R. KOPPERMAN

1.- INTRODUCTION

We all realize that the properties of a set of axioms are related to those of the class of structures which satisfy those axioms. Model Theory is a study of the relationships which may hold. Before we can study the relationships between axioms and structures which satisfy them, we must know what we mean by a structure, a set of axioms, and how we make sense out of a set of axioms to see wether or not the structure satisfies them. While we all agree that an <<axiom suoh as the following makes sonse:

$$
(\forall x)(\forall y)(\forall z)(x<y, \wedge, y<z \Rightarrow x<z),
$$

we don't know what to say about

$$
(\forall \mathrm{x})(\mathrm{x}<, \wedge,<\mathrm{y} \Rightarrow<\mathrm{x} * \mathrm{y})
$$

How can even decide wether or not a proposed ${ }^{\ll}$ axiom ${ }^{\gg}$ even makes sense? This is clearly the first question one must answer.
2.- TYPES, STRUCTURES AND LANGUAGES

A tipe t is simply a map from an ordinal number ρ (called the do
main of $t, \mathscr{D}(t)=\rho)$, into the set of non-negative intergers ω. (For those who prefer, a type is simply an ordered set of non-negative whole numbers).

We say that R is a relation on A iff for some positive interger $N, R \subseteq A^{N}$.

A first-order structure $C R=<A, R_{\lambda}>{ }_{\lambda}<\rho$ is something that satisfies the following conditions:
(a) ρ is an ordinal and $A \neq \varnothing$ a set.
(b) for each $\lambda<\rho, R_{\lambda} \subseteq A^{N \lambda}$ is a relation, or $R_{\lambda}=e_{\lambda} E A$ is a <<distinguished ${ }^{\gg}$ element of A.

We define the type of the structure Ω by $\mathscr{D}(\mathrm{t})=\rho$, and for $\lambda<\rho$, $t(\lambda)=N_{\lambda}$ (if $R_{\lambda} \subseteq A^{N} \lambda$), or $t(\lambda)=0 \quad$ (if $R_{\lambda}=e_{\lambda} \in A$).

A class of structures K is called a class of similar structures iff any two structures in K have the same type.

EXAMPLE:

Groups may be considered as structures of type <3,2,0> as foLlows: let $G=\langle A, 0, \quad-1$, $e\rangle$, where $0=R_{0}$ is the "binary operation for the group G (i.e., $\langle a, b, c\rangle \in R_{0} \Leftrightarrow a \circ b=c$), R_{1} is the invertive relation (i.e., $\langle a, b\rangle \varepsilon R_{1} \Leftrightarrow a=b^{-1}$), and e is the neutral ele ment, i.e., $e \circ a=a \circ e=a$, for each $a \in A$ (where A is the set of elements of G).

NOTE:
From now on, any class of structures mentioned will be implicity assumed to be a class of similar structures (unless otherwise indicated), and similarly any pair, etc., of structures will be assumed similar.

We still don't know (officially). How to talk about our structures Let t be a type. The (lower predicate calculus) language L_{t} is def ned as follows: it will have a set $V=\left\{v_{0}, v_{1}, \ldots\right\}$ of variables. For each $\lambda<\rho=\boldsymbol{D}(t)$, if $t(\lambda)=0$, we will have a constant o_{λ}; if $t(\lambda)>0$, we will have a $t(\lambda)$ - try predicated P_{λ} (ice., P_{λ} is simply a place-holder for $t(\lambda)$ variables or constants). Now, letting x_{i} be variables or constants, we set:
(A) $\Sigma_{o_{t}}$ is the set of atomic formulas of type t, where an atomic formula of type t is of the form,
(i) $x_{i}=x_{j}$, or
(ii) $P_{\lambda}\left(x_{i_{1}}, \ldots, x_{i_{t}(\lambda)}\right)$ (where we note once more that the x_{i} are variables or constants)
(B) Assume we have defined $\Sigma_{r_{t}}$. Them

$$
\text { (c) } L_{t}=\bigcup_{r=0}^{\infty} \Sigma_{r_{t}}
$$

NOTE:
$\forall, \Lambda, \Rightarrow, \Leftrightarrow$, etc., are defined as appropriate abbreviations. For example, FへGstands for $7(7 F \vee 7 G)$. Note also that our defini-tion is inductive, so other definitions and proofs based on it will be inductive.

We now come to the final task of assigning meanings (and truth values) to elements of L_{t}. First let us consider an examples $+\left(\nabla_{1}, v_{2}, v_{3}\right)$ is an atomic formula of $L_{<3>}$. It has no definite value of its own, ice. without any knowledge of elements a_{1}, a_{2}, a_{3} which we shall correspond to

$$
\begin{aligned}
& \Sigma(r+1)_{t}=\Sigma_{r_{t}} U\left\{7 \mathrm{~F} ; \mathrm{FE} \Sigma_{r_{t}}\right\} \cup\left\{F \vee G ; F, a \in \Sigma_{r_{t}}\right\} \\
& U\left\{\left(\exists \boldsymbol{\nabla}_{i}\right) \mathrm{F} \text {; i } \varepsilon \omega, F \in \Sigma_{r_{t}}\right\}
\end{aligned}
$$

$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$, we don't know whether the formula $+\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$ is true about a_{1}, a_{2}, a_{3} (that is, whether $a_{1}+a_{2}=a_{3}$).

Thus, the truth or falseness of a formula, in a given structure, may also depend on a sequence of elements in that structure.

Let $v{ }^{c}: I_{t} \times A^{\omega} \rightarrow\{0,1\}$ the unique funtion satisfying the follo wing:

Let $a=\left\langle a_{0}, a_{1}, \ldots\right\rangle \in A^{\boldsymbol{\omega}}, x_{1} \ldots, x_{n}$ be variables or constants, and set $b_{j}=a_{i}$ if $x_{j}=v_{i}, b_{j}=e_{\lambda}$ if $x_{j}=c_{\lambda}$.

Then:

(D) $v^{c r}\left(x_{k}=x_{j}, a\right)=1$ iff $b_{k}=b_{j}$

$$
\nabla^{M}\left(p_{\lambda}\left(x_{1}, \ldots, x_{t(\lambda)}, a\right)=1 \text { iff }<b_{1}, \ldots, b_{t}(\lambda)>\varepsilon R_{\lambda}\right.
$$

(E) $\mathrm{v}^{\backsim}(\neg \mathrm{F}, \mathrm{a})=1-\mathrm{v}^{\cdots}(\mathrm{F}, \mathrm{a})$
(F) $V^{\Omega}(F \vee G, a)=v^{M}(F, a)+v^{M}(G, a)-v^{C r}(F, a) \cdot v^{C r}(G, a)$
(G) $\nabla^{\Omega}\left(\left(\exists v_{i}\right) F, a\right)=\max \left\{v^{\Omega}(F, a(i / b)) ; b \in A\right\}$,
where $a(i / b)=\left\langle a_{0}, a_{1}, \ldots, a_{i}-1, b, a_{i+1}, \ldots\right\rangle$

As for the existence and uniqueness of function $v(\Omega$, we don't prove them here. However, the assertions contained in (D) - (G)can be shown by induction.

We say that F in the language L_{t} is satisfied by $a \in A^{\omega}$ in the -
structure M, and write $\mathcal{C} \subset F[a]$ if $v^{\Omega}(F, a)=1$. We have the filo- wing properties:
(i) $\quad \pi \in P_{\lambda}\left(v_{1}, \ldots, v_{t}(\lambda)\right)[a]$ iff $<a_{1} \ldots, a_{t(\lambda)\rangle} \in R_{\lambda}$
(ii) $M \subset \subset F[a]$ inf not $M \subset F[a]$
(iii) $\mathcal{M C F V G [a] ~ i f f ~} M \subset F[a]$ or $M \subset G[a]$
(iv) Un c $\left(\exists v_{i}\right) F[a]$ iff there exists $a b \in A$ such that $\operatorname{urc} F[a(i / b)]$

We have now accomplished our first major goal. We know what is meant by a stricture and given a structure, we have a language in which we may talk about it (naturally, if our structure is of type t, we may use L_{t}), and a way to discover whether or not what we say is true on a sequence in the given structure.

EXAMPLE:

Let us consider the real number system $\mathbb{R}=\langle R,+, \ldots, 0,1,<\rangle$ of type $t=<3,3,0,0,2>$. The least upper bound axiom states that each subset of R with an upper bound has at least one least upper bound. That axiom in the presence of certain others determines $\mathbb{R} u p$ to an isomorphism. It can not obviously be written in L_{t} (but the others can for example commutativity:

$$
\left(\forall \mathrm{v}_{0}\right)\left(\forall \mathrm{v}_{1}\right)\left(\forall \mathrm{v}_{2}\right)\left(+\left(\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}\right) \Rightarrow+\left(\mathrm{v}_{1}, \mathrm{v}_{0}, \mathrm{v}_{2}\right)\right)
$$

and later we shall prove that it cannot be written in any L_{s}.
Thus, not every fact can be expressed in an lower predicated calculus. In general, <<algebraic ${ }^{\gg}$ facts can, but facts about anally sis cannot. However theorems in both analysis and algebra have shown
using model theory.
One minor problem remains:our formulas may be true on some sequincess and false on others, in the same structure, whereas axioms should either hold or not hold for a structure. For this, we say that a varia bile is free in F of it is not after a quantifier (ie., if ($\exists \mathbf{v}_{i}$), $\left(\nabla \mathbf{v}_{\mathbf{i}}\right)$ never appears in $\left.F\right)$. This concept can be formally defined by in duction, and the following can be shown:

LEMMA 1: Let $a, a^{\prime} E A^{\omega}$ such that for any free variable \boldsymbol{v}_{i} of F, $a_{i}=a_{i}^{\prime}$. Them $\cup \subset \in F[a]$ iff $\cup \subset \subset F\left[a^{\prime}\right]$.

A predicated $\sigma \in L_{t}$ is called a structure of σ has no free variables. Let us put Λ_{t} for the set of sentences in L_{t}

Then we have the following corollary of the lemma above:

COROLLARY.

- Let $\Omega \frac{\text { be }}{\sim \pi}$ of type $t, \sigma \in \Lambda_{t}, a, a^{\prime} \varepsilon A^{\omega}$. Then
inf $M \subset \sigma\left[a^{\prime}\right] .1$ Let $\nabla \in \Lambda_{t}$, then we say that the structure Ω of type t is a model of σ (written $\Omega \in M(\sigma)$ or $U \subset \sigma$) ifs for each $a \in A^{\omega}, \quad \cup \subset \subset \sigma[a]$. If $S \subseteq \Lambda_{t}$, we write

$$
M(S)=\{u ;(\forall \sigma \in S)(U \subset \sigma)\}=\prod_{\sigma \in S} M(\sigma)
$$

We may also write $M \subset S$ for $M \in M$ (S).
Thus, for us, a set of axioms is simply a set of sentences.
3. ULTRAPRODUCTS.

Let I be a set; a filter D on I is a nonempty collection of subsets of I, such that:
(H) $\varnothing \not \equiv D$
(I) $a, b \in D \Rightarrow a \cap b \in D$
(J) $a \in D, a \subseteq b \subseteq I \Rightarrow b \in D$

Now let $\left\{O_{i} ; i \in I\right\}$ be a set of structures, D a filter on I. Then we define the reduced product.
$\prod_{i \in I} \Omega i / D$
as follows: assume $\eta_{i}=<A_{i}, \quad R_{\lambda}^{i}>_{\lambda<\rho}$. Then $\prod_{i \in I} \Omega_{i} / D=<A, R_{\lambda}>_{\lambda<\rho}$, when re the terms are defined as follows

$$
\text { (K) If } B=\prod_{i \in I} A_{i}=\left\{f: I \rightarrow_{i \in I} \bigcup_{i} A_{i} ; f(i) \in A_{i}\right\} \text {, we say that }
$$

$f \equiv{ }_{D} g, f, g \in B$, eff $\{i ; f(i)=g(i)\} \in D$. It is easy to show that $\equiv{ }_{D}$ is an equivalence relation (transitivity using (I) and (J) from the definition of a filter, and reflexivity requiring the fact that $I \in D$). Then we set $A=B / \equiv{ }_{D}$.
(L) Let $f \in B$; if f / D denotes the class of f modulus \equiv_{D}, we say that

$$
\begin{aligned}
& <f_{1} / D, \ldots, f_{t(\lambda)} / D>\varepsilon R_{\lambda} \text { iff } \\
& \left\{i ;<f_{1}(i), \ldots, f_{t(\lambda)}(i)>\varepsilon R_{\lambda}^{i}\right\} \varepsilon D
\end{aligned}
$$

Let us consider two filters D and D^{\prime} on I. We say that D is finer than $D^{\prime} \quad(D \leq D)$ of $D \subseteq D^{\prime}$. An ultrafilter D on I is a filter on I such that if $D \leq D^{\prime}$, then $D=D^{\prime}$ (ie., $D i s$ maximal with respect to the order \leq). If the filter in the definition of a reduced product is
an ultrafilter on I, then $\prod_{i \in I} \Omega_{i} / D$ is called an ultraproduct.

Example:
Let $a \subseteq I$. Then $D_{a}=\{b \subseteq I ; a \subseteq b\}$ is a filter on I, and is ca led principal (ortrivial). If $a=\{x\}$, then D_{a} is an ultrafilter. THEOREM 1:

Each filter can be imbedded in an ultrafilter
Proof: By Zorn s Lemmal

COROLLARY:

Let E be a set of subsets of I such that for
$e_{1}, e_{2}, \ldots, e_{k} \in E, e_{1} \cap e_{2} \cap \ldots \cap e_{k} \neq \varnothing$. Then E can be $\frac{i m-~}{\text { b }}$ bedded in an ultrafilter.

Proof: The set $D=\left\{a \subseteq I ;\left(\exists e_{1}, \ldots, \theta_{k}\right)\left(e_{1} \cap \ldots \cap e_{k} \subseteq a\right\}\right.$ can be shown to be a filter. Thus D can be imbedded in an ultrafilter

THEOREM 2:

If \underline{D} is an ultrafilter on I, then for each a $\subseteq I$, $a \in D$ or (I~a) ED (but not both)

Proof: see[3].1
COROLLARY 1:
Let D be an ultrafilter on I; if $a U b \in D$, then $a \in D$ or $\mathrm{b} \in \mathrm{D}$.

$$
\text { Proof: If } a \notin D \text {, then }(I \sim a) \in D \text {, so }(a \cup b) \cap(I \sim a)=b \in D \|
$$

COROLLARY 2:

If $a_{1} U \ldots U a_{k} \in D \quad D$ an ultrafilter then some $a_{i} \in D$ Proof: By induction using last corollary

THEOREM 3:

If I infinite, then there are non-principal ultrafilters on I
Proof: Extend $E=\{I \sim\{x\} ; x \in I\} \quad$ to an ultrafilter. It must be non-principal, since $(\forall x)(I \sim\{x\} \in E)$

Notation:

We recall that in general, truth is a function of sequences (etc) Our ultraproduct also, uses sequences (or functions, at least). To avoid confusion, we use the following conventions:
Suppose that $f=\left\langle f_{1} / D, f_{2} / D, \ldots\right\rangle E\left(\prod_{i \in I} A_{i} / D\right)^{\omega} \quad$ By $f(i)$ we denote $<f_{1}(i), f_{2}(i), \ldots>E A_{i}^{\omega}$, and f_{k} we shall mean a representative of f_{k} / D in $\prod_{i \in I} A_{i}$.

We state now our basic result:

THEOREM 4:

Let $\quad \Omega=\prod_{i \in I} U_{i} / D$ be the product of the $u_{i}, f=\left\langle f_{1} / D, f_{2} / D, \ldots\right.$ $>\varepsilon\left(\prod_{i \in I} \overline{A i / D}\right)$. Then

$$
\Omega \subset F[f] \Leftrightarrow\left\{i ; \Omega_{i} \subset F[f(i)]\right\} \in D\left(\forall F \in L_{t}\right)
$$

Proof: By induction: For $F \in \varepsilon_{o_{t}}$, our theorem is true by defnition of \equiv_{D} and R_{λ}. Assume now that our theorem is true for all P , all $F \in \Sigma_{r_{t}}$. Let $G \in \Sigma(r+1)_{t}{ }^{\sim} \Sigma_{r_{t}}$. If $G=7 F$, then $\mathcal{C} \boldsymbol{C} G[f]$ iff not $\boldsymbol{M}=\mathrm{F}[\mathrm{f}]$ of (induction step):
$\left\{\right.$ i $\left.; \mathcal{U}_{i} \subset \mathcal{F}[f(i)]\right\} \in D \quad \operatorname{iff}\left\{i ; \Omega_{i} \subset G[f(i)]\right\} \in D$. The case of $G=F V E$ is done similarly. For the case $G=\left(\exists \sim_{j}\right) F$,
$O \in G[f]$ ifs for some $g / D \in \prod_{i \in I} A_{i} / D, \operatorname{VcF}[f(j /(g / D))]$
if by induction $\left\{1 ; \Omega_{i} \subset F[f(j / g)(i)]\right\} \in D$ for some g if

$$
\left\{i ; \Omega_{i} \subset\left(\exists \sim_{j}\right) F[f(i)]\right\} \in D \operatorname{iff}\left\{i ; \Omega_{i} \in G[f(i)]\right\} \in D .
$$

We have now shown the theorem for all $G E \Sigma(r+1){ }_{t}$. By induction, it is true for all $a \underset{r=0}{\sum_{r=0}^{0} \Sigma_{t}}=I_{t}$

COROLLARY 1: Let $\sigma \in \Lambda_{t}$. Then $\mathbb{Z} \subset \sigma$ ifs $\left\{i ; \mathcal{M}_{i} \subset \sigma\right\} \in D$
Let G and \mathscr{G} be structures of type t. Then $~ G \equiv \mathcal{J}$ inf for all $\sigma \in \Lambda_{t}, \sigma \mathscr{C} \Leftrightarrow \mathscr{Z} \subset \sigma$. In this case, we also say that \mathcal{C} is delementarily equivalent to \mathscr{Z} We can then state the following corollary.

COROLLARY 2:
If for all $i, j \in I, Q_{i} \equiv \mathcal{U}_{j}$, then for each $j \in I, Q_{j} \equiv$
$\prod_{i \in I} Q_{i} / D$. In particular, if for all $i \in I, \alpha_{i}=Q_{\text {, then: }} \prod_{i \in I} \Omega_{1 / D}$ is called an ultrapower of Ω and denoted by $C \Omega^{\mathrm{I}} / \mathrm{D}$.

In this case, $C R \equiv \Omega^{I} / D$ I

THEOREM 5:
Let $S \subseteq \Lambda_{t}$ be such that for any finite subset $S^{\prime} \subseteq S, M\left(S^{\prime}\right)$
$\neq \phi$. Then $M(s) \neq \phi$.
Proof: For each finite set $S^{\prime} \subseteq S^{\prime}$ let $\left.\mathcal{U}_{S^{\prime}}{ }^{\prime} \in M^{\prime} S^{\prime}\right)$. Now let
I be the set of finite subsets of S. For each $\sigma \in S, \operatorname{let} S_{\sigma}=\left\{S_{i} \in I_{\mathbf{3}}\right.$ $\left.\sigma \in S_{i}\right\}$ and let $D^{\prime}=\left\{S_{\sigma} ; \sigma \in S\right\}$. Then D^{\prime} is a set of subsets of I. Let $S_{\sigma_{1}}, \ldots S_{\sigma_{k}} \in D \quad ; \operatorname{then}\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$
$E S_{\sigma_{1}} \cap \ldots \cap S_{\sigma_{k}}$, so $S_{\sigma_{1}} \cap \ldots \cap S_{\sigma_{k}} \neq \varnothing$. Thus $D^{\prime} \subseteq D$ for some ul trafilter D on I. Now let $Q=\prod_{i \in I} \Omega_{i} / D$. We shall show $G \in M(S)$. For any $\sigma \in S$, the set $\left\{S^{\prime} \in I ; \mathcal{R}_{S} \subset \sigma\right\}$ contains $\left\{S_{i} \in I ; \sigma\right.$ $\left.\varepsilon S_{i}\right\}=S \sigma \in D^{\prime} \subseteq D$. Thus $\left\{S^{\prime} \in I_{j} U_{S} \in \subset \sigma\right\} \in D$, so $U \in \sigma ;$ thus $U=S$

THEOREM 6:
Let $S \subseteq \Lambda_{t}$ be such that each finite N there is an $C R \in M(S)$ such that $N \leq \mathcal{K}(M)$ (i. e., A, The set of elements of U, has more than N members) then for each cardinal M (including infinite ones) there is an $\mathscr{U} \in M(S)$ such that $M \leq \mathcal{M}(M)$.

Proof: (A trick is involved - we change languages). Let $\rho=$ $\mathscr{D}(t)$, thus if $\Omega \in M(S), \Omega=<A, R_{\lambda}>_{\lambda<p}$. Now choose ρ such that \mathcal{K} $\left(\rho^{\prime} \sim \rho\right) \geq M$, and t^{\prime} such that if $\lambda<\rho, t^{\prime}(\lambda)=t(\lambda)$, and if $\rho \leq \lambda<\rho ; t^{\prime}$ $(\lambda)=0$ (and $\left.p^{\prime}=\boldsymbol{D}(t)\right)$.
We have adjoined constants, $\left.c_{p}, c_{p+1}, \ldots, o_{\lambda}, \lambda<\rho^{\prime}\right)$. We assert that

$$
T=S U\left\{7 o_{\lambda}=o_{\lambda^{\prime}} ; \rho \leq \lambda<\lambda^{\prime}<\rho^{\prime}\right\} \subseteq \Lambda_{t^{\prime}}
$$

is consistent (i. e., $M(T) \neq \varnothing$). Let $T_{1} \subseteq T$ be finite. Then $T_{1} \subseteq S U$ $\left\{7 c_{\lambda_{i}}=c_{\lambda_{j}} ; \forall<j, \rho_{\leq} \lambda_{1}<\ldots<\lambda_{k}<\rho^{\prime}\right\}=T_{k}$.
Now take $\Omega_{\in} M(S), \mathcal{H}(U) \geq K$, and let $\mathcal{R}^{\prime}=<A, R_{\lambda}, e_{\lambda}>\lambda<\rho \leq \lambda^{\prime}$ $<p l$ (where $Q=<A, R_{\lambda}>\lambda_{\lambda<p}$). Let $a_{1}, \ldots, a_{k} \subseteq A$, be unequal, and $\operatorname{set}^{e_{\lambda}}=a_{i}, e_{\lambda}=a_{1}$ si $\lambda \neq \lambda_{1}, \ldots, \lambda_{k}$.

We claim $\mathcal{C} E M\left(T_{k}\right)$. Since $\mathcal{C} E S$ (its relations are the same, as far as S is concerned). But since $e_{\lambda} \neq e_{\lambda}$, we have $\mathcal{G} \subset\left\{7 e_{\lambda} ; i<j\right.$, $\left.\rho \leq \lambda_{1}<\ldots<\lambda_{k}<\rho^{\prime}\right\}$, thus ${ }^{i} V^{\prime} E M^{j}\left(T_{1}\right)$. New by the. 5 , ${ }^{i}$ we on find $\mathscr{L} \in M(T), \mathscr{L}=\left\langle B, S_{\lambda}, d_{\lambda}\right\rangle \lambda<\rho \leq \lambda^{\prime}<\rho^{\prime}$. Since

$$
\mathscr{L}=\left\{\neg c_{\lambda}=c_{\lambda} ; \quad \rho \leq \lambda<\lambda^{\prime}<p^{\prime}\right\}
$$

$d_{\lambda^{\prime}} \neq \mathrm{d}_{\lambda^{\prime \prime}} \quad$ for $\rho \leq \lambda^{\prime}<\lambda^{\prime \prime}<\rho^{\prime}$, so $\mathcal{K}(B) \geq \mathcal{K}\left(\rho^{\prime} \sim \rho\right) \geq \mathrm{m}^{\prime}$.
Now consider $\mathscr{L}_{0}=\left\langle B, S_{\lambda}>_{\lambda<p}\right.$. \mathcal{L}_{0} is of type t.
$\mathcal{K}\left(\mathcal{L}_{0}\right)=\mathcal{K}(B) \geq M$, and since $\mathscr{L} E s \subseteq \Lambda_{t}$, so does \mathscr{G}.

COROLLARY:

The least upper bound axiom is not in Λ_{t} for any t (we say that it is not a Pirst-order axiom)
Proof: Assume the contrary. Thus all the axioms for \mathbb{R} can be written in some Λ_{t}. Let $\mathrm{S} \subseteq \Lambda_{t}$, be this set of axioms. Since $R \in \mathbb{M}(S)$, for each finite N, we have $R \in M(S)$ with $\mathbb{N} \leq \mathcal{K}(\mathbb{R})$ Thus by theo.6, for each cardinal M, including $2^{\mathscr{K}(\mathbb{R}\}}$), we have an $ひ \in M(S), \mathcal{K}(\mathbb{R}) \geq M$.
But we now that all models of S are isomorphic to (R), thus if $\Omega \in M(S)$ $\mathcal{K}(R)=\mathbb{K}(R) \geq 2^{\mathcal{K}(\mathbb{R})}$, a contradiction, for $\mathcal{K}(R)<2^{\mathcal{K}(R)}$

This shows that we need ${ }^{\ll h i g h e r}{ }^{\gg}$ predicated calculus to express in this way all we want to do in mathematics.

BIBLIOGRAFIA

[1] ROBINSON, A.s Meta-mathematics of Algebra, North-Holland Pub. Co., Amsterdam, 1951.
[2] SUPPES, P.: An introduction to Logic, Van Nostrand, N. York, 1957
[3] KLEENE, Introduction to Meta-mathematics, Van Nostrand, New York, 1954.
[4] BOURBAKI, N.: Thèorie des Ensembles, Hermann, Paris, 1957. SUMARIO

Se trata de una introducción a la teoria de modelos.

> Department of Mathematics University of Rhode Island
(Received August 1.966)

