = 1, ... , n.

The proof of this theorem is based in careful estimates of integrals involv-
ing the Gaussian. It also uses some ideas developed by P. Sjogren, [Sj], in
particular, the following neighborhood of the diagonal. Given R> 0, let

NR = {(y, z) E Rn x Rn
: Ilyll ~ Rand ll-ll ~ R,

or Ilzll 2: R/2 and Ily - zll ~ R/llzll},

and Nk = {z : (y, z) E N R}. The operator nj is majorized by the sum of

Rjd(Y) = sup II r kj(y, z)f(z) dzll, and
00 JN~nlly-zlI>f

Rj2f(y) = r Ilkj(y, z)llllf(z)11 dz,
JRn\N~

and we proved that each of these operators are of weak-type 1-1 with respect
to iI(X)dx. This proof contains many ideas that can be carried out to other
situations, in particular to the case of a general matrix B.

The weak-type 1-1 constant we obtain in Theorem 3 grows exponentially
with the dimension, and it is an open problem to determine if it is possible
to obtain a weak-type 1-1 constant that can be bounded independently of the
dimension.
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