INTRODUCTORY NOTES ON MODEL THEORY
by

R. KOPPERMAN

1l.- INTRODUCTION

We all realize that the properties of a set of axioms are related
to those of the class of structures which satisfy those axioms. Model
Theory is a study of the relationships which may hold. Before we oan
study the relationships between axioms and structures which satisfy =
them, we must know what we mean by a structure, a set of axioms, and
how we make sense out of a set of axioms to see wether or not the -
structure satisfies them. While we all agree that an <<a.xiom>> such -

as the following makes sense:
(Vx)Wy)(Ve)lx<yA, y<z=>xc<82),

we don't know what to say about
(V x)(x <Ay <y => < x%y)

) <<__. >
How can even decide wether or not a proposed axiom even makes =

sense? This is clearly the first question one must answer.

2.- TYPES, SThKUCTURES AND LANGUAGES

A tipe t is simply a map from an ordinal number P (called the do
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main of t,-zr(t)=9), into the set of non-negative intergers .
(For those who prefer, a type is simply an ordered set of non-negati-

ve whole numbers).

We say that R is a relation on A iff for some positive interger

N, Rc AN.

A first-order structure (Jl= < A, Ry>,<p is something that satis-

fies the following conditions:

(a) ¢ is an ordinal and A # § a set.

(b) for each A < ¢, R, € A ie s relation, or Ry= e)e A

is a <<distinguished>> element of A.

We define the type of the structure (L by gﬂkt)-p, and for A < P,
t(}) = Nx (if R, gAN"), or t(A) = 0 (if Ry= ey €A).

A class of structures K is called a class of similar structures -

iff any two structures in K have the same type.

EXAMPLE:

Groups may be considered as structures of type <3,2,0> as fo-
llows: let G = < A,0 -1, e >, where o = R, is the 'binary operation
for the group G (i.e., <a,b,c> € R, <=> aob = ¢), R, is the inverti-
ve relation (i.e., <a,b > € R1 <=> a = b—l), and e is the neutral ele
ment, i.e., ec a = ace = a, for each a € A (where A is the set of =~

elements of G).

NOTE: .
From now on, any class of structures mentioned will be implicity
assumed to be a class of similar structures (unless otherwise indica~

ted), and similarly any pair, etc., of structures will be assumed si-

milar.
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We still don't know (officially). How to talk about our structures

Let t be a type. The (lower predicate caloulus)langgggg Lt is defi

ned as followss it will have a set V = {vo, v } of variables. For -

100"
each A < P =J(t), if t(}) = 0, we will have a constant oy3 if t(2)> o,
we will have a t(A)- ary predicated Py (iee., Py is simply a place-hol-

der for t(A) variables or constants). Now, letting x, be variables or -

constants, we sets

(a) E, is the set of atomic formulas of type t, where an atomio

formula of typz % is of the form,

(1) x, =x, or

(ii) P, (xi yeeey Xy (A)) (where we note once more that the
t

xi are variables or constants)

( B ) Assume we have defined I, . Them
; )
E(r+1)t = Zrt U{—l Fjy Fe Zrts U {FVG s F, G e Ert

U{G Vi)Fj iew, FEZI}
t

'Y
- |
(c) Lt rgo Zrt

NOTE:
Y ,\, =>,<=>, etc., are defined as appropriate abbreviations.
For exemple, FAGstands for ~J(VFV 71G). Note also that our defini--

tion is inductive, so other definitions and proofs based on it will be

inductive.

We now come to the final task of assigning meanings (and truth
values) to elements of L,. First let us consider an exemplel+(vl,v2,v3)
is an atomic formula of L<3>. It has no definite value of its own, ijse.

without any knowledge of elements aj,ap,a3l which we shall correspond to
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LEACTAS UL don't know whether the formula +(v1,v2,v3) is true about
a1,8,,8, (that is, whethera,+a =a3)

Thus, the truth or falseness of a formula, in a given structure,

may also deperd on a sequence of elements in that structure.

w
Let vO s L, xA - O,i} the unique funtion satisfying the follo

t
wing:

w -
Let a=<a 0?&yre s> E A, X,..., X be variables or constants, -
1 1 n

and set b.=a 1i x.= Vv, b=e, if x =c,.
J 1 J J

i
Then
(D) v (xk=xj, a)= 1 iff b =D,
A (Pr(xyyevey Xy(ayy @)= 1 4FF <byyee, by APE B
(2) v*(7,8)= 1- v*(F,a)
(F) v* (FVvG, a)= v® (F,a) + v (G,a) - v* (F,a). v* (G,a)
(@) V‘”’((Bvi) F, a) = rna.X{vUL (F, a (i/0)): b e A},

where a(i/b) = < By Byyeeny ai-l’b, Ay 90>

As for the existence and unigueness of function le, we don't prove

them here. However, the assertions contained in (D)-(G)can be shown by
induction.

w
We say that F in the language Lt is satisfied by a € A in the -
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structure Ol, and write e Fla) iff v"' (F,a)=1. We have the follo- -

wing propertiess

(i) e PA(VI’"" Vi () ) [a) iff <ajeeey at()\)>&'R}‘
(ii) e 1 F[a] iff not e F[a]

(iii) me Fve(al iff e Flal or Ol ealal

(iv) e (3 vi) F(a] iff there exists a b € A such
that oe F [a(i/bv)]

We have now acomplished our first major goal. We know what is -
meant by a strecture and given a structure, we have a language in which
we may talk about it (naturelly, if our structure is of type t, we may
use Lt)’ and a way to discover whether or not what we say is true on a

sequence in the given structure.

EXAMPLEs

Let us consider the real number system R =<R, +,.,0,1,< >

of type t= <3,3,0,0,2 >. The least upper bound axiom states that each

subset of R with an upper bound has at least one least upper bound.
That axiom in the presence of certain others determines R up to an -
isomorphism. It can not obviously be written in Lt (but the others can

for example conmutativity:

(Vvo)(Vvl)(sz)(+(v°,vl,v2) > + (vl’vo’vz))
and later we shall prove that it cannot be written in any Ls'

Thus, not every fact can be expressed in an lower predicated -
calculus. In general, <<algebraic>> facts can, but facts about analy -

sis cannot. However theorems in both analysis and algebra have shown
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using model theory.

One minor problem remainstour formulas may be true on some sequen-
ces and false on others, in the same structure, whereas axioms should
either hold or not hold for a structure. For this, we say that a varia
ble is free in F iff it is not after a quantifier (i.e., iff (gvi),
(Vvi) never appears in F). This concept can be formally defined by in

duction, and the following can be shown:

LEMMA 1: Let &, a' € A” such that for any free variable v, of F,
a.i=e.'i. Them Ole F [al iff qoe Fla]. |

A predicated T & Lt is called a structure iff ¥ has no free varia-
bles. Let us put At for the set of sentences in Lt

Then we have the following corollary of the lemma aboves

COROLLARY.
Let L be of type t, 7 €A, a, a € A", Then
QR evia] iff Ole v[a]l.l

LetV'EAt, then we say that the structure Ol of type t
ie a model of 7 (written Ole M () or eV ) iff for
each agh” , Olcv [a), If S SAt’ we write

M(S)={m; (Voes) (e T )} =NM(7)
geS

We may also write (e S for OlLe M (S).

f axioms is simply a set of sentences.

Thus, for us, a set

3. ULTRAPRODUCTS.

Let I be a set; a filter D on I is a non-empty collection of

subsets of I, such that:

24



(H) #¢D
(I) ay beD=>aAbed

(J) agD,acbcI=>beDd

Now let {(ni s i€ I} be a set of structures, D a filter on I.

Then we define the reduced product.

1T /o

iel

: - N T _wi/p =
as follows;assume Ol.= < A, Ry >, .. Then ielﬂll/D <Ay By >3 oy Whe

re the terms are defined as follows

() 1£ 8 JU a={fr:1-0n ;52()en} , e say trat

f= g, f,geB, itf {13 £(1) = g(i)} € D. It is easy to show

that is an equivalence relation (transitivity using (1) ana (J) -

)
from the definition of a filter, and reflexivity regquiring the fact -
that I € D). Then we set A= B/EIY

(L) Let f € By if £/D denotes the class of f modulus=y, we say
that

< fl/D, coey ft()‘)/D> € R)\ iff
. ' i
{i 3 < f1(1), sty ft(k)(l) > e R Ve
Let us oonsider two filters D and D'on I. We say that D is finer
than D' (D < D) iff D D'. An ultrafilter DonT is a filter on I

such that if D < D', then D = D' (i.e., Dis maximal with respect to

the order 3). If the filter in the definition of a reduced product is
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an ultrafilter on I, then EIULi/D is called an ultraproduct.

Examples
Let a ¢ I. Then D = {_b cl; ac bs is a filtex on I, and is ca
lled principal (ortrivial). If a = {x} , then D, is an ultrafilter.

THEOREM 1:
Each filter can be imbedded in an ultrafilter
Proof: By Zorn s Lemma‘

COROLLARY:

Let E be a set of subsets of I such that for

€15 €yyeeey O € E, e, n e, Moo N ek/}é. Then E can be im-

bedded in an ultrafilter.
Proof: The set D = {a c I (3 8 9eens ek)(e1 Neooll e S a}
can be shown to be a filter. Thus D can be imbedded in an ultrafilter

D' But EgDED, U

THEOREM 2:
If D is an ultrafilter on I, then for each ac I, a € D or

(I~a) € D (but not both)
Proof: see[3).)

COROLLARY 1:
Let D be an ultrafilter on I; if aU b e D, then a € D or

b £ D.
Proof: If a ¢ D, then (I~a) € D, so (aU b) N (I~a)=b e ol

COROLLARY 2:
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If a, U...Ua €D Danultrafilter then some a; € D

Proof: By induction using last corollary ‘

THEOREM 3:

If I infinite, then there are non-principal ultrafilters on I

Proofs Extend E ={I~ 5 xe I} to an ultrafilter. It must

be non-principal, since (V x)(I~\x} € E)
Notation:

We recall that in generaljtruth is a function of sequences etcd
Our ultraproduct also, uses sequences (or functions, at least). To avoid
confusion, we use the following conventions:

‘r[ w

Suppose that f = <f1/D, f2/D, vee >E (ieI Ai/D) By f£(i) we denote
<fl(i), f2(i), eee > E A“i’ , and f we shall mean a representative of

i 4
fk/D in Sy Ai'

k

We state now our basic results

THEOREM 4:
Let QU = ;gIUli/D be the product of the (I, f=<£,/D, £,/D,...
> € (igI Ai/D). Then

@eF [ {is o er[£()]yed(VFer)

Proof: By induction: For F € Eo , our theorem is true by defi-
t

nition of £ and R,. Assume now that our theorem is true for all £, -

all F e zrt. Let G € z(r+1>t -7.rt. If G="F, then Qe G [f] iff not

Oe FLf] iff (induction step):

4 s, € plr)] Y e D iff {i VIS G[f(i)]} e D.

The case of G = PV E is done similarly. For the case G =(3 ~j) F,
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Oealf] iff for some g/D e 1TeTI 4,/p, e L £(3/(g/D))]

iff by induction {1;011 cFl£(j/g)(i)] } € D for some g iff

ltisa,c (3~ FLe()]) e D ifr {1 ;micc[f(i)]} e D.

We have now shown tho theorem for all G € 2( l) . By induction, it is

true for all GEUE -L
r=0 ‘t

COROLLARY 1:
Let VeAt. Then ULl VU iff {i sy © U—}E » |

Let (0 and - be estructures of type t. Then a=L irr for all
va EAt’ NeT <=>bc U. In this case, we also say that Ol is ele-

mentarily equivalent to z We can then state the following corollary.

COROLLARY 2:

If for all i, j € I,UZ. = (]Z,J., then for each j € I,Ol_E
1EI ®i/p. In particular, if for all 1EI,(1 =0, then: TT ULi/D is
called an ultrapower of (} and denoted by (R I/D.

In this case,=(l 1/}

THEOREM 5:
Let S EAt be such that for any finite subset S'S_ S, M(s")

# §. Ten M(S) # 4.

Proofs For each finite set S' c § let ULS'E M(S'). Now let
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I be the set of finite subsets of S. For each J € S, let Sg = {SieI;

g € Si} and let D' = {SV s U € S} . Then D' is a set of subsets -

of I. Let svl, 5T, i scrk eD 3 then{Vl,...,Vk‘

€ Sgy nNn...nN Sy 80 Sy Nn... N Soy # ¢. Thus D' c D for some ul -
trafilter D on I. Now let Ol = EImi/D' We shall show (L& M(S). For =
any ¢ € S, the set {S' € I3 Qg € V’S ocontains {SiEI; U
€es}) =sg ed cp. mus {s'e I3y €7} €D, 5o (L €V 3 thue
Ne Sl

THEOREM 6:
Let S SAt be such that each finite N there is an (R & M(S)

than N members) then for each cardinal M (including infinite ones)there

is an (L& M(S) such that M < /(L ).

Proof: (A trick is involved - we change 1anguages). Let P =
J(t), thus if Ole M(S),Ul= <A, Ry > ,- Now choose P! such that K
(p*~p) > M, and t' suoh that if A < P, t(A) =t(X), and if P < A < P} '
(M) = 0 (and 0 =<Z (t).
We have adjoined oconstants, Cps Cp , 17 et O A< 0). We assert -~
that
T = SUIL—IO)‘- opi P <A< M< P'}E /\t'

is consistent (i. e., M(T) # #). Let T, €T be finite. Then ’1‘1 csu
PR (] o
{_lc)‘i=c>‘j; <y P_g)‘1<...<>\k<$>}—'l‘k.

/
Now take (Ol € M(-S),%(UL) > K, and let L = < A, Ry, ey > A< P <N
< P'e(where A = < A, R} > )\<p). Let &, ...y & C A, be unequal, and
set )\i =a;, e =a si A # }\1, vy Ak'
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We claim (e H('I'k). Since Ul & S (its relations are the same, as far as
S is concerned). But since e, # e, , we have (} ¢ ‘_‘\ ey 3 i<j -
P < Al <ees < Ak < P'} , thus iUl‘E Mj(Tl). New by theo. 5,1we ocan find

P= ¢ SR M('I‘),oz-- <B, S,, dp> A <P < X < ¢ . since

b 4 -i'_lc)‘sc)‘; 951<l'<0’}
dy # d  for P_(_l‘<>‘.< o', 501(3)_{ X(P."P)i M.
Now consider zo- <B, 5 >xep® x’o is of type t.

\I/(z;) = .7((}3) > M, and since &0 & Se At’ 80 does%.‘

COROLLARY:

The least upper bound axiom is not in /A ¢ for any ¢ (we say

Proof: Assume the contrary. Thus all the axioms for R can be written
in some /\ . Let sc A , be this set of axioms.

t ="'t
since R € M(S), fer each finite N, we nave & M(S) with ¥ 3 E (R)

R
Thus by theo.6, for each cardinal M, including 211

Me M(s), X (R) > M.
But we now that all models of S are isomorphic to (R), thus if UleM(S)

.ﬁ: (R) - j/(R\ x 21““ , a contradiction, for K WR) < 21((‘1)

), we have an -

This shows that we need <<higher>> predicated calculus to express

in this way all we want to do in mathematics.
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SUMARIO

Se trata de una introduccidn a la teoria de modelos.
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