QUASIVARIETIES OF DE MORGAN ALGEBRAS: RCEP

HERNANDO GAITÁN
Universidad de los Andes, Mérida

ABSTRACT. In this note we prove that there is a least strict quasivariety (i.e., a quasivariety which is not a variety) of De Morgan algebras and that such a quasivariety is perhaps the only strict quasivariety enjoying the relative congruence extension property.

§1. INTRODUCTION

For a quasivariety Q and an algebra $A \in Q$, let $\text{Con}_Q(A) = \{ \Theta \in \text{Con}(A) : A/\Theta \in Q \}$, where $\text{Con}(A)$ denotes the set of congruence relations on A. The elements of $\text{Con}_Q(A)$ are called Q-congruences on A. A is said to have relative (to Q) congruence extension property (further on RCEP) if for every subalgebra B of A, any Q-congruence on B is the restriction of a Q-congruence on A. Q has RCEP if all of its elements have this property. The purpose of this note is to prove that there is a least strict quasivariety of De Morgan algebras and such a quasivariety is perhaps the only strict quasivariety enjoying RCEP. For more results in this direction we refer the reader to [3] and [7]. Recall that a De Morgan algebra is an algebra $(A; \wedge, \vee', 0, 1)$ of type $(2, 2, 1, 0, 0)$ such that the reduct $(A; \wedge, \vee, 0, 1)$ is a bounded distributive lattice and the following identities are satisfied:

$$x'' = x \quad ; \quad (x \lor y)' = x' \land y'.$$

The lattice of subvarieties of De Morgan algebras is a four-element chain $T \subset B \subset K \subset M$ where T, B, K, and M denote respectively the varieties of trivial, Boolean, Kleene and De Morgan algebras. There are three non-trivial subdirectly irreducible De Morgan algebras each of which generates one of the non-trivial varieties above: B is generated by the two-element chain $2 = \{0, 1\}$, K is generated by the three element chain $3 = \{0, a, 1\}$ in which $a' = a$ and M is the variety of De Morgan algebras.

Research supported by the CDCHT (project C-507-91) of the University of the Andes, Mérida, Venezuela.
by the four-element complemented lattice $4 = \{0, a, b, 1\}$ in which $a' = a$ and $b' = b$. B satisfies the identity $x \land x' = 0$ and K satisfies $x \land x' \leq y \lor y'$. For a systematic study of M see [1].

The strategy of the paper is based on the analysis of the two possible cases concerning the variety generated by the strict quasivariety. Section 2 is devoted to the case in which such a variety is M. It is proved that under this assumption no strict quasivariety has RCEP. In Section 3 it is proved that, except for the quasivariety generated by the four element chain $C_4 = \{0 < a < a' < 1\}$ (which is the least strict quasivariety of De Morgan algebras), no strict quasivariety such that the least variety containing it is K has RCEP. We still do not know whether or not $Q(C_4)$ has RCEP. Observe that there are not strict quasivarieties contained in S.

The basic concepts of universal algebra can be found in [2]. We follow the notation of this book, particularly for the operators on classes of algebras. In addition, by $A \leq_{SD} \prod_{i \in I} A_i$ we mean that A is a subdirect product of the family $\{A_i : i \in I\}$. $A \leq B$ means that A is a subalgebra of B. Any class A of algebras such that Q is the least quasivariety containing A is said to generate Q and in this case we write $Q = Q(A)$. An algebra $A \in Q$ is said to be relatively subdirectly irreducible or, Q-subdirectly irreducible, if it cannot be subdirectly embedded in a direct product of algebras of Q unless the composite of the embedding with one of the projections is an isomorphism. It can be shown that $A \in Q$ is relatively subdirectly irreducible iff there is a least non-zero Q-congruence on A. Such a congruence is called the Q-monolith of A. We denote the class of Q-subdirectly irreducible members of Q by $QRSI$.

§2. Quasivarieties That Generate M

In this section we prove the following proposition:

Proposition 2.1. Let Q be a strict quasivariety such that $H(Q) = M$. Then Q does not have RCEP.

We pave the way for the proof of this proposition with two lemmas.

Lemma 2.2. Let A be a homomorphic image of 4 such that for all $x \in A$, $x' \neq x$. Then, either the algebra depicted in Figure 1, (i) or the one depicted in 1, (ii) is in $IS(A)$

Proof. Let $f : A \rightarrow 4$ be a surjective homomorphism. Fix an element $u \in A$ such that $f(u) \notin \{0, 1\}$. Pick $v \in A$ such that $f(u') = f(v)$. Let $a = u \land u'$ and $b = v \land v'$. Clearly, a and b' are not comparable. Let $c = (a \lor b) \land a'$ and $d = (a \lor b) \land b'$. It is routine to verify the following: c and d are not comparable; $c < c'$; $d < d'$; $c' \lor d = c' \lor d' = c \lor d'$; $c \land d = c \land d' = c' \land d$; $c \lor d < c' \lor d'$; $c \land d < c' \land d'$. Thus, the subalgebra of A generated by c and d meets the requirements of the lemma.
Lemma 2.3. Let A be a homomorphic image of 4 such that there exists $c \in A$ with $c = c'$. Then either 4 or the algebra depicted in Figure 1, (iii), is isomorphic to a subalgebra of A.

Proof. Let $f : A \rightarrow 4$ be a surjective homomorphism. Clearly, $u = f(c) \notin \{0, 1\}$. Let v be the Boolean complement of u. Notice that $u' = u$ and $v' = v$. Fix $b \in A$ such that $f(b) = v$. Put $a = b \land b'$ and $d = (c \land a') \lor a$. One checks now that $f(d) = v$. Since u and v are not comparable, so are c and d. Using now the hypothesis about c and the fact that $a \leq a'$ one gets $d = d'$. Thus, the subalgebra of A generated by c and d meets the requirements of the lemma.

Proof of Proposition 2.1. By Birkhoff's subdirect representation theorem, there exists $A \in Q - K$ such that one of its homomorphic images is isomorphic to a subalgebra of 4. In view of the two previous lemmas, one of the algebras depicted in Figure 1 is in Q. Let us denote such an algebra by C. Let D be the subalgebra of C generated by $t = c \lor d$. The proposition now follows from observing that the Q-congruence on D generated by $(0, t')$ coincides with the congruence on D generated by the same element and this Q-congruence can not be extended to a Q-congruence on C.

§3. Quasivarieties that Generate K

We start this section proving that there is a least strict quasivariety of De Morgan algebras. Notice that any strict quasivariety contains the variety B of Boolean algebras.

Proposition 3.1. C_4 generates the least strict quasivariety of De Morgan algebras.

Proof. Let Q be a strict quasivariety of De Morgan algebras. Clearly $B \subset Q$, so, there exists $A \in Q$ and $a \in A$ such that $0 < d = a \land a'$. Clearly $d \leq d' = a \lor a' < 1$. If $d < d'$, the subalgebra of A generated by d is isomorphic to C_4,
so $C_4 \in Q$. If $d = d'$, denote by D the subalgebra of A generated by d. As $2 \times D$ has a subalgebra isomorphic to C_4, $C_4 \in Q$. Hence the proposition is established. □

We now recall some definitions and results from [4]. Let L be a De Morgan algebra. For a non-empty subset X of L, let $X' = \{x' : x \in X\}$. $T(L) \equiv \{t \in L : t \leq t'\} = \{x \land x' : x \in L\}$. Denote by $n(L)$ the ideal of the underlying lattice generated by $T(L)$. L is a Kleene algebra iff $n(L) = T(L)$ iff $T(L)' = \{x \lor x' : x \in L\}$ is a filter [4], Proposition 1.2). $\Theta(n(L))$ (respectively $\Theta(n(L)')$) denote the least $D_{0,1}$-congruence of the underlying lattice which has $n(L)$ (respectively $n(L)'$) as a congruence class (here $D_{0,1}$ denotes the variety of bounded distributive lattices). More precisely, $x \equiv y\Theta(n(L))$ (respectively $\Theta(n(L)')$) iff there exists $j \in n(L)$ (respectively $k \in n(L)'$) such that $x \lor j = y \lor j$ (respectively $x \land k = y \land k$). Let $\beta(L)$ be the least congruence on the De Morgan algebra L such that the quotient algebra $L/\beta(L)$ is a Boolean algebra. Then $\beta(L) = \Theta(n(L)) \lor \Theta(n(L)')$ [4], Theorem 1.3).

Lemma 3.2. Let Q be a strict quasi-variety contained in K. Let $L \in Q_{RSI\cdot}$. Let α be the Q-monolith of L. Then there exist $t, u \in n(L)$ with $t < u$ such that (t, u) generates α.

Proof. We first claim that one may choose a, b such that $a \equiv b\Theta(n(L))$ or $a \equiv b\Theta(n(L)')$ with the pair (a, b) generating α. To prove the claim, notice that $\beta(L) = \Theta(n(L)) \lor \Theta(n(L)')$ is a Q-congruence, so $\alpha \subseteq \Theta(n(L)) \lor \Theta(n(L)')$. Pick $c, d \in L$ with $c < d$ such that (c, d) generates α. Thus $c \equiv d\Theta(n(L)) \lor \Theta(n(L)')$. This follows from this that for some $j \in n(L)$ and $k \in n(L)'$, $(c \lor j) \land k = (d \lor j) \land k$. If $c \lor j = d \lor j$ then $c \equiv d\Theta(n(L))$. In this case, take $a = c$ and $b = d$. Otherwise, take $a = c \lor j$ and $b = d \lor j$. In this case $a \equiv b\Theta(n(L)')$. This ends the proof of the claim. Assume now that $a \equiv b\Theta(n(L))$. Observe that since L as a lattice is distributive, either $a \land a' \neq b \land a'$ or $a \land b' \neq b \land b'$ or $a \land a' \neq b \land b'$. If $a \land b' \neq b \land b'$, take $t = a \land b' \land b$ and $u = (a \land b') \lor (b \land b')$. From $a \land b' \equiv b \land b'\Theta(n(L))$ and $b \land b' \in n(L)$ it follows that $a \land b' \in n(L)$. Then, because $n(L)$ is an ideal, $u, t \in n(L)$. The case $a \land a' \neq b \land b'$ is taken care of similarly. If $a \land a' \neq b \land b'$, take $u = (a \land a') \land (b \land b')$ and $t = (a \land a') \lor (b \land b')$. Whatever the case is, $u, t \in n(L)$ and (u, t) generates α. Finally, if $a \equiv b\Theta(n(L)')$ then $b' \equiv a'\Theta(n(L))$ and α is also generated by (b', a') and in this situation one can argue as above. Now the proof is complete. □

If $A \in Q$ and $a, b \in A$ then $\Theta^A_Q(a, b)$ denotes the least Q-congruence on A which contains the pair (a, b); i.e., the Q-congruence generated by (a, b).

Corollary 3.3. In the previous lemma, if Q has RCEP then $t = 0$.

Proof. Assume $t > 0$. As α is the least non-zero Q-congruence, $t \equiv u\Theta^L_Q(0, t)$. Now, since Q has RCEP, by Proposition 2.4 of [3], $t \equiv u\Theta^S_Q(0, t)$ where $S = \{0 < t < u < u' < t' < 1\}$ is the subalgebra of L generated by $\{t, u\}$. Observe next that $\Theta^S_Q(0, t) = \Theta^S(0, t)$ because $S/\Theta^S_Q(0, t) \equiv \{0, u, u', 1\} \in Q$.

(Proposition 3.1). But, as it is easily checked, \(u \not\equiv t \Theta^S(0, t) \), a contradiction. Then \(t \) must be 0. \(\Box \)

Proposition 3.4. Let \(Q \neq Q(C_4) \) be a strict quasivariety of Kleene algebras. Then \(Q \) does not have RCEP.

Proof. Assume on the contrary that \(Q \) has RCEP. Let \(L \in Q_{RSJ} \) such that \(L \) is not a chain (such an \(L \) must exist; otherwise \(Q \) would be the quasivariety generated by \(C_4 \)) and let \(\alpha \) be the \(Q \)-monolith of \(L \). By Lemma 3.2 and Corollary 3.3 we may pick \(b \in L \) with \(b < c \) such that the pair \((0, b)\) generates \(\alpha \). Pick \(a \in L \) non-comparable to \(b \). Now look at the two possibilities:

\[a \wedge b = c > 0; \quad a \wedge b = 0. \]

In the first one, \(\alpha \) is also generated by \((0, c)\) and therefore \(b \equiv 0 \Theta^S_Q(0, c) \) where \(S = \{ 0 < c < b < c' < 1 \} \) is the subalgebra of \(L \) generated by \(\{ c, b \} \). It is evident that \(\Theta^S_Q(0, c) = \Theta^S(0, c) \), so \(b \not\equiv 0 \Theta^S(0, c) \) and this is a contradiction. Let us consider now the possibility \(a \wedge b = 0 \). Denote by \(A \) the subalgebra of \(L \) generated by \(a \) and \(b \). Without lost of generality we may assume that either \(a < a' \) or \(a \wedge a' = 0 \). All other possibilities about the comparability of \(a \) and \(a' \) can be reduced to one of these two. Assume first that \(a < a' \).

Observe that \(a \vee b < (a \vee b)' \) because \(n(L) \) is an ideal \((a \vee b) = (a \vee b)' \) is not possible because \(Q \subset \mathcal{K} \). Now, since \(a \) is the least non-zero \(Q \)-congruence and \(Q \) has RCEP, \(b \equiv 0 \Theta^A_Q(0, a) \) (see Figure 2, (i)). Next, notice that \(A/\Theta^A(0, a) \cong C_4 \in Q \); so, \(\Theta^A_Q(0, a) = \Theta^A(0, a) \) and consequently \(b \not\equiv 0 \Theta^A(0, a) \) which is a contradiction. Now we consider the possibility \(a \wedge a' = 0 \). By Corollary 2.5 of [7], \(\Theta(x, 1) = \Theta_{\text{lat}}(x, 1), x \in \{ a, a' \} \), and these two congruences are complement of each other (see [8], Lemma 3.10). Thus \(a' \wedge b > 0 \) \((a' \wedge b = 0 \) implies \(b \equiv 0 \Theta(a', 1) \)). If \(a' \) and \(b \) are not comparable, we proceed as in the earliest case. If \(a' > b \) \((a' \leq b \) is not possible) then \(A \) looks like either the

![Figure 2](image-url)
algebra depicted in Figure 2, (ii) or the one in 2, (iii). If \(a \lor b = b' \) the \(Q \)-congruence generated by \((0, a)\) on the subalgebra of \(A \) generated by \(a \) can not be extended to a \(Q \)-congruence on \(A \), which is a contradiction. If \(a \lor b < b' \), then \(b \equiv 0(\Theta^A_0(0, a) = \Theta^A(0, a)) \), obviously a contradiction. Now the proof of the proposition is complete. \(\Box \)

Question. Does \(Q(C_4) \) enjoy RCEP? Proposition 2.9 of [3] can not be used to answer this question in the affirmative because according to Proposition 2.4 of [5], no strict quasivariety of De Morgan algebras is relatively congruence distributive. On the other hand, the method of proof of Fact 2.5 of [3] can not be used to answer it in the negative because \(M \) is not congruence permutable.

REFERENCES

(Recibido en julio de 1991)