Revista Colombiano de Matenuiticas Volumen XXVII (1993) *pags. 127-130*

THE NEED OF IMPATIENCE FOR GENERAL EXISTENCE THEOREMS FOR EQUILIBRIA AND PARETO OPTIMA IN MATHEMATICAL ECONOMIC SYSTEMS

H. G. TILLMAN

ABSTRACT. We consider a Mathematical Economic System (M.E.S.) of Arrow-Debreu type,

$$
\mathcal{E} = \{X^i, \sum_i i, a^i, \, , Y^j, \alpha_{ij}\}, X^i, Y^j \subset X = l^{\infty}(E),
$$

where $E = E(\tau_0)$ is a locally convex \mathbb{R} - vector space. We assume *E* barreled, later on we assume *E* a reflexive Banach Latice.

Example. *lP*, $L^p(\mu), 1 \leq p \leq \infty$ Hilbert spaces.

Question: Which topologies τ in X are suitable for Economic Models?

§1. MYOPIC ECONOMIC AGENTS

Let $::$ (note in \mathcal{U} , in during half)

$$
l^{\infty}(E) = \{z = (z_0, z_1, \ldots, z_n, \ldots), \{z_n\} \text{ bounded in } E(\tau_0)\}.
$$

$$
z = (z_0, \ldots, z_n, 0 \ldots) + (0, \ldots, 0, z_{n+1}, z_{n+2}, \ldots) = uz^{(n)} + z
$$

 $z^{(n)} = n - \text{tail of } z.$

Definition 1.1. \geq is *myopic* iff $x \geq z$ implies $x \geq z + w^{(n)}$ for $n >$ $n_0(x, z, w)$.

Definition 1.2. A topology τ in $X = l^{\infty}(E)$ is *myopic* iff all τ -continuous preferences are *myopic.*

Example 1.3. Let E be a Banach space, threshold shans decolo baters and volumen XXVII (1993) págs. 127-130

$$
\tau_{\infty} : ||z|| := \sup_{n} ||z_n||, \text{ topology of uniform convergences,}
$$

$$
\beta : ||z||_{\lambda} := \sup_{n} ||\lambda_n z_n||, \lambda \in c_0, \text{ strict topology,}
$$

$$
\tau_{\infty} : ||z||_{\infty} := \sup_{n} (||z_0||, \dots, ||z_n||), \text{ product topology,}
$$

THUORDINS FOR EQUILIBILITY AND PARES OF THE

then β , τ_{π} are myopic, τ_{∞} is not myopic.

Definition 1.4. A topology τ in X is regular, if $i_n : E \to X(\tau) = l^{\infty}(E)$, $x \mapsto (0, \ldots, 0, x, 0, \ldots)$ is continuous.

 $\tau_{\infty}, \beta, \tau_{\pi}$ are regular.

Proposition 1.5.

a) τ is myopic $\Longleftrightarrow z^{(n)} \stackrel{\tau}{\longrightarrow} 0$ for any $z \in X$.

b) There exist a strongest regular and myopic topology τ_{SM} on $X = l^{\infty}(E)$, E a locally convex space.

Theorem 1.6.

a) $X(r_{SM})' =: X' = l_b^1(E') = \{u = (u_n) | ||u||_B = \sum_{\substack{x \in B}}^{\infty} \sup_{x \in B} |u_n(x)|$

 ∞ for each bounded $B \subset X(\beta)' = X'$ for all Banach and Fréchet spaces E.

b) τ_{∞} $\supset \tau_{MA}$ $\supset \tau_{SM}$ $\supset \beta$ $\supset \sigma = \sigma(X,X')$, τ_{MA} $\supset \tau_{MA}(X,X') =$ Makeytopology. All these topologies have the same class of bounded sets.

c) τ'_1 defined by $|u|_B$, B bounded in E, is the strong topology τ_b on X'.

d) $X'' = (X\tau_b = l_e^infty(E'') = \{x = (x_n), x_n \in E''\}$, equicontinuous}.

e) $X'' = X$ if E is a reflexive, barreled space, $\sigma(X, X') = \sigma(X'', X')$.

Theorem 1.7. If E is a reflexive Banach lattice, then $\tau_{MA} = \tau_{SM} = \beta$, τ_{MA} the Mackey topology $\tau_{MA}(X, X')$.

Theorem 1.8 (N. Flügel, 1989. Diplomarbeit, Münster). τ_{MA} = τ_{SM} for all barreled spaces E.

Corollary 1.9. $\tau_{\infty} \supset \tau \supset \sigma$ implies τ is myopic iff τ is admissible for the duality $(X, X') \leftrightarrow X(\tau)' = X' = l_b^1(E') \dots \emptyset + (\dots \emptyset \dots \emptyset)$

If $\mathcal{E} = \{X^i, \sum_i A^i, Y^j, \alpha_{ij}\}\$ is a Private Ownership Economic System $X^i, Y^j \subset X = l^{\infty}(E)$ we use the

Definition 1.10.

a) (x^i, y^j) is a state of $\mathcal E$ if $x^i \in X^i$, $y^j \in Y^j$ for all i, j. continued

b) A state (x^i, y^j) is attainable iff $\sum x^i = \sum y^j + \sum a^i$ (demand = supply on all markets).

c) A state (x^i, y^j) is individual rational iff $x^i \succeq_i a^i$ for all i. noticially

d) A state (x^i, y^j) is $Pareto-optimal$ if it is attainable and for all attainable states $(\tilde{x}^i, \tilde{y}^j)$ it holds: $\forall \tilde{x}^i \succsim_i x^i$ implies $\tilde{x}^i \sim_i x^i$.

e) A state (x^i, y^j) is an *equilibrium* at prices p_* , if (1) y^j_* maximizes $p_* \cdot y$ in *Y^j*. (2) x_*^i maximizes \sum_i in the budget set $B^i(p_*)$: $B^i(p_*) := \{x \in X^i :$ $p \cdot x \leq w^{i}(p) \equiv p \cdot a^{i} + \sum \alpha_{ij} \sup p \cdot y, y \in Y^{j}$ {3) (x_{*}^{i}, y_{*}^{j}) is attainable : $\sum x_*^i = \sum y_*^j + \sum a^i$ (4) $p_* \neq 0$.

f) A state (x^i, y^j) is a *quasiequilibrium* at p_* if (1), (3), (4) are true and *(2')* x^* maximizes ξ_i on the budget set $B^i(p_*)$ or

$$
w^{i}(p_{*}) := min(p_{*} \cdot x, x \in X^{i})
$$
 and $x^{i}_{*} \in B^{i}(p_{*}).$

g) If $w^{i}(p_*) = min(p \cdot x, x \in X^{i})$ we say: consumer *i* is in the *minimum wealth situation.*

§2. EXISTENCE THEOREMS (ARAUJO (1985) FOR $E = \mathbb{R}$)

For the Mathematical Economic System $\mathcal E$ we assume :

- AO *E* is a reflexive Banach Lattice, $X^i = X_+ = l^{\infty}(E)$, $a^i \in X_+$.
- Al \sum_i is total and transitive (= preference relation)
- A1 \succsim *i* is total and transitive (= preference relation)
A2 (τ) : \succsim *i* is τ continuous: $M^i_+(x) = \{x \in X^i : z \succsim_{i} x\}$ and $M^i_-(x) =$ $(\tau) : \sum_{i} i$ is τ continuous: $M_{+}^{i}(x) =$
 $\{x \in X^{i} : x \sum_{i} i^{z}\}$ are τ -closed sets. $\{x \in X^i : x \succsim_i z\}$ are τ -closed sets.
A5 $\succsim_i i$ is convex: $M^i_+(x)$ is a convex set for all x, i .

 $B(\tau)$:

(i) $0 \in Y^j$, Y^j is τ -closed, convex (or $\overline{Y} = \sum Y^j$ is a τ -closed, convex set).

(ii) $Y^j \cap \{X_{+} - \sum_{v \neq j} Y^v - a\}$ is τ -bounded, $a = \sum a^i$.

Theorem 2.1. If *TMA ::::)TSM ::::)Tl, T2 ::::)*(J', *every M.E.S. that satisfies* $A0$, $A1$, $A2(\tau_1)$, $A5$, $B(\tau_2)$ *has individual, rational, Pareto-optimal states* $(x^i_*, y^j_*).$

The existence of equilibria needs some more assumptions:

- *A*⁴ : $\forall i \exists z_0^i \in X^i : z_0^i \leq a^i, \forall x \in \hat{X}^j : x + \lambda z_0^i \succ_j x_j = 1, 2, ..., k.$ (z_0^i is universally desired, includes "non-station").
- **P:** $: \exists y_0^j \in Y^j : s_0 = \sum y_0^j + \sum a^i = y_0 + a >> 0$ and $\exists \lambda_0 \geq 1 : \sum x^i =$ $\sum y^j + a \leq \lambda_0 s_0$ for all attainable states (x^i, y^j) . $(z \gt> 0$ means $p \cdot z > 0$ for all positive linear functionals $0 \neq p \in X'$)

$$
M : x > z \rightarrow x \succeq_{i} z, i = 1, 2, \ldots, k.
$$

Theorem 2.2. If $\tau_{MA} \supset \tau_{SM} \supset \tau_1, \tau_2 \supset \sigma$, every M.E.S. that satisfies $A0, A1, A2(\tau_1), A4^*, A5, B(\tau_2), P, M$ has an equilibrium (x^i_*, y^j_*, p_*) where p_* is a *continuous, positive linear functional on a subspace* $L \subset X$ which *contains all* attainable x^i , y^j and L *is* a *Banach sublattice* of X .

Idea of Proof. Aproximation by finite dimensional subsystems

 $\mathcal{E}_F = \{F \cap X^i, \succsim_i, a^i, F \cap Y^j, \alpha_{ij}\}, F \ni a^i, z_0^i, y_0^j$

with a basis of positive elements. The Debreu's Existence Theorem of 1962 can be applied so that \mathcal{E}_F has a quasiequilibrium (x_F^i, y_F^j, p_F) . *M* implies $p_F \geq 0$.

 $A4^*$ implies (x_F^i, y_F^j) is an equilibrium at p_F . $B(\tau_2)$ implies: $\{y_F^j\}_F$ is τ_2 -

bounded; hence, σ -bounded and σ -relative compact.
 $\{\sum x_F^i\}_F$ is τ_2 -bounded; therefore, β -bounded, and so, implies $\{x_F^i\}_F$ is β bounded since $0 \leq x_F^i \leq \sum x_F^i$ and β is a solide topology. $\{\sum x_F^i\}$ is bounded implies σ -bounded and σ -relative compact. There exist accumulation points (x^i_*, y^j_*) of (x^i_F, y^j_F) . X^i is convex, τ_1 - closed, therefore σ -closed and $x^i_* \in X^i$; Y^j is τ_2 -closed, convex, therefore σ -closed and $y_*^j \in Y^j$; (x_*^i, y_*^j) is an attainable state.

There exists a σ -bounded and σ -closed, solide, absolutely convex set *B*, that contains all attainable x^i_* , y^j_* and supplies $\sum y^j + a = s$. $L = X_B = \bigcup_n B$ is a Banach lattice with *B as* unit ball.

Normalization of the price vector $p_F : p_F(s_0) = 1, ||p_F|| \leq \lambda_0$. By Alaoglu: $p_F \mapsto p_*$ pointwise on *L*; $p_*(s_0) = \lim p_F(s_0) = 1$, $||p_*|| \leq \lambda_0$. Maximality of x^i and y^j_* with respect to p_* can be proved as in Araujo's case $E = \mathbb{R}$.

§3. INVERSE RESULTS

We assume $\tau_{\infty} \supset \tau_1$, $\tau_2 \supset \sigma = \sigma(X, X')$, but τ_1 , τ_2 not necessarily *myopic*. If τ_1 or τ_2 is not *myopic* we can construct counterexamples of M. E. S.'s, such that all conditions of Theorem 2.1 resp 2.2 are satisfied, but individual rational, Pareto-Optimal states do not exist. We get the following:

Theorem 3.1. *If E* is a *reflexive B*-lattice with separable dual E' , τ_1 and τ_2 are *locally* convex topologies on $X = l^{\infty}(E)$, $\tau_{\infty} \supset \tau_1$, $\tau_2 \supset \sigma$, such *that every M. E. S. that satisfies* $A0$, $A1$, $A2(\tau_1)$, $A5$, $B(\tau_2)$ *has* an *individual rational,* Pareto-optimal state, then $\tau_{MA} = \tau_{SM} \supset \tau_1, \tau_2, \tau_1, \tau_2$ are myopic.

Theorem 3.2. *HE is* a *reflexive separable B-Iattice with separable dual* E' , τ_1 and τ_2 *locally convex topologies* on $X = l^{\infty}(E)$, such that every M. E. *S. that satisfies* $A0$, $A1$, $A2(\tau_1)$, $A4^*$, $A5$, $B(\tau_2)$, P , M , *has* an *equilibrium*, *then* $\tau_{MA} = \tau_{SM} \supset \tau_1, \tau_2; \tau_1, \tau_2$ are *myopic* topologies.

"Impatience", *as* formalized by *myopicity,* of the economic agents is necessary for general existence results.

REFERENCES

- 1. Brown-Lewis, *Myopic Economic Agent6,* Econometrica 49 (1981),359-368.
- 2. Araujo, *Lack of Pareto optimal allocations in economic6 with infinitely many com odiiies; The need of impatience,* Econometrica 53 (1985),395-461.
- 3. Aliprantis-Brown-Burkinshaw, *Positive Operators,* Academic Press, 1985.
- 4. Debreu, *Mathematical Economics. 20 Papers of. Gerard Debreu,* Cambridge, 1986. Paper-back edition: 1986.

UNIVERSITY OF MUNSTER - GERMANY