Revista Colombiana de Matemáticas Volumen XXVII (1993) págs. 127–130

THE NEED OF IMPATIENCE FOR GENERAL EXISTENCE THEOREMS FOR EQUILIBRIA AND PARETO OPTIMA IN MATHEMATICAL ECONOMIC SYSTEMS

H. G. TILLMAN

ABSTRACT. We consider a Mathematical Economic System (M.E.S.) of Arrow-Debreu type,

$$\mathcal{E} = \{X^i, \succeq i, a^i, , Y^j, \alpha_{ij}\}, X^i, Y^j \subset X = l^{\infty}(E),$$

where $E = E(\tau_0)$ is a locally convex \mathbb{R} -vector space. We assume E barreled, later on we assume E a reflexive Banach Latice.

Example. l^p , $L^p(\mu), 1 \le p \le \infty$ Hilbert spaces.

Question: Which topologies τ in X are suitable for Economic Models?

§1. MYOPIC ECONOMIC AGENTS

Let :

 $l^{\infty}(E) = \{z = (z_0, z_1, \dots, z_n \dots), \{z_n\} \text{ bounded in } E(\tau_0)\}.$

 $z = (z_0, \ldots, z_n, 0 \ldots) + (0, \ldots, 0, z_{n+1}, z_{n+2}, \ldots) = u z^{(n)} + z^{(n)}$ $z^{(n)} = n - \text{tail of } z.$

Definition 1.1. \succeq is myopic iff $x \succ z$ implies $x \succ z + w^{(n)}$ for $n > n_0(x, z, w)$.

Definition 1.2. A topology τ in $X = l^{\infty}(E)$ is myopic iff all τ -continuous preferences are myopic.

Example 1.3. Let E be a Banach space,

$$\begin{split} \tau_{\infty} &: \|z\| := \sup_{n} \|z_{n}\|, \text{ topology of uniform convergences,} \\ \beta &: \|z\|_{\lambda} := \sup_{n} \|\lambda_{n} z_{n}\|, \ \lambda \in c_{0}, \text{ strict topology,} \\ \tau_{\pi} &: \|z\|_{n} := \sup(\|z_{0}\|, \dots, \|z_{n}\|), \text{ product topology,} \end{split}$$

then β , τ_{π} are myopic, τ_{∞} is not myopic.

Definition 1.4. A topology τ in X is regular, if $i_n : E \to X(\tau) = l^{\infty}(E)$, $x \mapsto (0, \ldots, 0, x, 0, \ldots)$ is continuous.

 $\tau_{\infty}, \beta, \tau_{\pi}$ are regular.

Proposition 1.5.

a) τ is myopic $\iff z^{(n)} \stackrel{\tau}{\to} 0$ for any $z \in X$.

b) There exist a strongest regular and myopic topology τ_{SM} on $X = l^{\infty}(E)$, E a locally convex space.

Theorem 1.6.

a) $X(\tau_{SM})' =: X' = l_b^1(E') = \{u = (u_n) \mid ||u||_B = \sum_{0}^{\infty} \sup_{x \in B} |u_n(x)| < 0$

 ∞ for each bounded $B \subset X(\beta)' = X'$ for all Banach and Fréchet spaces E.

b) $\tau_{\infty} \supset \tau_{MA} \supset \tau_{SM} \supset \beta \supset \sigma = \sigma(X, X'), \tau_{MA} \supset \tau_{MA}(X, X') = Makey-topology.$ All these topologies have the same class of bounded sets.

c) τ'_1 defined by $|u|_B$, B bounded in E, is the strong topology τ_b on X'.

d) $\ddot{X}'' = (X\tau_b = l_e^i nfty(E'') = \{x = (x_n), x_n \in E'', equicontinuous\}.$

e) X'' = X if E is a reflexive, barreled space, $\sigma(X, X') = \sigma(X'', X')$.

Theorem 1.7. If E is a reflexive Banach lattice, then $\tau_{MA} = \tau_{SM} = \beta$, τ_{MA} the Mackey topology $\tau_{MA}(X, X')$.

Theorem 1.8 (N. Flügel, 1989. Diplomarbeit, Münster). $\tau_{MA} = \tau_{SM}$ for all barreled spaces E.

Corollary 1.9. $\tau_{\infty} \supset \tau \supset \sigma$ implies τ is myopic iff τ is admissible for the duality $(X, X') \leftrightarrow X(\tau)' = X' = l_b^1(E')$.

If $\mathcal{E} = \{X^i, \succeq i, a^i, Y^j, \alpha_{ij}\}$ is a Private Ownership Economic System $X^i, Y^j \subset X = l^{\infty}(E)$ we use the

Definition 1.10.

a) (x^i, y^j) is a state of \mathcal{E} if $x^i \in X^i, y^j \in Y^j$ for all i, j.

b) A state (x^i, y^j) is attainable iff $\sum x^i = \sum y^j + \sum a^i$ (demand = supply on all markets).

c) A state (x^i, y^j) is individual rational iff $x^i \succeq_i a^i$ for all i.

d) A state (x^i, y^j) is Pareto-optimal if it is attainable and for all attainable states $(\tilde{x}^i, \tilde{y}^j)$ it holds: $\forall \tilde{x}^i \succeq_i x^i$ implies $\tilde{x}^i \sim_i x^i$.

128

e) A state (x_*^i, y_*^j) is an equilibrium at prices p_* , if (1) y_*^j maximizes $p_* \cdot y$ in Y^j . (2) x_*^i maximizes \succeq_i in the budget set $B^i(p_*)$: $B^i(p_*) := \{x \in X^i :$ $p \cdot x \leq w^i(p) \equiv p \cdot a^i + \sum \alpha_{ij} \sup p \cdot y, y \in Y^j\}$ (3) (x_*^i, y_*^j) is attainable : $\sum x_*^i = \sum y_*^j + \sum a^i$) (4) $p_* \neq 0$.

f) A state (x_*^i, y_*^i) is a quasiequilibrium at p_* if (1), (3), (4) are true and (2') x_*^i maximizes \succeq_i on the budget set $B^i(p_*)$ or

$$w^i(p_*) := min(p_* \cdot x, x \in X^i)$$
 and $x^i_* \in B^i(p_*)$.

g) If $w^i(p_*) = min(p \cdot x, x \in X^i)$ we say: consumer *i* is in the minimum – wealth situation.

§2. EXISTENCE THEOREMS (ARAUJO (1985) FOR $E = \mathbb{R}$)

For the Mathematical Economic System \mathcal{E} we assume :

- A0 E is a reflexive Banach Lattice, $X^i = X_+ = l^{\infty}(E), a^i \in X_+$.
- A1 \succeq_i is total and transitive (= preference relation)
- A2 (τ) : \succeq_i is τ continuous: $M^i_+(x) = \{x \in X^i : z \succeq_i x\}$ and $M^i_-(x) = \{x \in X^i : x \succeq_i z\}$ are τ -closed sets.

A5 \succeq_i is convex: $M^i_+(x)$ is a convex set for all x, i. $B(\tau)$:

(i) $0 \in Y^j, Y^j$ is τ -closed, convex (or $\overline{Y} = \sum Y^j$ is a τ -closed, convex set).

(ii) $Y^{j} \cap \{X_{+} - \sum_{v \neq j} Y^{v} - a\}$ is τ -bounded, $a = \sum a^{i}$.

Theorem 2.1. If $\tau_{MA} \supset \tau_{SM} \supset \tau_1, \tau_2 \supset \sigma$, every M.E.S. that satisfies $A0, A1, A2(\tau_1), A5, B(\tau_2)$ has individual, rational, Pareto-optimal states (x_*^i, y_*^i) .

The existence of equilibria needs some more assumptions:

 $\begin{array}{l} A4^* : \forall i \exists z_0^i \in X^i : z_0^i \leq a^i, \, \forall x \in \hat{X}^j : x + \lambda z_0^i \succ_j xj = 1, 2, \ldots, k. \, \, (z_0^i \text{ is universally desired, includes "non-station"}). \end{array}$

P : $\exists y_0^j \in Y^j : s_0 = \sum y_0^j + \sum a^i = y_0 + a >> 0 \text{ and } \exists \lambda_0 \ge 1 : \sum x^i = \sum y^j + a \le \lambda_0 s_0$ for all attainable states (x^i, y^j) . (z >> 0 means $p \cdot z > 0$ for all positive linear functionals $0 \ne p \in X'$

$$\mathbf{M} : x \geq z \to x \succeq iz, i = 1, 2, \dots, k.$$

Theorem 2.2. If $\tau_{MA} \supset \tau_{SM} \supset \tau_1, \tau_2 \supset \sigma$, every M.E.S. that satisfies $A0, A1, A2(\tau_1), A4^*, A5, B(\tau_2), P, M$ has an equilibrium (x_*^i, y_*^j, p_*) where p_* is a continuous, positive linear functional on a subspace $L \subset X$ which contains all attainable x^i, y^j and L is a Banach sublattice of X.

Idea of Proof. Aproximation by finite dimensional subsystems

 $\mathcal{E}_F = \{F \cap X^i, \succeq_i, a^i, F \cap Y^j, \alpha_{ij}\}, F \ni a^i, z_0^i, y_0^j$

with a basis of positive elements. The Debreu's Existence Theorem of 1962 can be applied so that \mathcal{E}_F has a quasiequilibrium (x_F^i, y_F^j, p_F) . M implies $p_F \ge 0$.

A4* implies (x_F^i, y_F^j) is an equilibrium at p_F . $B(\tau_2)$ implies: $\{y_F^j\}_F$ is τ_2 -bounded; hence, σ -bounded and σ -relative compact.

 $\{\sum x_F^i\}_F$ is τ_2 -bounded; therefore, β -bounded, and so, implies $\{x_F^i\}_F$ is β -bounded since $0 \leq x_F^i \leq \sum x_F^i$ and β is a solide topology. $\{\sum x_F^i\}$ is bounded implies σ -bounded and σ -relative compact. There exist accumulation points (x_*^i, y_*^i) of (x_F^i, y_F^j) . X^i is convex, τ_1 - closed, therefore σ -closed and $x_*^i \in X^i$; Y^j is τ_2 -closed, convex, therefore σ -closed and $y_*^j \in Y^j$; (x_*^i, y_*^j) is an attainable state.

There exists a σ -bounded and σ -closed, solide, absolutely convex set B, that contains all attainable x_*^i, y_*^j and supplies $\sum y^j + a = s$. $L = X_B = \bigcup_n B$ is a Banach lattice with B as unit ball.

Normalization of the price vector $p_F : p_F(s_0) = 1, ||p_F|| \le \lambda_0$. By Alaoglu: $p_F \mapsto p_*$ pointwise on L; $p_*(s_0) = \lim p_F(s_0) = 1, ||p_*|| \le \lambda_0$. Maximality of x_*^i and y_*^j with respect to p_* can be proved as in Araujo's case $E = \mathbb{R}$.

§3. INVERSE RESULTS

We assume $\tau_{\infty} \supset \tau_1$, $\tau_2 \supset \sigma = \sigma(X, X')$, but τ_1 , τ_2 not necessarily myopic. If τ_1 or τ_2 is not myopic we can construct counterexamples of M. E. S.'s, such that all conditions of Theorem 2.1 resp 2.2 are satisfied, but individual rational, Pareto-Optimal states do not exist. We get the following:

Theorem 3.1. If E is a reflexive B-lattice with separable dual E', τ_1 and τ_2 are locally convex topologies on $X = l^{\infty}(E), \tau_{\infty} \supset \tau_1, \tau_2 \supset \sigma$, such that every M. E. S. that satisfies A0, A1, A2(τ_1), A5, B(τ_2) has an individual rational, Pareto-optimal state, then $\tau_{MA} = \tau_{SM} \supset \tau_1, \tau_2; \tau_1, \tau_2$ are myopic.

Theorem 3.2. If E is a reflexive separable B-lattice with separable dual E', τ_1 and τ_2 locally convex topologies on $X = l^{\infty}(E)$, such that every M. E. S. that satisfies A0, A1, A2(τ_1), A4*, A5, B(τ_2), P, M, has an equilibrium, then $\tau_{MA} = \tau_{SM} \supset \tau_1, \tau_2; \tau_1, \tau_2$ are myopic topologies.

"Impatience", as formalized by *myopicity*, of the economic agents is necessary for general existence results.

REFERENCES

- 1. Brown-Lewis, Myopic Economic Agents, Econometrica 49 (1981), 359-368.
- 2. Araujo, Lack of Pareto optimal allocations in economics with infinitely many comodities; The need of impatience, Econometrica 53 (1985), 395-461.
- 3. Aliprantis-Brown-Burkinshaw, Positive Operators, Academic Press, 1985.
- 4. Debreu, Mathematical Economics. 20 Papers of Gerard Debreu, Cambridge, 1986. Paper-back edition: 1986.

UNIVERSITY OF MÜNSTER - GERMANY