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INEQUALITIES FOR JACOBIANS:
INTERPOLATION TECHNIQUES

MARIO MILMAN'

ABSTRACT. Recently new and surprising integrability properties were discov-
ered for the Jacobiaris of orientation preserving maps. These results have in-
teresting applications to variational problems in elasticity theory, compensated
compactness and other areas. We review some of the main results and present
new estimates that resolve some open problems in the area. Our methods are
based on techniques from Interpolation theory.

§1. INTRODUCTION

Recently it has been discovered that the Jacobians of orientation preserving
maps, and other related nonlinear quantities, enjoy better integrability proper-
ties than those known for the J acobians of standard maps. The first results in
this direction were obtained by Muller [22], and have been extended in many
different directions by a number of authors including Coifman, Lions, Meyer,
and Semmes [7], Iwaniec and Sbordone [9], Brezis, Fusco and Sbordone [5],
Iwaniec and Lutoborski [11], Iwaniec and Greco [9], and many others. These
developments have interesting applications in the study of the equations of
non-linear elasticity, variational problems, compensated compactness, etc. At
present time the area is growing at a very fast rate and we have not attempted
to give complete bibliographical references.

The purpose of this paper is to give a brief account of some of these esti-
mates and point out new complementary results. The new estimates confirm
some conjectures proposed in [9]. In our presentation we shall emphasize the
important role played by some new ideas of interpolation theory. The basic
interpolation theorems are well known and commonly used tools in analysis.
However, in order to tackle the applications at hand, one needs techniques that
have been developed more recently, like the theory of commutator estimates
initiated by Rochberg and Weiss [24], and developed further in, among other
articles, [14], [6], [17]; and the theory of extrapolation spaces developed by
Jawerth and Milman (cf. [15], [16], and [18]) .
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In this paper we review some of the main results related to the integrability
of J acobians of orientation preserving maps and announce and give indications
of the proofs of several new complementary estimates. We refer to [milman3]
for complete details and further applications of the methods outlined here.
Acknowledgment. I would like to thank the organizers of the Td Latin
American Analysis Conference, and in particular Professors Alfonso Castro
and Alan Lazer, for their invitation and their kind hospitality. I am also grate-
ful to Professors T. Iweuiec, R. Rochberg, and C. Sbordone, for stimulating
correspondence and for sending me preprints of their papers.

§2. ESTIMATES FOR JACOBIANS OF ORIENTATION PRESERVING MAPS

Let 0 be a bounded open set in Rn, I :0 - R" be a smooth mapping, we
say that I is orientation preserving if its Jacobian J I = det DI is nonnegative
a.e .. A typical assumption on the smoothness of I is that I is in the-Sobolev
class W~(0, Rn); more generally one assumes that lEW':. (0, Rn) for some for

P

some fixed n-uple of exponents v = (PI, P2, ... , Pn), Pi E;: (1,00), i = 1, ..n, with
.L + ....l = 1, this means that the coordinate functions of I = (!I, ... -In)'
PI pn

satisfy Ii E Wi; (0). (The class W~(O, Rn) thus corresponds to the case p
= (n, .... ,n)). Observe that by Hadamard's inequality JI ~ IV'/d· .. IV'/nl,
and therefore by Holder's inequality we have that I E W":"(O, Rn) implies that

p

J IE L1(0). It was recently discovered by Muller [22] that if I is an orientation
preserving map then one has a better result

Theorem 1. Let 0 be a bounded open domain in H"; n 2: 2, and let
I: 0 - H" be an orientation preserving map in the Sobolev class W~(O, Rn).

Then VK C 0, compact we have that J IE L(LogL)(K).
This result has since been extended and applied in many different directions

by a number of authors. In [7] Coifman, Lions, Meyer and Semmes point out
the role of the Hardy space H1(Rn) proving, among other things, the following

.Theorem 2. Let I :Rn - m, of class W1(Rn, Rn), then J IE H1(Rn).
The relationship with Muller's result is given by a theorem of Stein stating

that if 9 2: 0, then 9 E H'~c(Rn) ¢:::::::> 9 E L(LogL )'oc(Rn).
In a different direction Iwaniec and Sbordone give in their paper [12] suf-

ficient conditions to guarantee the local integrability of the Jacobian of an
orientation preserving map

Theorem 3. Let B C 3B be concentric balls in R", and let I :3B _ Rn

be an orientation preserving map such that I E Ll.e1,n)(n - s)W}(3B, Rn),
then J IE L1(B).

Here we denote by Ll.e1,n)(n - s)W.1(3B, Rn) the space of maps such that

sup (n - s)lI/l1w!(3B,Rn) < 00
>e[l,n) .
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It is shown in [12] that
,

wl"(LogL)-l (3B, Rn) C .6..E[l,n)(n - s)W.l(3B, Rn) (1)

where for a function space X, and a domain 0, we denote by Wl(O, Rn)

the class of maps I = (Ii, ...fn) with components such that "ilIi E X(3B),
i = 1, ...n.

Corollary 1. Let B C 3B be concentric balls in B", and let I : 3B ---> R"
be an orientation preserving mapping, then if I E Wl"(LogL)-l (3B, Rn) U
wl".oo(3B,Rn) (set theoretic union!), wehaveJIELl(B).

More recently, Brezis, Fusco and Sbordone [5], have shown the following
interpolation between Theorem 1 and Corollary 1,

Theorem 4. Let °be a bounded open domain in R"; n ~ 2, and let I :° --->

Rn be an ,orientation preserving map in the Sobolev cless Wl"(LogL)s(O, Rn),
(J E [-1,0). Then VK C 0, we have JI E L(LogL)8+l(K).

Another related result by Greco and Iwaniec [9] is

Theorem 5. Let °be a bounded open domain in H", n ~ 2, and let I :° --->

R", be an orientation preserving map in the Sobolev cless Wl"(LogL) CO, Rn).
Then VK C 0, we have that JI E L(LogL)2(K).

In view of this it was conjectured in [9] that Theorem 4 should hold V(J E R.
We have in fact recently confirmed this conjecture and obtained the following

Theorem 6. Let ° be a bounded open domain of H", and let I be an orien-
tation preserving map of class Wl"(LogL)s(O, Rn) then JI E Ln(LogL)8+l (K),

VK CO, V(J E R.

In [11] and [9], Iwaniec and his collaborators have obtained more refined
versions of Theorem 4 and Theorem 5, for example in [9] it is shown that

Theorem 7. Let ° be a bounded open domain in H", n ~ 2, P =
(Pl,'" ,Pn), with Pi E (1,00), i = 1,,,, ,n, ~ + ....+ ~ = 1, and let

Pl Pn
Wl'(LogL)(O,Rn) = {III: ° ---> Rn, 1= (Ii, ...fn),"il/i E LPi(LogL),i =
1"" , n}. Then, for an orientation preserving map IE Wl'(LogL)(O, Rn) we
have that VK C 0, J IE L(LogL)2(K). In fact, ifO is a cube in sr, 0< (1 < 1,
we have
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where [[V'/i]]p; {fan 1V'/i IPi log (e + I~!i~)dx riP; , and Han denotes the
integral mean of H over the cube aO.

We have also been able to extend this last result in the direction of Theorem
6 and thus confirm in part a conjecture of [9].

Theorem 8. Let 0 be a cube in tr; n 2: 2, P = (PI,'" ,Pn), with
Pi E (1,00), a 2: 0 and let I E WU(LogL)",(O,Rn) be an orientation preserving
map, then J IE £(£og£)o:+l(O, Rn).

The key to our proof of Theorem 8 is the following estimate by Iwaniec and
Lutoborski [11]

Theorem 9. Let 0 be a cube in R", n 2: 2, P = (PI,'" ,Pn), with

Pi E (1,00), i = 1,··· ,n, ~ + ....+ ~ = 1, and let I E W}(O, Rn) be an
PI Pn

orientation preserving map, then

1 r n {I r . }I/Pi
laOI Jon J I(x)dx ::; c(a)}] 1i1i Jn 1/;(x)IP'dx (3)

We shall not give a complete proof of Theorem 8 here, but below shall give
the proof of Theorem 6 for a 2: 0, and moreover outline the proof in the case
a < O. Using (3), rearrangement inequalities for maximal operators as in the
proof of Theorem 6 and Holder's inequality it is not difficult to complete the
details of the proof of Theorem 8. For complete details see [20].

Let us now close this section indicating an application, due to Muller [22], to
"the study of weak compactness for sequences of the type {J (Ii, x) hEN . Recall

the criteria of de La Vallee Poussin stating that for a set K of finite measure,
a sequence {Ii }jEN is relatively weakly sequentially compact in £I(K) if and
only there exists a positive function, defined on R+ with limx4oo,(x)jx = 00
such that

sup r ,(IIi(x)l)dx < 00 .
J JK

Thus, Muller [22] proves that if {Uj } j EN is a sequence of orientation preserving
mappings, Uj : 0 ---.Rn, and Uj ~ u (weakly) in W~(O, Rn), then VK C 0
compact we have

J(x, Uj) ~ J(x, u) weakly in £1 (K) .

In fact under these assumptions a result of Ball [1] asserts that
J (x, Uj) ~. J (x, u) weak * in the sense of measures. Therefore by Theorem 1
and de La Vallee Pousin's criteria we conclude.
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§3. COMMUTATOR METHODS

In this section we discuss applications of the. theory of commutator esti-
mates of interpolation theory to obtain estimates for Jacobians of orientation
preserving mappings and their relevance in estimates for perturbed Hodge type
decompositions of vector fields. The theory of commutator estimates in inter-
polation theory has been developed in, among other papers, [24], [14], [17], [6],
[21]. This theory has been applied to study the integrability of Jacobians of
orientation preserving maps in [13], [9]. It is also interesting to remark here
that one of the concrete examples of the abstract theory of commutator esti-
mates, i.e. the commutator theorem of Coifman, Rochberg and Weiss [8], which

states that for all the Riesz transforms Rj = ",0 (_~)1/2, j = 1,··· ,n, and for
UXj

s e BMO(Rn), the commutators [Rj,b] are bounded on LP(Rn), 1 < P < 00,

is also fundamental in the approach of Coifman, P. Lions, Meyer and Semmes
[7] to the theory of compensated compactness.

Remark. Observe that the interpolation theory approach to the theorem
of Coifman, Rochberg and Weiss is based on the theory of weighted norm
inequalities for singular integrals.

A detailed development of the relationship between the commutator methods
of interpolation theory and compensated compactness will be given elsewhere.

In order to state and prove our next result let us recall Kalton's extension
[17] of the commutator theorem of Rochberg and Weiss [24]. Let us say that an
operator 0, defined on some LP space and values on the measurable functions
is a centralizer, if there exists a function S: R+ -4 R+, such that 'Vu E L 00 ,

the commutator [0, M,,], where M" is the multiplication operator defined by
M"f = uf, satisfies 11[0,M"JJllp ::; b(llfllp)· We then say, by abuse of language,
that 0 and M" commute. Similarly we say that a centralizer 0 is a symmetric
centralizer if in addition it commutes with all the operators of the form S" f =
f 0 CT, generated by measure preserving transformations CT.

Theorem 10. Let 1 ::;Pi < P < P2 < 00, and let 0 be a symmetric cen-
tralizer on LP, then every operator T of weak types (Pi, Pi), i = 1,2, commutes
with O.

In fact Kalton proves a much more general result holds involving rearrange-
ment invariant spaces and in particular the result is valid for L(p, q) spaces.

We also need to review briefly some basic results concerning the Hodge
decomposition. We are trying to decompose a vector field F = V'u + H, where
H is a divergence free vector field, divH = O. This is done as follows. Suppose
first that F E LP( Rn, Rn), then we select u to be such that ~u = divF, i.e. by
letting

'\7u=I<F

where I< is the matrix operator given by
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and the Rj, j = 1, ...n, are the Riesz transforms. Therefore the decomposition
we seek is F = K F +(I - K)F, and we have the right control in the LP norms.
For vector fields defined on a smooth domain 0 a similar result holds, and
again V'u is given by a singular integral.

We now consider operators of the form O¢f = f¢J(f),where the (generally
non-linear) operator ¢J is selected in such a way that O¢ is a symmetric cen-
tralizer, i.e. satisfies the conditions of Kalton's theorem. The methods of [9]
yield then the following result

Theorem 11. (ef [9])Let f:Rn -+ Rn, be a mapping of class CO'(Rn, Rn),
and let O¢ be a commutator on L"; and let 8 be the function associated to O¢
by Kelton's theorem, then

In J(x,f)¢J(IDfl)dx S c8(IIIDfllln)IIIDflll~-1 .

Proof. We use the method of [9] and the notation of our previous discussion.
Using Hodge decomposition write

O¢(Df)(x) = Dg(x) + H(x) (4)

with g E W1"(Rn, Rn), and where H = (I - K)O¢(Df) E L'(Rn, GL(n» is a
divergence free matrix-field, 1< S < 00, and since this decomposition is unique
we have (I - K)( D f) = O.1- K is bounded on LP for 1< p < 00, and therefore
by Kalton's theorem we get

thus,
IIHlln S c8(IIIDfllln) .

Using the notation of differential forms, J(x, f)dx = dh /\ dh /\ ... dfn, and (4)
takes the form

(6)

where the hk are differential forms of degree one whose coefficients coincide
with the entries of the k-th column of H. Computing using (6) for k = 1 we get

r J(x,f)¢J(Df(x»dx= r dg1/\dh/\···/\dfn+ r h1/\dh/\ ... /\dfn.JRn JRn JRn
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Given the assumption on the vector field I we see that JRn dgl/\dh/\·· ·/\dln =
0, by Stokes' theorem, and the second integral can be estimated, by Hadamard's
inequality and (5), as follows

f hI /\ dh /\ ... /\ dIn::; f IH(x)IIDI(x)ln-IdxJRn JRn
::; IIIHlllnIIID/III~-1< e8(IIIDlllln)IIID/III~-1

and the desired result follows. D
Example 1. In the case 4J(J)(x) = log I/(x)l, then we can take 8(x) = ex.
This is the result of Greco and lwaniec [9]. We can also deal with

¢(J) = (log lIlt, 0 ::; a ::; 1 ,

¢(f) = (log l/l)" Ilog rI (I/(x) \) ji', 0 ::; a, (3 ::; a + (3 ::; 1

where r I is the rank function defined for t 2: 0, by

rI(t) = I{s: 1/(5)1 > I/(t)l,or 5::; t and 1/(5)1 = I/(t)!} I

For other examples of symmetric centralizers see [17].
Another commutator result relevant in this theory was obtained by Iwaniec

and Sbordone [12] and applied to Hodge decompositi~..ns in [12] and in [9].

Theorem 12. (ef. [12J) Let 1 < ri < 00, i = 1, 2, r E frI, r2] and suppose
that T: C(O, E) --+ Lr(o, E), where E is a Hilbert space. Then 'tic such that
r r
- - 1 < c < - - 1 we have- - ,rz rl

where Sci = CI~lp)'I, and er is independent of f.

The following application of Theorem 12 to Hodge decomposition is impor-
tant in the study of the integrability properties of the Jacobian transformation
as well as in other problems (cf. [12]).

Theorem 13. Let B = B(a, R) be a ball in R" and let IE W/(Rn), T > 1.
Then, for each c E (1- r,l) the vector field IV'/I-'V'I E L\~'(Rn) can be
decomposed as

1V'/(x)I-'V'/(x) = V'g(x) + H(x), a,e, x E B

where 9 E W~ (Rn) and H E L \~, (Rn , Rn) is divergence free and such that
\-,

1-,

II IHI 11_' < c]e]. II IV'/III:'\-,
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We now present an extension of Theorem 12, obtained in [19], using the
real method of interpolation. We start by giving a brief review of the relevant
definitions.

We generally assume that the reader is familiar with the basic definitions
of interpolation theory, and we refer to [4] for background information. Let ..4
= (Ao, Ad be a Banach pair, let a E ~( ..4) = Ao + AI, and recall that the E
functional of a is defined, for t > 0, by

The corresponding interpolation spaces ..4e,q;E, ° < (j < 00, 0< q ~ 00, are
defined using the quasi-norms

(7)

Let us write DE(t; ..4) = DE(t)a = ao(t), for an almost optimal decomposi-
tion, that is a decomposition such that

E(t, a;..4) ~ IIDE(t)aIIAo (8)

Then, we define the corresponding operators DE associated with this method,
by

, 100 dt 11 dtDEa = DE(t)a- - (I - DE(t»a- .
1 tot

(9)

One can define, similarly, operators associated with other methods of inter-
polation like the ]{ and J methods, or the complex method. The main results
of [24] and [14] state that if T is a bounded operator T :A -+ 13 , and F denotes
any- of these methods of interpolation, then there exists a constant c(F) such
that if we let [DF, T] = DF(B)T - TDF(A)' then

In order to state the corresponding analogs of the result of [12] we consider
variants of the D operators. Let a E (-1,1), a # 0, and define

(10)

Then we have the following
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Theorem 14. (cE. (19J) Let A and 13 be a Banach pairs, T: A --+ 13 be a
bounded operator, then there exists a constant c >. 0 such that if ()+ Q' > 0,

In the case of the Il(E) spaces it is not hard to check by computation
that we recover Theorem 12. As an application we now give an extension of
Theorem 13 to the setting of L(p, q) spaces. Observe that the proof of Theorem
13 depends only on two steps:

(i) the boundedness of singular integrals on LP spaces (see the discussion
above on Hodge decompositions), and

(ii) Theorem 12
Both of these steps can be extended to the setting of L(p, q) spaces. In fact,
the singular integral operators are bounded on L(p, q) spaces, by interpolation,
while a special case of Theorem 14 implies that Theorem 14 holds in the setting
of Lip, q) spaces. We have thus obtained the following.

Theorem 15. Let B = B( a, R) be a ball in Rn and let! E Wi,q (Rn), p >
1.1 ~ q ~ oo. Then, for each (E (l-p,l) the vector field 1\7!I-'\7! E
L6,Q(Rn) can be decomposed as

1\7!(x)I-'\7!(x) = \7g(x) + H(x), a.e. x E B

§4. AN ApPLICATION OF EXTRAPOLATION SPACES

In the last few years a theory of extrapolation spaces has been emerging
through the work of Jawerth and Milman (cf. [15], [16], and [19]). One of the
main applications of the theory is to provide a framework to study the limiting
spaces and inequalities of classical analysis. It is not possible here to go into
details for which I must refer the reader to the quoted papers. I simply wish
to point out that a simple application of extrapolation allows one to compute
the spaces that appear in Theorem 3. Corollary 1 follows readily from this
characterization.

Theorem 16. U E ~E[l,n)(n-s)W}(3B, Rn) ifan only if the distributional

derivatives of its components, ~~~, are such that

[

t n 1 ]
SUPtE(O,l)P(t) ~1;;=T(~~:)*(S)dS+t{ln':-l [(~~:)*(SWdS}l/n

, ,J

<<Xl
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where p(t) = r1(1 + log I/t)-l.

In closing this brief section we just wish to remark that extrapolation meth-
ods can be very useful in dealing with the type of spaces considered in this
article. For a reader who may be interested in the abstract methods per se we
mention that the papers quoted above also include a number of open problems
in the theory.

§5. REARRANGEMENT INEQUALITIES: MULLER'S THEOREM

The main tool in Muller's work is an estimate of the Maximal function of
Hardy-Littlewood of the Jacobian of an orientation preserving map. We now
rewrite this estimate in a form suitable for our needs here.

Let us start by recalling that for u E Ltoc(Rn) the maximal function of
Hardy-Littlewood M is defined by

Mu(x) = ~~~ I~I ~ lu(y)ldy, x E Rn

where the supremum is taken over all the cubes Q with sides parallel to the
coordinate axes. As it is well known the maximal operator of Hardy-Littlewood
is bounded on LP(Rn), 1 < p :::;00, and is of weak type (1,1). Let B be a fixed
ball and consider the maximal operator M acting on functions supported on
B, then we also have the following well known result of Stein (cf. [25])

M : LLogL(B) --+ L1(B)

In fact Stein's theorem is actually a characterization of the space LLogL(B) :
u E L(LogL)(B) iff Mu E L1(B). It will be important for our purposes to
give a quantitative form to these statements using the following estimate by
Herz (cf. [23], and [3])

11t

(Mu)*(t) ~ u**(t) = - u*(s)ds, t > 0 ,
t a

(11)

where we have used * to denote the non-increasing rearrangement of a function,
~ to denote equivalence within absolute multiplicative constants (i.e. indepen-
dent of u, or t). In fact, integrating (11) we obtain

llB' llB' 1 it. llBI IBI(Mu)*(t)dt ~ (- u*(s)ds)dt = u*(t) log -dt .
a a t a a t

(12)

Observe that the left hand side of (12) is exactly IB Mu(x)dx, while the right
hand side is an equivalent (Lorentz type) norm for the Orlicz space LLogL(B)
(cf. [26]). More generally we have the following relationships between the usual
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Orlicz and Lorentz norms for the LP (LogL)'" spaces. For O! E R, 1 ~ P < 00

we consider the following functionals on the LP (LogL)O(B) spaces

{
[IBI ( IBI)O }llP

IIfllLP (LogL)'" = 10 t" (sY 1 + log -8- ds (13)

" {[IBI" ( IBI) ° }llP
IIfIILP(LogL)'" = 10 f (s)P l+log-;- ds· (14)

In fact the expression (14) defines for O! ~ 0, 1~ p < 00, an equivalent norm
on LP (LogL)a(B), while for O! < 0, it is a quasi-norm defining a topology
that coincides with the usual one provided by the corresponding Orlicz norms.
The expression (13) defines a norm for O! E R, 1 ~ p < 00. Moreover, for
1< p < 00, O! E R, we have

Ilfll~p(LogL)'" ~ IIfllLP (LogL)'" (15)

(cf. [2] for an extensive treatment).
The case p = 1, as can it be seen from (12) must be dealt with separately.

Thus. a slight modification of the argument leading to (12) allows us to ob-
tain further integrability results. In fact multiplying both sides of (11) by

<Pa(t) = (1 + log ~) a, O! ~ ° (in the previous argument we used O! = O!), and
integrating leads to

( 16)

For O! < 0 we have moreover,

11M II ~ {IIUII~(L09L)"'+I(B) O! t= -1
u L(LogL)"'(B) ~ II II" O! = -1

U L(LogLogL)(B)
(17)

We also point out that these results admit local versions. Indeed, let us
state a local version suitable for our purposes here. Let Q be a fixed cube Rn,

with sides parallel to the coordinate axes, and consider the localized maximal
operator of Hardy-Littlewood defined for f E L1(Q) as follows

MQf(x) = sup IQ1'1 [ If(Y)ldy,x E Q
Q'?Jx,Q'CQ 1QI

Then, we can repeat the analysis above for the localized maximal operators of
Hardy-Littlewood, since the following analog of (11) holds,

(MQJ)" (t) ~ (JXQ)*" (t), 0< t ~ IQI , (18)
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with constant of equivalence independent of f. In fact the proof of (18) is
the same as the one for (1L). Since this is rather easy we indicate the proof
for completeness sake. Let then f E L1(Q), extend it to be zero on QC and
call this new function j. It is clear that Mol ~ M j, and we deduce that
(MQ/r (t) ~ c(fXQr* (t). On the other hand for t > 0 let B = {x E Q :
MQ/(x) > (MQJ)*(t)}. Suppose that B is not empty, otherwise there is noth-
ing to prove, then B is an open set relative to Q and we can get a disjoint
cover of B C U;1Qj, where the Qj are pair wise disjoint, Qj c Q, IB I
:::::i 2::;IIQjl, and moreover Qj n (Q\B) f:. ¢ ,Vj = 1. .. ·(cf. [3]). Define
b = IXB = 2::;1 IXQj' g = IXQ\B, so that I = b + g. Consider the K func-
tional for the pair (£1(Q), LOO(Q)), then, as it is well known, we have (cf. [4])

t (JXQ)** (t) = K(t, I, L1(Q), LOO(Q))
= inf{llhrlILl(O) + tllhooIILoo(o) : I = hI + hoo}

thus, comparing with the previously constructed decomposition we must have

Now, by construction
IIgIILoo(o) ~ (MQJ)* (t)

To compute the IIbIILl(Q) let us select elements Xj from the non-empty sets
Qj n (Q\B), j = 1, ..,then

,~"l. I/(y)ldy ~ MQI(xj) ~ (MQJ)* (t)
J QJ

consequently, using that the sum of the measures of the cubes {Qj }j;1 add up
to the measure of B (up to a fixed factor), and the fact that IBI ~ t, we obtain

r: Ilbllu(o) ~ t-1 f= 1.I/(Y)ldY = C1 f= :~~:1.I/(y)ldY ~ c(MQJ)* (t)
. J =1 QJ J =1 J QJ

and the result follows.
After all this preliminary work, let us now state

Theorem 17. (cf. [22]) Let 0 be an open bounded set in R" and let I
be an orientation preserving map in the class W~(O, Rn), and let Q c 0, a
cube with sides parallel to the coordinate axes, and let Q = Q/2 be the cube
concentric with Q and with sidelenght equal to half the sidelenght of Q. Then,

(19)

where for a matrix H, adjH is defined so that H adjH = (det H) L,

We are now ready to prove our main result in this section
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Theorem 18. Let ° be an open bounded set in Jl!l and let f be an
orientation preserving map in the class Wl"(LogL)"(O, R"), a ~ 0, then VK C
0, J f E L(LogL)a+l(K).

Proof Let Q be any cube with sides parallel to the coordinate axes contained
in 0, and let Q be defined as in the statement of Theorem 17. Observe that
taking decreasing rearrangements in (19) preserves the inequality therefore,
combining with CI8), gives for .a suitable absolute constant c,

Combining this estimate with Hadamard's inequality, we readily get

This estimate is valid for all orientation preserving maps f in the class
W~CO, Rn). Note that for a ~ 0, we have Wl"(LogL)"CO, Rn) c W~CO, Rn).
Consequently, using the local versions of(16) and (17), wesee that for a ~ 0,

and the result follows. 0

The previous result encompasses Miiller's Theorem 1 which corresponds to
the case a = 0, while if a = 1, we obtain the Greco-Iwaniec Theorem 5. The
remaining cases seem to be new.

§6. REARRANGEMENT INEQUALITIES

AND THE IWANIEC-SBORDONE THEOREM

In order to complete the proof of Theorem 6 we briefly indicate how to deal
with the case a <0. Instead of using Miiller's Theorem 17 we use the maximal
inequalities of Iwaniec and Sbordone [12] incorporating the relevant parts of
the analysis of [5] where the case a E [-1,0) is treated. Assume then that
a < -1. In [12] it is shown that if ° is a bounded open set in H", :3 c > 0, such
that for all orientation preserving maps f E WL,CO, Rn) ,VQ CO, Q defined
as before, we have

~
M<jf(x)::;c{MQCIDfl ....:,)} .. , (20)

as long as we can guarantee that

lim [e] { IDfln-'dx = ° .,-.0 JQ
(21)
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It is easy to check, as in [5] that indeed (21) holds for f E Wl"((LogL)-a C
WL,(O, Rn), '<If. E (0, n - 1). Taking rearrangements in (20) we arrive to the
estimate

( ) ** { ( 2 ) ** } ..+1fXQ (t) :::;c XQIDfl ....+1 (t) ;

consequently

t ( )** 1 [1 {( ..2 ) ** } ..+1 1io fXQ (t)(l + log tfdt :::;io c XQIDfl ..+1 (t) (1 + log tfdt

Finally we conclude with an appeal to (17). 0
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