
INTRODUCTORY NOTES ON MODEL THEORY
by

R. KOPPERMAN

1.- INTRODUCTION

We all realize that the properties of a set of axioms are related
to those of the class of structures which satisfy those axioms. Model
Theory is a study of the relationships which may hold. Before we oan
study the relationships between axioms and structures which satisfy -
them, we mus t know what we mean by a structure, a set of 2:!."" oms, and

how we make sense out of a set of axioms to see wether or not the
structure satisfies them. While we all agree that an «axiom» suoh
as the following makes sense:

(Vx)(\;fy)('\Iz)(x < y,!\, y < z:> X < z),

we don't know what to Bay about

(V x)(x <,/\., < y:> < x*y)

« " »How can even decide wether or not a proposed aXiom even makes
sense? This is clearly the first question one must answer.

2.- TYPES, STRUCTURES AND LANGUAGES
A tipe t is simply a map from an ordinal number P (called the ~
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main of t,.1i'(t)=p), into the set of non-negative intergersW.
(For those who prefer, a type is simply an ordered set of non-negati-
ve whole numbers).

We say that R is a relation on A iff for some posiive interger
N, R CAN.

A first-order structure Ul-> < A, R,?,,<pis something that satis-
fies the following conditions:

(a) P is an ordinal and A I ¢ a set.

(b) for each A < P, RA ~ AN" is a relation, or R,,= 8Ae A
is a «distinguished» element of A.

We define the ~ of ~ structure (JL by .,L7'(t)=P,and for A < P,
t(A) = N" (if R" ~ ANA), or t(A) = 0 (if R,,=eAEA).

A class of structures K ~s called a class of similar structures -
iff any two structures in K have the ~ type.

EXAMPLE:

Groups may be considered as structures of type <3,2,0> as fo-
-1 •llows: let G = < A,o , , e >, where 0 = Ro is the binary operation

for the group G (Le., <a,b,c> E Ro <=> aob = c), Rl is the inverti-
-1)ve relation (i.e., <a,b> E ~ <=> a= b , and e is the neutral el~

ment, i.e., eo a a « e = a, for each a E A (where A is the set of
elements of G).

NOTE: .

From now on, any class of structures mentioned will be implicity
assumed to be a class of similar structures (unless otherwise indica-
ted), and similarly any pair, etc., of structures will be assumed si-
milar.
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We still don't know (officially). How to talk about our structures
Let t be a type. The (lower predicate calculus)language Lt is defi

ned as followsl it will have a Bet V = \vo' vl' ••• jOf variables. For
each X < P .~(t), if t(X) = 0, we will have a constant oX' if t(X» 0,
we will have a t(X)- ary predicated Px (i.e., Px is simply a place-hol-
der for t(X) variables or constants). Now, letting x. be variables or -

1.
constants, we setl

( A ) E is the set of atomic formulas of type t, where an atomio
°formula of typ~ t is of the form,

(i) Xi • xj' or
(ii) PA (x. ,••• , x. ) (where we note once more that the

1.1 1.t(A)
Xi are variables or constants)

( B ) Assume we have defined E • Them

U \..,

rt
1:_ ~ U tFVGE )- 1: F J F E(r+l t - rt "'t

U t (3 v i) F i EW, F E E )rt

( C )
ClC)

Lt ...Ur=o

NOTE:

\f ,/\, =>,<=>, etc., are defined as appropriate abbreviations.
For exemple, FI\Gstands for ,("1 FV -, G). Note also that oUr defini--
tion is inductive, so other definitions and proofs based on it will be
inductive.

We now come to the final task of assigning meanings (and truth
values) to elements of Lt. First let us consider an exemplel+(vl,v2,v3)
is an atom~c formula of L<3>. It has no definite value of its own, i;e.
without any knowledge of elements al,a2,a3 which we shall oorrespond to
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vl,v2'v3, we don't know whether the formula +(vl,v2,v3) is true about

al,a2,a3 (that is, whether a +a2:a3).

Thus, the truth or falseness of a formula, in a given structure,
may also depet'd on a sequence of elements in that structure.

Le t vOl. Lt x Au,) ~ \o,D the unique funtion satisfying the follo
Vling:

Let 8F<ao' al, •.• >

and set bj;ai if xj: vi'

u,)

E A ,xl .••' xn be variables or
b ; e~ if x. :c~.
j J

constants, -

Then
(D) v(J1.(Xk;Xj' a): 1 iff

v(Jl.(P~(Xl'''·'xt(A)'

(G) v<Jl,((3v ) F, a) ; max t vtl.(F, a (i/b)); b E A} ,
i

whe re a( i/b)

As for the existence and uniqueness of function v~, we don't prove
them here. However, the assertions contained in (D)-(a)can be shown by
induction.

We say that F in the language Lt
wis satisfied ~ a E A in the
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structure CJL, and.write Ole: F(a] iff vlJ1(F,a)=L We have the folIo--
wing properties.

Ole PA(vl,···, Vt(A) ) taJ
(ii) <.JI.e' F [ a] .iff no tOle F r a]

iff

(iii)

(Lv)

me F v o (a] iff OLe F Ia) or meG ( a1
Ule (3 v.) F (a] iff there exists abE A suoh~
that Ole F rae i/b)]

We have now acomplished our first major goal • We know what is
meant by a stroture and given a structure, we have a langu~ge in which
we may talk about it (naturelly, if our structure is of type t, we may
use Lt), and a way to discover whether or not what we say is true on a
sequence in the given structure.

EXAMPLE.

Let us consider the real number system R -<R, +,.~O,l,< >

of type t= <3,3,0,0,2 >. The least ~ bound axiom states that eaoh
subset of R with an upper bound has at least one least upper bound.
That axiom in the presence of certain others determines ~ up to an
isomorphism. It oan not obviously be written in Lt (but the others can
for example conmutativity:

and later we shall prove that it cannot be written in any L •
8

Thus, not every fact can be expressed in an lower predioated
« »calculus. In general, algebraic facts oan, but facts about analy -

sis oannot. Howev~r theorems in both analysis and algebra have shown
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using model theory.

One minor problem remains:our formulas may be true on some sequen-

ces and false on others, in the same structure, whereas axioms should

either hold or not hold for a structure. For this, we say that a varia

ble is free 2E. F iff it is not after a quantifier (i.e., iff (3Ti),
0tvi) never appears in F). This concept can be formally defined by i~

duction, and the following can be shown:

LEMMAl!. Let a, a I E Ai» such that for any free variable T i of F,

a.=a' .• Them me: F lal iff <Jt.c F (a].t
1 1

A predicated sr E Lt is called a structure iff 'IT has no free varia-

bles. Let us put Ai; for the set of sentences in Lt
Then we have the following corollary of the lemma above.

COROLLARY.

-Let 01. be of ~ t, sr EAt'
UlcV[a] iff <Jl.c'V(a'].1

1a, a Then

Let V E At' then we say that the structure m of type t

is a model of V (written mE M (rr) or ll.c \T) iff for

each asAw, ute: sr (al. If S SAt' we write

M(S)= J Ol.; (V'iT E S) (lJl. e: 'V )) = n M ((1)
1 ITES

Wemay also write ~c S for OLE M (S).

Thus, for~, .§: ,set £faxioms is simply.§: set of sentenoes.

3. ULTRAPRODUCTS.

Let I be a set; a filter D on I is a non-empty oollection of

subsets of I, suoh that:
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(H) ¢ ~ D

(I) &, beD => an bED

(J) & e D, a c b c I => bED

Now let {Oli ' i E I) be a set of struotures, D a fil tar on I.

Then we define the reduced product.

nmi/D
iEI

as follows;assume (JI.i= < Ai' R~ >"<p. Then lIIOl..i/D =<A, RX>"<P' whe

re the terms are defined as follows

fED g , f , g E B, iff t i ; f(i) g(i)} E D. It is easy to show

that == D is an equivalence relation (transitivity using (r) and (J)

from the definition of a fil ter, and reflexivity requiring the fact

that I E D). Then we set A= B/= D.

(L) Let fEB; if f/D denotes the class of f modulus:D, we say

that

Let us oonsider two filters D and D' on T. We say that D is finer

than D' (D So D ) iff D s D'. An ul trafil ter Don r is a filter on r
such that if D So D', then D = D' (i.e., Dis maximal with respect to

the ~~). If the filter in the definition of a reduced product is
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an ul trafil ter on I, then :rrIOLi/D is called an ultraproduct •.1E

Example:

Let a ~ I. Then Da= tb £ I; a ~ b) is a filter on I, and is ca
lIed principal (ortrivial). If a - {x) , then Da is an ultrafilter.

THEOREM 1:

Each filter ~ be imbedded 1£ ~ ultrafilter

Proof: By Zorn B Lemma'

COROLLARY:

~ ~ be ~ ~ £!. subsets of 1. such that for
el, e2,· ••, ek E E, el n e2 n ..• n ek f~. Then ~ ~~ ~-

bedded in an ultrafilter.
Proof: The set D = ta ~ I; (3 el, ..• , ek)(el n ... n "k £. at

can be Bhown to be a filter. ThUB D can be imbedded in an ultrafilter
D' But E ~D"D-:'

THEOREM £:
If R 1:.! ~ ul trafil ter on 1., then for eaoh a £ I, a e D ~

(I-a) E D (but not ~)
Froof: see [.~)..

COROLLARY 1:

Let D ~ ~ ul trafil ter ~ I; if a U bED, then a E D ~
bED.

Proof: If a ¢ D, then (I-a) E D, so (a U b) n (I-a)= b e DI
COROLLARY £:
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If al U •••. U ~ E D D 'an ultrafilter then ~ ai ED

Proof: By i~duction using last corollary'

THEOREM 3:
If I infinite, then there ~ ~-principal ul trafil ters on I

Proof: Extend E = t I- {x\ ; x E I}
be non-principal, since ('\Ix)(I-bc:\E E)

to an ultrafilter. It must

Notation:
We recall that in general,truth is a function of sequences wtc~

Our ultraproduct also, uses sequences (or funotions, at least). To avoid
confusion, we use the following conventions:
Suppose that f = <fl/D, f2/D, ••• >~ (i1JI Ai/D)w By f(i) we denote
<fl(i), f2(i), ••• > E A~ , and fk we shall mean a representative of
f/D in i"[rAi·

We state now our basic result:

THEOREM 4..:
Let l1L'" ~I Ul.i/Dbe the product of the U'i' f-<f/D, fiD, •••

> E (ilJI Ai/D) • Then

ill e F [fl<=> \i ; illiC F[f(i)1~ E D (V FELt)

Proof: By induction: For F E L ,our theorem is true by defi-
. °t

ni tion of =-D and R)...Assume now that our theorem is true for all f,

all F E L • Let G E L( 1) NL • Ifrt r+ t rt

ot. t: F [ r] iff (induction step):

G = 1F, then me G [f] iff not

t i ; (Jl, i C ., F ( f (i)l } E D iff \ i ; ot i t: G ( f (i)1) E D.

The case of G FV E i.sdone similarly. For the case G = (3 ..j) F,
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oi c G cd iff for some g/D e :ITI A. /D, atl:: F [ f (j/ (gfD))]
1.e 1.

iff by induction \iJUl.i C::F[f(j/g)(i)]} e D for some g iff

Wehave now shown~he theorem for all G E L(r+l)t' By induction, it is
true for all G l!! U E ,. Lt1'=0 rt

COROLLARY 1:
Let 17 eAt' Then lJl. C sr iff t i ; Oli C U-} ED'

Let Ct andh be estructures of type t , Then CJl.=;[,..' iff for all

(T eAt' CJl. s::: rr <=>;;6 c: fT. In this case, we also say that CJl, i! ele-

mentarilyequivalent to ~ Wecan then state the following'oorollary.

COROLLARY £:
If f'or all L, j E I, C» . == In ., then for each j E I, C1l ==
- -- -- 1. U'(.,J -- -- -- j

{JIOli/D• In particular, if for all ieI, (lj =a , then: 1IIOl. l/D i!
called ~ ultrapower of ot and denoted ~ ~ I/D•

In this ~,(Jl, 3! Ol I/D I

THEO~ 5.:
Let S SAt be such that for any finite subset s'S s, M(S')

I ¢. Then M(S) I ¢.
Proof. For each finite set S' c S let ots'E M(S'). Nowl.t
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I be the set of finite subsets of S. For each (TE S, let SO''" t S1EI1
sr E Si} and le~ D1

• t Sir; V" E S} • Then D' is a set of subsets

of 1. Let Sir' ••••• , SED ; then~V-l""'l/k\
1 ~k

E Sa-I n ... n ~k' so ~l n ... n SVk I ¢. Thus D1 C D for some ul -

trafilter D on I. Now let (}l,= llrUli/D. We shall show ate M(S).For

any rr E S, the set t S' E I; Us I: V" l oontains t 31 E I tT

E SJ = SV l! D' .£ D. Thus t s' E I; liS' I: V-} E D, go (}l. c V" J thus

lJl.c:sl

THEOREM 6:
- L.~ S .£A ~ be such that each fini te N therC3 is ~ (Jt E M(S)

such that N .s :1C ( OL) (1. e., A, The set of elements of (Jl, , has ~

than N members) thenrfor each cardinal M (including infinite ~)there

is an en E M(S) ~ that M~ :f{ ( ()l, ).

Proof: (A ~ is involved - we change languages). Let P =
J(t), thus if mE M(S), (ft= <A, RA>A<P' Nowchoose pi such that-X

(pt_p) ~ M, and t' suoh that if A < P, ~(A) =t(A), and if P ~ A < P: t'
( A) = 0 (and pl .. .b (t ».
We have adjoined oonstants, cp' cp + l' ••• , 01.' A < pi ). We assert -

that

T = SUit 01. .. 0A'; p < A < A'< pI J.£ 1\ t'

is consistent (i. e., M(T) I ¢). Let Tl .£ T be finite. Then Tl £ S ut I cA .. cA.; ; <j, P~ \ < ••• < \ < p' } .. Tk•
i J

I

Now take Ol. E M(S), K «(Jl,) ~ K, and let m .. < A, RA, eA > A < P ~ A'

< pt (where (Jl, = < A, RA> A<P)' Let aI' ... ., ~ £ A, be unequal, and

set e\ ai' eA '" ~ ai A I A1' ... , \.
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We claim Ole M(Tk). Since m c S (its relationa are the
S is concerned). But aince eA -I eA , we have {}l c \.-,
p ~ \ < ••• < \ < pI} ,thus iuz.'eMj(Tl). Nell' b7 theo.

~ e M(T),~. <B, SA' d),,>A < P < t:. < v , 81nce

;;& • t., cA : cA J P < A < ~ < p'}

same, as far as
CA ,i < j,
i5, we oan find

for P ~ X < A'< pi, so 1'{ (B) ~ X(p' "p) > M.

;;G- is of type ~.o

does~ ,e

COROLLARY:
The leu" upper bound axiom is not in 1\ t for any ~ (!!. say

that it is ~ .! ~-order axiom)

Proof: Assume the oontrary. Thus all the axioms for I? can be written
in some At' Le~ S £. 1\ t' be thi s set of axioms.
Sincel< e M(S), for each finite N, we havel<e M(S) with N ~7C(I?)
Thus by theo.6, for each cardinal M, including 2Jr(E~ ), we have an -
me M(S),:k (I?) ~ M.
But we now tha~ all models of S are isomorphic to
.-u (I[) = ~ (II:» > 2 1(11)~ ~ ~ ~ , a contradiction,

(~ ), thus if oi eM (S)
for 'f( ~) < 2 k(~)

«. » .This shows that we need h1gher pred1cated calculus to express
in this way all we want to do in mathematios.
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SUMARIO

Se trata de una introdu~ci6n a la ~eoria de modelos.
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