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THE PLATEAU PROBLEM FOR THE
PRESCRIBED MEAN CURVATURE EQUATION

E. Lami Dozo AND M. C. MARIANI

§1. INTRODUCTION

Given a Jordan curve I' in R3 and H : R%® — R3 a continuous and bounded
function, we consider the Plateau problem in the unit disc B = {(u,v) €
R3: w2402 < 1}, .i.e we look for a vector function X : B — R3 which satisfies
the following system of nonlinear differential equations

(1) AX =2H(X)Xu AN X, in B
@) [XuP =X P =0=X,=X, m B (P)
(3) X |ap: 0B —T 1s a parametrization of T

where X, = %X-, Xp'= 6_/\ and A denotes the exterior product in R3.

As in [5] we define the flz)llowing subset of the Sobolev space H!(B,R3):
C(T)={X € HY(B,R®) : X |s5€ C°(0B,R?)
is a weakly monotone parametrization of T} .
We call X € C(T') a weak solution of (P) if for every ¢ € C3(B,RR?)

/VX-V<p+2H(X)X.,/\X,,-¢:0 (4)
B

and if X satisfies (2) in B.
We will consider H prescribed and obtain weak solutions of (P) as critical

points of the functional
Dy(X)=D(X)+2V(X),

with 1
p(x) =5 [ 19X
A
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being the Dirichlet integral and
1
Ve =3 [ Q0 XuAX,
B

the Hildebrandt volume, where for £ = (£;,&3,£3) in R3, the associated function
Qto His

&1 €2 €3 )
Q(£)=( /0 B(s, 65163)dni /0 H(6r, 5, £3)ds, /0 H(sl,sz,s)ds),

which satisfies div Q@ = 3H [3].
Notations. We denote by W™? (B, R3) the usual Sobolev spaces [1] and
H™(B,R3) = W™?(B,R3). For X € H(B,R3),

1 X]lz2aB,8%) = (/85 | Tx Xlz)l/z ,

where Tr : H'(B,R®) — L?(0B,RR?) is the usual trace operator [1] and for
Y € L*(U,R"), we denote

IYloo = sup Y (w)] .
weU

For example,
|Hlleo = sup |H ()],
£eR3
1Qllee = sup [Q(E)]
1338
and
14 (X)l|oo = sup |H(X(w))],
£€B
1Q(X)lloo = sup |Q(X(w))] -
£€B

Concerning Dy (resp. V) we set

dDp(X)(p) = lim [DH(X i = DH<x)] |

whenever this limit exists (resp. dV(X)(¢)).
If X € H(B,R3), ¢ € C}(B,R3) then dDg(X)(yp) exists and is equal to

the first member of (4) [cf. 4, Lemma 2].

. : : ; 0 .
Finally, (n, o) denotes polar coordinates in R?, in particular B is the normal

. 0 ! Lo
derivative and 3 the tangencial derivative on 0B.
o
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§2. MINIMA IN SUBSETS OF H'(B,R%

We find weak solutions of (P). A first solution is a local minimum of Dy
in a convenient subset of H!(B,R3) when Q is in a specific convex subset of
L* and T is a rectifiable Jordan curve in R3. Other solutions are either a local
minimum of Dy with respect to the W2 (B, R%)-topology or a sequence of
minima of Dy in convenient closed convex subsets of H™{B, R3) associated to
H and T.

As in [5] we define

C'D)={XeC): X(B)=Q;, j=123},

where P; = €%, 0 < @1 < g2 < 3 < 27, and Q;, j = 1,2,3 an oriented
triple on I'.

It is known that C*(T') is a weakly closed subset of H!(B,R?) but C(I') is
not and that for any rectifiable Jordan curve I' C R®, C(T) # 0 [5].

Finally, we know that if X € H!(B,[R®) is a critical point of D in the
following sense: for any differentiable family of diffeomorphisms g, : B — Be,
with go = id there holds

d
—D(X " =
dCD( 2 !Bf) e=0 0 ‘

then X satisfies (2) in (P), i.e. the coordinates (u,v) are isothermal, and any
minmizer X of Dy in C(T') will be a critical point of D in this sense [5].
We give proofs based on the technical lemmas in section 3.

Theorem 1. Let H : R3 — R be continuous and bounded. If the function

Q € CY(R3,R3) associated to H satisfies ||Q||c < % and B% € L*®(R3) for

i # j, then given a Jordan curve I in R3 such that C(T') # 0, the functional
Dy has a minimum X in C*(T') and X is a weak solution of (P).

Proof. From

1
(¢ - A€l < SICInl + I
for vectors in R3, we have for X € H'(B,R®) that
2
IDa(X)1 < DO + 3 [ 1000 XuAX,|

< D(X) + 3 1Qlle D(X)
<2D(X),

so Dy is finite in H'(B,R3).
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From Lemma 2 [4], Dy is weakly lower semicontinuous in H'(B,R®), and
coercive in C(T'), beacuse for X € C(T'), we have the Sobolev inequality, which
is valid for X € H'(B,R3) with Tr X € L*°(8B,R3):

X115 < k1 (IVXII3 + 1X112208,52)
< ka(D(X)) + 1 X||72(58,50)) < kD(X) +k(T) ,

with ky, k2, k and k(T) positive constants.

Then Dy is weakly lower semicontinuous and coercive in C*(T'), and C*(T)
is a weakly closed subset of H!(B,RR3), so there is a minimum X of Dy in
Cc*(I).

By conformal invariance of Dy ([5] and Lemma 1 below):

Du(X) = inf Dy(X)= C(F)DH(X) .

But X +¢p € C(T) for ¢ € C3(B,R3), then we have that dDg(X)(¢) = 0 and
from Lemma 1 [4]:

[ VX Vot 2HXDXLAX, 0= 0 for p € CHBLR)
B
Finally, as in [5] for the case H = Hp € R, from Lemma 1 we have that

d 1 3
= = D(Xog;',B)| =0

e=0

d
—Dg(X o g:l, B,)
€

de o

for ‘any family of diffeomorphisms g, : B — B, with go = id and det (dg) =
Je1ugezv — JeruFeludelv > U; hence the coordinates (u, v) are isothermal.

Let us recall that a function ¢ € H!(B,RR3) is a solution to the classical
Plateau problem for a curve I' in R? if g is harmonic in B and satisfies (2) and

(3) in (P).
Theorem 2. Let I' C R3 be a rectifiable curve such that the solution to

the classical Plateau problem is a function g € W»*°(B,R3) and suppose that
H : R%® - R is a function satisfying the following properties:

i) H € CY(R3)NWH*(R3) and Q € L*°(R3,R3)
i) 0 <||Hlleollglleo < 5
i) There exists a positive number ¢ > ||Vyg||o such that

A1

2
1@ < (2) del- lollo)s for e € B,

where A\, > 0 is the first eigenvalue of —A in H}(B).
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Then g is a weak solution of (P) and either g is a local minimum of Dy in

W2°(B,R*)n{X € H*(B,R®); Tr X = Trg,
or - o e = Tgg

or there exists a sequence X,) in W2 (B,R3) of distinct weak solutions of
(P) with X, — g in W*(B,R3).

Proof. From iii), H(g) = 0 on B, so (P) holds trivially. Now we choose a
positive number é; such that

X dg 0x dg }

. 3
61 < min{c — ||V  ——— —

and define

0 0
My ={g+¢;p€H(B,R?, Tr 6—‘: = Trgr= Tre=0,llgllwa= <b1}.
We have that M; is a nonempty convex, closed and bounded subset of
H?(B,R3) and by Lemma 2 [4], Dy is weakly lower semicontinuous in M,
because ||Q(X)|loo < [[HlloollXloo < [[H[loo(IX = glloo + llglloc) < 3/2 for
X € M,. Hence there exists X; € M; such that

Dg(X1) = inf Dp(X) .

Suppose that g is not a local minimum of Dy in
w2>(B,R¥n{X € HXB,R%; Tt X = Tr g,

0X dg 0X dg
e - — = Tr = .
Ir or db or’ & do i
As in the proof of theorem 2 in [4], we have that dDg(X1)(p) = 0 for all
¢ € C4(B,R3). From this and from X; € H?(B,R3), it follows that (1) in (P)
is fullfilled. ¢ € H*(B,R3) is a solution to the Plateau problem, in particular

_|%]- 2 % _,
|~ 00 On

dg

do

on B. From X; € M; we obtain that (n, o) are isothermal on B for X, so
(u,v) are also isothermal on 8B and in B (Lemma 2 below). Finally, Tr g =

Tr X, on 8B with g € C(T) gives (3) in (P). Now we choose

8 = min{6y, || X1 — gllw2=}



152 E. LAMI DOZO AND M. C. MARIANI

and define
Oy 0

= {g+p; ¢ € WPS(B,RY), Tr 3£ = Tr 22 = Tro = 0lpllwa= < 62} .

Then there exists Xo € M5 such that
du(X2) = Xlen)\fl, Du(X) .

X, is a weak solution of (P) and X» # ¢, X1, because X; ¢ M,. Hence we
can define a sequence (X,) C W% (B, R?) of weak solutions of (P) such that
Xp — g in W2*(B,R3).
Remark. If ||Q||lcc < 3/2, the condition ||H||w||g9]lcc < 3/2 is not necessary.
In this case, we can define the sequence of convex subsets of W2 (B, R3) as
follows:

Op

0
M, = {g+¢;p € W2®(B,R?), Tr 5__’[} 89"

lellwze < c—[IVyllwae} ,

= Tr ¢ =0 and

) 1
62 = min{c — ||Vl , '2'“X1 — gllwae }

and
2,00 3 6 630
My ={g+¢; ¢ € WH*(B,R?), Tr = = Tr 5= = Tro =0 [lpllwae < 62} -
A class of functions H which are examples of our results is given by
Hy & € (ai, b
He = { ‘
. 0 & ¢ (a;i —€,b;+¢)

with Hy, €, a;, b;, i = 1,2,3 positive numbers such that 0 < a; —€¢ , a; < b; and
Ho(30_,(bi + €)?)1/? < 3/2. We suppose that H € C'(R®) and ||H||eo = Ho.
Asin [4], Q. < 3 and gTQ € L follow.

Remark. No assumptions are made on I'.

§3. TECHNICAL LEMMAS

We have as in the case H = cte:
Lemma 1. If the function Q associated to H satisfies Q € L™ (R3,R3), the
Hildebrandt volume V(X) = f p @(X)- Xy AX, Is invariant under orientation

preserving reparametnzatzons of X, ie. if g € C*(B,R?) is a diffeomorphim
of B onto a domain B with det(dg) = g1ug2v — g2ug1o > 0, then V(X) =
V(Xog™h).
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Lemma 2. Let H : R3 - R continuous and bounded and X € H2(B, lRia)
such that AX = 2H(X)X,X, in B. Then (1,0) are isothermal on 8B if and
only if (u,v) are isothermal in B.

Proof. Suppose that |X,|? — [VertX,|? = X, - X, = 0 on B, then |X,|? —
|Xy|? = Xu - Xy, = 0 on 8B by calculation. We extend X to R? by a reflection,
setting

X(u,v) in B
Ypw) = { X (%, r%) in R? — B where u? +v? = r? .
A direct computation shows that
AY =2H(Y)Y, AY, in B
{ AY = 22H(Y)Y, A Y, in R>2—- B

If we consider the conformal measure function
Fu,v) = |Yu|2 - [Yo|? - 2§, - Y, ,
we have that F' is holomorphic in C — dB and F € C°(C,C), because
lim ([Yal? = %) = [ X2 — ?)?
1
+ | Xo |2 4u?v? 42X, - X, (v? — u?)(—2uv)]
(1 Xu|2(—2uv)? + | X, 2 (u? = v?)? + Xy - X, (u? — v?)(—2uv))]
= (IXu]? = | X [D)[(v? = u?)? — 4u®v?] + 2X, - X, (u? — v?)4uv
= 0= lim (Y2 - [¥,?)
<1
and
lim Yo ¥y = (Xl = 1 P)(0 - w*)(=2u0)]
1
+ Xy Xo[-(u = v*)? + 4uv?]
=0=1lm Y, Y, .
i

Then F is holomorphic in C; but from
[ R <2 [ Qv+ nm =4 [+ mr)
12 B3 B
=4/ (1Xu]? + | Xo]?) < +o0
B
we deduce that ' = 0 and then we have | Xy|? — |X,|* = Xy - X, = 0 in B.

Conversely, if (u,v) are isothermal in B, so are (r, o), because (u,v) — (r,0)
is conformal; hence on 0B, (r,0) = (n,0) are isothermal.
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§4. A NON EXISTENCE RESULT AND NECESSARY CONDITIONS
Taking into account the case H = Hy € R and the Heinz’ non existence
result [5], [2], we have the following:

Theorem 3. Let ' C R3 be a rectifiable Jordan curve of length L(T),
H € C(R3), and suppose that there exists a positive number 6 having the

properties

i) L(T)< 6.
ii) For any X € C(I) there exists a unit vector nx € R® such that

nx./ QH(X)Xu A Xy > 6 .
B

Then there is no solution to (P) in C*(B,R3) N C?(B,R3).
Proof. Suppose that X € C*(B,R3) N C?(B,R3) is a solution of (P). Then

B B o On

X X
<[, xfe-
aB | On 8B
A contradiction.

do
Theorem 4. Let I' C R? be a rectifiable Jordan curve of length L(T'), H :
R3 — R continuous and bounded, and suppose that X € C*(B,R3)NC?%(B,R3)
is a solution of (P) verifying ||H(X)X|lco < 1. Then

LO)|IX [l
D) < 5@ 1) X1

do=LT)<6.

Proof. We have that AX = 2H(X)Xy A X, in B. Thus

0= / [~AX +2H(X)Xuy A X,] - X
B
aX

=/[|VX|2+2H(X)XU/\XU .X]_/ X xdo
= ap On

' 0X
> 2D(X) - AH ()Xo [ 1Xu A Xol = Xl [ ‘a_ e
B aB | 9N

> 2D = W) Xlfe) = Xl [ |5 d
= 2D(X)(1 ~ JH(X)Xoo) = [ Xllos L(T) .
It follows now that
L)X e
30— [H () XT)

D(X) <
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