INTRODUCTORY NOTES ON MODEL THEORY

by

R. KOPPERMAN

1.- INTRODUCTION

We all realize that the properties of a set of axioms are related to those of the class of structures which satisfy those axioms. Model Theory is a study of the relationships which may hold. Before we can study the relationships between axioms and structures which satisfy them, we must know what we mean by a <u>structure</u>, a <u>set of axioms</u>, and how we make sense out of a set of axioms to see wether or not the structure satisfies them. While we all agree that an ^{<<}axiom^{>>}</sup> such as the following makes sense:

$$(\forall \mathbf{x}) (\forall \mathbf{y}) (\forall \mathbf{z}) (\mathbf{x} < \mathbf{y}, \land, \mathbf{y} < \mathbf{z} \Rightarrow \mathbf{x} < \mathbf{z}),$$

we don't know what to say about

$$(\forall \mathbf{x})(\mathbf{x} < \mathbf{A}, < \mathbf{y} \Rightarrow < \mathbf{x} \neq \mathbf{y})$$

How can even decide wether or not a proposed <a rightarrow even makes - sense? This is clearly the first question one must answer.

2.- TYPES, STRUCTURES AND LANGUAGES

A tipe t is simply a map from an ordinal number ρ (called the <u>do</u>

main of t, $\hat{\mathcal{J}}(t)=\rho$), into the set of non-negative intergers ω . (For those who prefer, a type is simply an ordered set of non-negative whole numbers).

We say that R is a <u>relation</u> on A iff for some positive interger N. R $\subset A^N$.

A first-order structure $C\mathcal{R} = \langle A, R_{\lambda} \rangle_{\lambda < \rho}$ is something that satisfies the following conditions:

- (a) ρ is an ordinal and $A \neq \phi$ a set.
- (b) for each $\lambda < \rho$, $R_{\lambda} \subseteq A^{N\lambda}$ is a relation, or $R_{\lambda} = e_{\lambda} \in A$ is a $\langle distinguished \rangle$ element of A.

We define the <u>type</u> of the structure \mathcal{O} by $\mathcal{J}(t)=\rho$, and for $\lambda < \rho$, $t(\lambda) = N_{\lambda}$ (if $R_{\lambda} \subseteq A^{N_{\lambda}}$), or $t(\lambda) = 0$ (if $R_{\lambda} = e_{\lambda} \in A$).

A class of structures K is called a class of <u>similar</u> structures iff any two structures in K have the <u>same</u> type.

EXAMPLE:

Groups may be considered as structures of type $\langle 3,2,0 \rangle$ as follows: let G = $\langle A, \circ, -1 \rangle$, e >, where $\circ = R_0$ is the "binary operation for the group G (i.e., $\langle a,b,c \rangle \in R_0 \langle = \rangle | a \circ b = c \rangle$, R_1 is the invertive relation (i.e., $\langle a,b \rangle \in R_1 \langle = \rangle | a = b^{-1} \rangle$, and e is the neutral el<u>e</u> ment, i.e., e $\circ a = a \circ e = a$, for each $a \in A$ (where A is the set of elements of G).

NOTE:

From now on, any class of structures mentioned will be implicity assumed to be a class of similar structures (unless otherwise indicated), and similarly any pair, etc., of structures will be assumed similar. We still don't know (officially). How to talk about our structures Let t be a type. The (lower predicate calculus) language L_t is defined as follows: it will have a set $V = \{v_0, v_1, ...\}$ of variables. For each $\lambda < \rho = \mathcal{J}(t)$, if $t(\lambda) = 0$, we will have a constant c_{λ} ; if $t(\lambda) > 0$, we will have a $t(\lambda)$ - ary predicated P_{λ} (i.e., P_{λ} is simply a place-holder for $t(\lambda)$ variables or constants). Now, letting x_i be variables or constants, we set:

(A) Σ_{o_t} is the set of <u>atomic formulas</u> of type t, where an atomic formula of type t is of the form,

(i) $\mathbf{x_i} = \mathbf{x_j}$, or (ii) $P_{\lambda} (\mathbf{x_i}, \dots, \mathbf{x_i})$ (where we note once more that the $\mathbf{x_i}$ are variables or constants)

(B) Assume we have defined
$$\Sigma_{\mathbf{r}_{t}}$$
. Them

$$\Sigma_{(\mathbf{r}+1)_{t}} = \Sigma_{\mathbf{r}_{t}} \cup \{ \exists \mathbf{F}; \mathbf{F} \in \Sigma_{\mathbf{r}_{t}} \} \cup \{ \mathbf{F} \lor \mathbf{G}; \mathbf{F}, \mathbf{G} \in \Sigma_{\mathbf{r}_{t}} \}$$

$$\cup \{ (\exists \mathbf{V}_{i}) \mathbf{F}; i \in \omega, \mathbf{F} \in \Sigma_{\mathbf{r}_{t}} \}$$

$$(C) L_{t} = \bigcup_{\mathbf{r}=0}^{\infty} \Sigma_{\mathbf{r}_{t}}$$

NOTE:

 $\forall, \land, \Rightarrow, <=$, etc., are defined as appropriate abbreviations. For exemple, FAGstands for $\neg(\neg F \lor \neg G)$. Note also that our defini--tion is <u>inductive</u>, so other definitions and proofs based on it will be inductive.

We now come to the final task of assigning meanings (and truth values) to elements of L_t . First let us consider an exemple:+ (v_1, v_2, v_3) is an atomic formula of $L_{<3>}$. It has no definite value of its own, i;e. without any knowledge of elements a_1, a_2, a_3 which we shall correspond to

 v_1, v_2, v_3 , we don't know whether the formula $+(v_1, v_2, v_3)$ is true about a_1, a_2, a_3 (that is, whether $a_1 + a_2 = a_3$).

Thus, the truth or falseness of a formula, in a given structure, may also depend on a sequence of elements in that structure.

Let $v^{\texttt{OL}}$; L $_t \ge A^{\texttt{W}} \to \{0,1\}$ the unique function satisfying the following:

Let $a_{i} < a_{0}, a_{1}, \ldots > \in A^{\omega}$, $x_{1} \ldots, x_{n}$ be variables or constants, and set $b_{j} = a_{j}$ if $x_{j} = v_{i}$, $b_{j} = e_{\lambda}$ if $x_{j} = c_{\lambda}$.

Then ;

(D)
$$\mathbf{v}^{\mathbf{\alpha}} (\mathbf{x}_{k} = \mathbf{x}_{j}, \mathbf{a}) = 1$$
 iff $\mathbf{b}_{k} = \mathbf{b}_{j}$
 $\mathbf{v}^{\mathbf{\alpha}} (\mathbf{P}_{\lambda}(\mathbf{x}_{1}, \dots, \mathbf{x}_{t(\lambda)}, \mathbf{a}) = 1$ iff $\mathbf{b}_{1}, \dots, \mathbf{b}_{t(\lambda)} \mathbf{e} \mathbf{E}_{\lambda}$
(E) $\mathbf{v}^{\mathbf{\alpha}} (\mathbf{T} \mathbf{F}, \mathbf{a}) = 1 - \mathbf{v}^{\mathbf{\alpha}} (\mathbf{F}, \mathbf{a})$

(F)
$$\mathbf{v}^{\mathbf{a}}$$
 (FVG, a) = $\mathbf{v}^{\mathbf{a}}$ (F,a) + $\mathbf{v}^{\mathbf{a}}$ (G,a) - $\mathbf{v}^{\mathbf{a}}$ (F,a). $\mathbf{v}^{\mathbf{a}}$ (G,a)
(G) $\mathbf{v}^{\mathbf{a}}$ (($\mathbf{J}\mathbf{v}_{i}$) F, a) = max { $\mathbf{v}^{\mathbf{a}}$ (F, a (i/b)); b $\in \mathbf{A}$ },

where
$$a(i/b) = \langle a_0, a_1, ..., a_{i-1}, b, a_{i+1}, ... \rangle$$

As for the existence and uniqueness of function $v^{(I)}$, we don't prove them here. However, the assertions contained in (D)-(G)can be shown by induction.

We say that F in the language L is satisfied by a $\in \mathbb{A}^{\omega}$ in the -

22

structure \mathcal{O} , and write $\mathcal{O} \subset F[a]$ iff $v^{\mathcal{O}}(F,a)=1$. We have the follo--wing properties:

(i) $\mathcal{O}_{\mathsf{L}} \mathbb{P}_{\lambda}(\mathbf{v}_{1}, \dots, \mathbf{v}_{t}(\lambda))$ [a] iff $\langle \mathbf{a}_{1}, \dots, \mathbf{a}_{t}(\lambda) \rangle \in \mathbb{R}_{\lambda}$ (ii) $\mathcal{O}_{\mathsf{L}} = \mathbb{P} [a]$ iff not $\mathcal{O}_{\mathsf{L}} \in \mathbb{F} [a]$

- (iii) MEFVG[a] iff MEF[a] or MEG[a]
- (iv) $\mathcal{O}_{\mathbf{c}}(\exists \mathbf{v}_{i}) \in [\mathbf{a}]$ iff there exists a $\mathbf{b} \in \mathbf{A}$ such that $\mathcal{O}_{\mathbf{c}} \in [\mathbf{a}(i/b)]$

We have now acomplished our first major goal. We know what is meant by a structure and given a structure, we have a language in which we may talk about it (naturelly, if our structure is of type t, we may use L_t), and a way to discover whether or not what we say is true on a sequence in the given structure.

EXAMPLE:

Let us consider the real number system $\mathbb{R} = \langle \mathbb{R}, +, ., 0, 1, \langle \rangle$ of type t= $\langle 3, 3, 0, 0, 2 \rangle$. The <u>least upper bound axiom</u> states that each subset of R with an upper bound has at least one least upper bound. That axiom in the presence of certain others determines \mathbb{R} up to an isomorphism. It can not obviously be written in L_t (but the others can for example conmutativity:

 $(\forall \mathbf{v}_{0})(\forall \mathbf{v}_{1})(\forall \mathbf{v}_{2})(+(\mathbf{v}_{0},\mathbf{v}_{1},\mathbf{v}_{2}) \Rightarrow + (\mathbf{v}_{1},\mathbf{v}_{0},\mathbf{v}_{2}))$

and later we shall prove that it cannot be written in any L.

Thus, not every fact can be expressed in an lower predicated - calculus. In general, <<a>algebraic facts can, but facts about analy - sis cannot. However theorems in both analysis and algebra have shown

using model theory.

One minor problem remains:our formulas may be true on some sequences and false on others, in the same structure, whereas axioms should either hold or not hold for a structure. For this, we say that a variable is <u>free in</u> F iff it is not after a quantifier (i.e., iff $(\exists v_i)$, (∇v_i) never appears in F). This concept can be formally defined by induction, and the following can be shown:

LEMMA 1: Let a, a' $\in A^{\omega}$ such that for any free variable \forall_i of F, $a_i = a'_i$. Them OLC F [a] iff OLC F [a'].

A predicated $\sigma \in L_t$ is called a structure iff σ has no free variables. Let us put Λ_t for the set of sentences in L_t

Then we have the following corollary of the lemma above:

COROLLARY.

<u>-Let \mathcal{O}_{t} be of type</u> $t, \sigma \in \Lambda_{t}$, $a, a' \in A''$. Then $\mathcal{O}_{t} \subset \sigma[a]$ iff $\mathcal{O}_{t} \subset \sigma[a']$.

Let $\nabla \in \Lambda_t$, then we say that the structure Ω of type t is a <u>model</u> of ∇ (written $\Omega \in M$ (σ) or $\Omega \in \nabla$) iff for each as A^{ω} , $\Omega \in \sigma$ [a]. If $S \subseteq \Lambda_+$, we write

$$M(S) = \left\{ OI; (\forall \sigma \in S) (OI \in \sigma) \right\} = \bigcap M (\sigma)$$

$$\sigma \in S$$

We may also write OLE S for OLE M (S).

Thus, for us, a set of axioms is simply a set of sentences.

3. ULTRAPRODUCTS.

Let I be a set; a <u>filter</u> D <u>on</u> I is a non-empty collection of subsets of I, such that:

24

(H) Ø ∉ D

(I) a, b E D => a f b E D

$$(J)$$
 a \in D, a \subset b \subset I => b \in D

Now let $\{O_i; i \in I\}$ be a set of structures, D a filter on I. Then we define the <u>reduced product</u>.

$$\prod_{i\in I} \mathfrak{O}_i/\mathbb{D}$$

as follows: assume $\mathcal{O}_i = \langle A_i, R_{\lambda}^i \rangle_{\lambda < \rho}$. Then $\prod_{i \in I} \mathcal{O}_i / D = \langle A, R_{\lambda} \rangle_{\lambda < \rho}$, where the terms are defined as follows

(K) If $B = \prod_{i \in I} A_i = \{f : I \rightarrow \bigcup_{i \in I} A_i; f(i) \in A_i\}$, we say that

 $f \equiv_D g$, f, $g \in B$, iff $\{i ; f(i) = g(i)\} \in D$. It is easy to show that \equiv_D is an equivalence relation (transitivity using (I) and (J) - from the definition of a filter, and reflexivity requiring the fact - that $I \in D$). Then we set $A = B/\equiv_D$.

(L) Let $f \in B$; if f/D denotes the class of $f \mod ulus \equiv_D$, we say that

<
$$f_1/D$$
, ..., $f_{t(\lambda)}/D > \in R_{\lambda}$ iff
{i ; < $f_1(i)$, ..., $f_{t(\lambda)}(i) > \in R_{\lambda}^i$ } $\in D$

Let us consider two filters D and D'on I. We say that D is <u>finer</u> <u>than</u> D' $(D \le D)$ iff $D \subseteq D'$. An <u>ultrafilter</u> D on I is a filter on I such that if $D \le D'$, then D = D' (i.e., Dis <u>maximal</u> with respect to the order <). If the filter in the definition of a reduced product is an ultrafilter on I, then $\prod_{i \in I} \alpha_i / D$ is called an <u>ultraproduct</u>.

Example:

Let $a \subseteq I$. Then $D_a = \{b \subseteq I; a \subseteq b\}$ is a filter on I, and is <u>ca</u> lled <u>principal</u> (<u>ortrivial</u>). If $a = \{x\}$, then D_a is an ultrafilter.

THEOREM 1:

Each filter can be imbedded in an ultrafilter Proof: By Zorn s Lemma

COROLLARY:

Let E be a set of subsets of I such that for

 $e_1, e_2, \dots, e_k \in E, e_1 \cap e_2 \cap \dots \cap e_k \neq \emptyset$. Then E can be imbedded in an ultrafilter.

Proof: The set $D = \{a \subseteq I; (\exists e_1, \ldots, e_k) (e_1 \cap \ldots \cap e_k \subseteq a\}$ can be shown to be a filter. Thus D can be imbedded in an ultrafilter D' But $E \notin D \notin D$.

THEOREM 2:

If <u>D</u> is an ultrafilter on <u>I</u>, then for each $a \subseteq I$, $a \in D$ or (I~a) $\in D$ (but not both) Proof: see [3].

COROLLARY 1:

Let D be an ultrafilter on I; if a U b \in D, then a \in D or b \in D.

Proof: If $a \notin D$, then $(I \sim a) \in D$, so $(a \cup b) \cap (I \sim a) = b \in D$

COROLLARY 2:

If $a_1 \cup \dots \cup a_k \in D$ D an ultrafilter then some $a_i \in D$

Proof: By induction using last corollary

THEOREM 3:

If I infinite, then there are non-principal ultrafilters on I

Proof: Extend $E = \{ I \sim \{x\} : x \in I \}$ to an ultrafilter. It must be non-principal, since $(\forall x)(I \sim \{x\} \in E)$

Notation:

We recall that in general truth is a function of sequences (etc.) Our ultraproduct also, uses sequences (or functions, at least). To avoid confusion, we use the following conventions: Suppose that $\mathbf{f} = \langle \mathbf{f}_1 / \mathbf{D}, \mathbf{f}_2 / \mathbf{D}, \ldots \rangle \in (\prod_{i \in \mathbf{I}} \mathbf{A}_i / \mathbf{D})^{\boldsymbol{\omega}}$ By $\mathbf{f}(i)$ we denote $\langle \mathbf{f}_1(i), \mathbf{f}_2(i), \ldots \rangle \in \mathbf{A}_i^{\boldsymbol{\omega}}$, and \mathbf{f}_k we shall mean a representative of f,/D in TT A.

We state now our basic result:

 $\underbrace{\text{Let}}_{i \in I} \mathfrak{A} = \prod_{i \in I} \mathfrak{A}_i / \mathbb{D} \underbrace{\text{be}}_{i \in I} \underbrace{\text{the}}_{product} \underbrace{\text{of}}_{i \in I} \underbrace{\text{the}}_{i} (\mathfrak{A}_i, f = < f_1 / \mathbb{D}, f_2 / \mathbb{D}, \dots$

$$\mathcal{O} \leftarrow \mathbb{F} [f] <=> \{i; \mathcal{O}_i \leftarrow \mathbb{F}[f(i)]\} \in \mathbb{D} (\forall \mathbb{F} \in L_t)$$

Proof: By induction: For $F \in \Sigma_{o_+}$, our theorem is true by definition of \equiv_{D} and R_{λ} . Assume now that our theorem is true for all f, all $F \in \Sigma_{r_t}$. Let $G \in \Sigma_{(r+1)_t} \sim \Sigma_{r_t}$. If $G = \neg F$, then $O \subset G [f]$ iff not OLEF[f] iff (induction step):

$$\{i; \mathcal{O}_i \in \exists F[f(i)]\} \in D \text{ iff } \{i; \mathcal{O}_i \in G[f(i)]\} \in D.$$

The case of $G = F \vee E$ is done similarly. For the case $G = (\exists \sim_i) F$,

 $\mathcal{O}_{\mathsf{C}} \subset G[f]$ iff for some $g/D \in \prod_{i \in I} A_i/D$, $\mathcal{O}_{\mathsf{C}} \in F[f(j/(g/D))]$

iff by induction $\{i; \mathfrak{n}_i \in F[f(j/g)(i)]\} \in D$ for some g iff

 $\left\{ \text{ i }; \mathfrak{A}_{i} \in (\exists \textbf{-}_{j}) \mathbb{P}[f(i)] \right\} \in \mathbb{D} \text{ iff } \left\{ \text{ i }; \mathfrak{A}_{i} \in \mathbb{G}[f(i)] \right\} \in \mathbb{D}.$

We have now shown the theorem for all $G \in \Sigma_{(r+1)}$. By induction, it is true for all $G \in \bigcup_{r=0}^{\infty} \Sigma_r = L_t$

COROLLARY 1:

Let $\sigma \in \Lambda_t$. Then $\mathcal{D} \in \mathcal{T} \inf \{i : \mathcal{Q}_i \in \mathcal{T}\} \in D$

Let \mathcal{A} and \mathcal{F} be estructures of type t. Then $\mathcal{A} \equiv \mathcal{F}$ iff for all $\sigma \in \Lambda_t$, $\mathcal{A} \in \sigma \ll \mathcal{F} \subset \sigma$. In this case, we also say that \mathcal{A} is elementarily equivalent to \mathcal{F} . We can then state the following corollary.

COROLLARY 2:

 $\begin{array}{c} \underline{\text{If for all } i, \ j \in I, \ \alpha_{i} \equiv \alpha_{j}, \ \underline{\text{then for each } j \in I, \ \alpha_{j} \equiv \alpha_{j} \\ \hline \Pi \ \alpha_{i} / D. \ \underline{\text{In particular, if for all } i \in I, \ \alpha_{i} = \alpha_{i}, \ \underline{\text{then}}: \ \ \prod_{i \in I} \Omega \ i / D \ \underline{\text{is}} \\ \underline{\text{called an ultrapower of } \alpha_{i} \ \underline{\text{and denoted by } \alpha_{i}} \ I / D. \end{array}$

In this case, $\mathcal{A} \equiv \mathcal{A}^{I}/D$

THEOREM 5:

Let $S \subseteq \Lambda_t$ be such that for any finite subset $S' \subseteq S$, $M(S') \neq \emptyset$. Then $M(S) \neq \emptyset$.

Proof: For each finite set $S^{\bullet} \subseteq S$ let $\mathcal{O}_{S}^{\bullet} \in M(S^{\bullet})$. Now let

I be the set of finite subsets of S. For each $\mathcal{T} \in S_1$ let $S_{\sigma} = \{S_1 \in I\}$ $\mathcal{T} \in S_1\}$ and let $D' = \{S_{\sigma}; \mathcal{T} \in S\}$. Then D' is a set of subsets of I. Let $S_{\sigma_1}, \dots, S_{\sigma_k} \in D$; then $\{\mathcal{T}_1, \dots, \mathcal{T}_k\}$ $\in S_{\sigma_1} \cap \dots \cap S_{\sigma_k}$, so $S_{\sigma_1} \cap \dots \cap S_{\sigma_k} \neq \emptyset$. Thus $D' \subseteq D$ for some u_1 trafilter D on I. Now let $\mathcal{R} = \prod_{i \in I} \mathcal{R}_i / D$. We shall show $\mathcal{R} \in M(S)$. For any $\mathcal{T} \in S$, the set $\{S' \in I; \mathcal{R}_S \subset \mathcal{T}\}$ contains $\{S_i \in I; \mathcal{T}\}$ $\in S_i\} = S_{\sigma} \in D' \subseteq D$. Thus $\{S' \in I; \mathcal{R}_{S'} \subset \mathcal{T}\} \in D$, so $\mathcal{R} \subset \mathcal{T}$; thus $\mathcal{R} \subset S$

THEOREM 6:

Let $S \subseteq \Lambda_t$ be such that each finite N there is an $(\mathcal{R} \in M(S))$ such that $N \leq \mathcal{H}(\mathcal{O})$ (i. e., A, The set of elements of \mathcal{O} , has more than N members) then for each cardinal M (including infinite ones) there is an $\mathcal{O} \in M(S)$ such that $M \leq \mathcal{H}(\mathcal{O} R)$.

Proof: (A <u>trick</u> is involved - we change languages). Let $\rho = \mathcal{J}(t)$, thus if $\mathcal{M} \in M(S)$, $\mathcal{M} = \langle A, R_{\lambda} \rangle_{\lambda < \rho}$. Now choose ρ^{\bullet} such that $\mathcal{H}(\rho^{\bullet} \sim \rho) \geq M$, and t' such that if $\lambda < \rho$, $t^{\bullet}(\lambda) = t(\lambda)$, and if $\rho \leq \lambda < \rho$; t' $(\lambda) = 0$ (and $\rho^{\bullet} = \mathcal{J}(t)$). We have adjoined constants, c_{ρ} , $c_{\rho} + 1$, ..., c_{λ} , $\lambda < \rho^{\bullet}$). We assert - that

 $\mathbf{T} = \mathbf{S} \cup \left\{ \neg \mathbf{o}_{\lambda} = \mathbf{o}_{\lambda^{\dagger}} ; \ \mathbf{\rho} \leq \lambda < \lambda^{\dagger} < \mathbf{\rho}^{\dagger} \right\} \subseteq \Lambda_{t^{\dagger}}$

is consistent (i. e., $M(T) \neq \emptyset$). Let $T_1 \subseteq T$ be finite. Then $T_1 \subseteq S \cup \{ \neg c_{\lambda_j} = c_{\lambda_j}; i < j, \rho \leq \lambda_1 < \dots < \lambda_k < \rho^{\bullet} \} = T_k$.

Now take $\mathcal{O} \in M(S)$, $\mathcal{H}(\mathcal{O}) \geq K$, and let $\mathcal{O}' = \langle A, B_{\lambda}, e_{\lambda} \rangle \rangle \langle \rho \leq \lambda' \langle \rho \rangle$ $\langle \rho^{\bullet}$ (where $\mathcal{O} = \langle A, B_{\lambda} \rangle \rangle_{\lambda < \rho}$). Let $a_{1}, \ldots, a_{k} \subseteq A$, be unequal, and set $e_{\lambda} = a_{1}, e_{\lambda} = a_{1}$ si $\lambda \neq \lambda_{1}, \ldots, \lambda_{k}$. We claim $\mathcal{U} \in M(T_k)$. Since $\mathcal{U} \subset S$ (its relations are the same, as far as S is concerned). But since $e_{\lambda} \neq e_{\lambda}$, we have $\mathcal{U} \subset \{\neg c_{\lambda} ; i < j, -\rho \leq \lambda_1 < \ldots < \lambda_k < \rho'\}$, thus ${}^{i}\mathcal{U} \in M^{j}(T_1)$. Now by theo. 5, we can find $\mathcal{L} \in M(T), \mathcal{L} = \langle B, S_{\lambda}, d_{\lambda} \rangle \land \langle \rho \leq \lambda' < \rho' \rangle$. Since $\mathcal{L} = \{\neg c_{\lambda} = c_{\lambda} ; \rho \leq \lambda < \lambda' < \rho'\}$ $d_{\lambda} \neq d_{\lambda}^{*}$ for $\rho \leq \lambda' < \lambda'' < \rho'$, so $\mathcal{H}(B) \geq \mathcal{H}(\rho' - \rho) \geq M$. Now consider $\mathcal{L}_0 = \langle B, S_{\lambda} \rangle_{\lambda < \rho}$. \mathcal{L}_0 is of type t. $\mathcal{H}(\mathcal{L}_0) = \mathcal{H}(B) \geq M$, and since $\mathcal{L} \subset S \subseteq \Lambda_1$, so does \mathcal{L}_0 .

COROLLARY:

The least upper bound axiom is not in Λ_t for any t (we say that it is not a first-order axiom)

Proof: Assume the contrary. Thus all the axioms for \mathbb{R} can be written in some Λ_t . Let $S \subseteq \Lambda_t$, be this set of axioms. Since $\mathbb{R} \in M(S)$, for each finite N, we have $\mathbb{R} \in M(S)$ with $\mathbb{N} \leq \mathcal{K}(\mathbb{R})$ Thus by theo.6, for each cardinal M, including $2^{\mathcal{K}(\mathbb{R})}$), we have an - $\mathcal{N} \in M(S), \mathcal{K}(\mathbb{R}) \geq M$. But we now that all models of S are isomorphic to (\mathbb{R}) , thus if $\mathcal{N} \in M(S)$ $\mathcal{K}(\mathbb{R}) = \mathcal{K}(\mathbb{R}) \geq 2^{\mathcal{K}(\mathbb{R})}$, a contradiction, for $\mathcal{K}(\mathbb{R}) < 2^{\mathcal{K}(\mathbb{R})}$

This shows that we need ^{<<}higher^{>>} predicated calculus to express in this way all we want to do in mathematics.

BIBLIOGRAFIA

 ROBINSON, A.: Meta-mathematics of Algebra, North-Holland Pub. Co., Amsterdam, 1951.

[2] SUPPES, P.: An introduction to Logic, Van Nostrand, N. York, 1957

 KLEENE, Introduction to Meta-mathematics, Van Nostrand, New York, 1954.

[4] BOURBAKI, N.: Théorie des Ensembles, Hermann, Paris, 1957.

SUMARIO

Se trata de una introducción a la teoría de modelos.

Department of Mathematics University of Rhode Island

(Received August 1.966)

16°