QUASIVARIETIES OF DE MORGAN ALGEBRAS: RCEP

Hernando Gaitán

Universidad de los Andes, Mérida

ABSTRACT. In this note we prove that there is a least strict quasivariety (i.e., a quasivariety which is not a variety) of De Morgan algebras and that such a quasivariety is perhaps the only strict quasivariety enjoying the relative congruence extension property.

$\S1$. INTRODUCTION

For a quasivariety Q and an algebra $A \in Q$, let $Con_Q(A) = \{\Theta \in Con(A) : A/\Theta \in Q\}$, where Con(A) denotes the set of congruence relations on A. The elements of $Con_Q(A)$ are called Q-congruences on A. A is said to have relative (to Q) congruence extension property (further on RCEP) if for every subalgebra B of A, any Q-congruence on B is the restriction of a Q-congruence on A. Q has RCEP if all of its elements have this property. The purpose of this note is to prove that there is a least strict quasivariety of De Morgan algebras and such a quasivariety is perhaps the only strict quasivariety enjoying RCEP. For more results in this direction we refer the reader to [3] and [7]. Recall that a De Morgan algebra is an algebra $\langle A; \Lambda, \vee, ', 0, 1 \rangle$ of type (2, 2, 1, 0, 0) such that the reduct $\langle A; \Lambda, \vee, 0, 1 \rangle$ is a bounded distributive lattice and the following identities are satisfied:

$$x'' = x \quad ; \quad (x \lor y)' = x' \land y'.$$

The lattice of subvarieties of De Morgan algebras is a four-element chain $\mathcal{T} \subset \mathcal{B} \subset \mathcal{K} \subset \mathcal{M}$ where \mathcal{T} . \mathcal{B} , \mathcal{K} , and \mathcal{M} denote respectively the varieties of trivial, Boolean, Kleene and De Morgan algebras. There are three non-trivial subdirectly irreducible De Morgan algebras each of which generates one of the non-trivial varieties above: \mathcal{B} is generated by the two- element chain $\mathbf{2} = \{0, 1\}$, \mathcal{K} is generated by the three element chain $\mathbf{3} = \{0, a, 1\}$ in which a' = a and \mathcal{M}

Research supported by the CDCHT (project C-507-91) of the University of the Andes, Mérida, Venezuela.

by the four-element complemented lattice $\mathbf{4} = \{0, a, b, 1\}$ in which a' = a and b' = b. \mathcal{B} satisfies the identity $x \wedge x' = 0$ and \mathcal{K} sastisfies $x \wedge x' \leq y \vee y'$. For a systematic study of \mathcal{M} see [1].

The strategy of the paper is based on the analysis of the two possible cases concerning the variety generated by the strict quasivariety. Section 2 is devoted to the case in which such a variety is \mathcal{M} . It is proved that under this assumption no strict quasivariety has RCEP. In Section 3 it is proved that, except for the quasivariety generated by the four element chain $C_4 = \{0 < a < a' < 1\}$ (which is the least strict quasivariety of De Morgan algebras), no strict quasivariety such that the least variety containing it is \mathcal{K} has RCEP. We still do not know wheter or not $Q(C_4)$ has RCEP. Observe that there are not strict quasivarieties contained in \mathcal{B} .

The basic concepts of universal algebra can be found in [2]. We follow the notation of this book, particularly for the operators on classes of algebras. In addition, by $A \leq_{SD} \prod_{i \in I} A_i$ we mean that A is a subdirect product of the family $\{A_i : i \in I\}$. $A \leq B$ means that A is a subalgebra of B. Any class A of algebras such that Q is the least quasivariety containing A is said to generate Q and in this case we write Q = Q(A). An algebra $A \in Q$ is said to be *relatively subdirectly irreducible* or, Q-subdirectly irreducible, if it can not be subdirectly embedded in a direct product of algebras of Q unless the composite of the projections is an isomorphism. It can be shown that $A \in Q$ is relatively subdirectly irreducible iff there is a least non-zero Q-congruence on A. Such a congruence is called the Q-monolith of A. We denote the class of Q-subdirectly irreducible members of Q by Q_{RSI} .

§2. QUASIVARIETIES THAT GENERATE $\mathcal M$

In this section we prove the following proposition:

Proposition 2.1. Let Q be a strict quasivariety such that $H(Q) = \mathcal{M}$. Then Q does not have RCEP.

We pave the way for the proof of this proposition with two lemmas.

Lemma 2.2. Let A be a homomorphic image of 4 such that for all $x \in A$, $x' \neq x$. Then, either the algebra depicted in Figure 1, (i) or the one depicted in 1, (ii) is in IS(A)

Proof. Let $f: A \longrightarrow 4$ be a surjective homomorphism. Fix an element $u \in A$ such that $f(u) \notin \{0, 1\}$. Pick $v \in A$ such that f(u)' = f(v). Let $a = u \wedge u'$ and $b = v \wedge v'$. Clearly, a and b' are not comparable. Let $c = (a \vee b) \wedge a'$ and $d = (a \vee b) \wedge b'$. It is routine to verify the following: c and d are not comparable; $c < c'; d < d'; c' \vee d = c' \vee d' = c \vee d'; c \wedge d = c \wedge d' = c' \wedge d; c \vee d < c' \vee d'; c \wedge d < c' \wedge d'$. Thus, the subalgebra of A generated by c and d meets the requirements of the lemma.

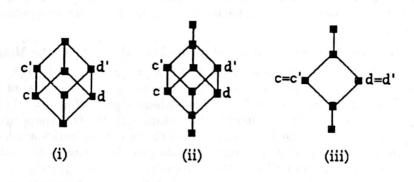


FIGURE 1. $C \leq A$

Lemma 2.3. Let A be a homorphic image of 4 such that there exists $c \in A$ with c = c'. Then either 4 or the algebra depicted in Figure 1, (iii), is isomorphic to a subalgebra of A.

Proof. Let $f : A \longrightarrow 4$ be a surjective homomorphism. Clearly, $u = f(c) \notin \{0, 1\}$. Let v be the Boolean complement of u. Notice that u' = u and v' = v. Fix $b \in A$ such that f(b) = v. Put $a = b \wedge b'$ and $d = (c \wedge a') \vee a$. One checks now that f(d) = v. Since u and v are not comparable, so are c and d. Using now the hypothesis about c and the fact that $a \leq a'$ one gets d = d'. Thus, the subalgebra of A generated by c and d meets the requirements of the lemma. \Box

Proof of Proposition 2.1. By Birkhoff's subdirect representation theorem, there exists $A \in \mathcal{Q} - \mathcal{K}$ such that one of its homomorphic images is isomorphic to a subalgebra of 4. In view of the two previous lemmas, one of the algebras depicted in Figure 1 is in \mathcal{Q} . Let us denote such an algebra by C. Let D be the subalgebra of C generated by $t = c \lor d$. The proposition now follows from observing that the \mathcal{Q} -congruence on D generated by (0, t') coincides with the congruence on D generated by the same element and this \mathcal{Q} -congruence can not be extended to a \mathcal{Q} -congruence on C.

§3. QUASIVARIETIES THAT GENERATE \mathcal{K}

We start this section proving that there is a least strict quasivariety of De Morgan algebras. Notice that any strict quasivariety contains the variety \mathcal{B} of Boolean algebras.

Proposition 3.1. C_4 generates the least strict quasivariety of De Morgan algebras.

Proof. Let Q be a strict quasivariety of De Morgan algebras. Clearly $\mathcal{B} \subset Q$, so, there exists $A \in Q$ and $a \in A$ such that $0 < d = a \land a'$. Clearly $d \leq d' = a \lor a' < 1$. If d < d', the subalgebra of A generated by d is isomorphic to C_4 ,

so $C_4 \in Q$. If d = d', denote by D the subalgebra of A generated by d. As $2 \times D$ has a subalgebra isomorphic to C_4 , $C_4 \in Q$. Hence the proposition is established. \Box

We now recall some definitions and results from [4]. Let L be a De Morgan algebra. For a non-empty subset X of L, let $X' = \{x' : x \in X\}$. $T(L) \stackrel{def}{=} \{t \in L : t \leq t'\} = \{x \wedge x' : x \in L\}$. Denote by n(L) the ideal of the underlying lattice generated by T(L). L is a Kleene algebra iff n(L) = T(L) iff $T(L)' = \{x \lor x' : x \in L\}$ is a filter [4], Proposition 1.2). $\Theta(n(L))$ (respectively $\Theta(n(L)')$) denote the least $\mathcal{D}_{0,1}$ -congruence of the underlying lattice which has n(L) (respectively n(L)') as a congruence class (here $\mathcal{D}_{0,1}$ denotes the variety of bounded distributive lattices). More precisely, $x \equiv y\Theta(n(L))$ (respectively $\Theta(n(L)')$) iff there exists $j \in n(L)$ (respectively $k \in n(L)'$) such that $x \lor j = y \lor j$ (respectively $x \land k = y \land k$). Let $\beta(L)$ be the least congruence on the De Morgan algebra L such that the quotient algebra $L/\beta(L)$ is a Boolean algebra. Then $\beta(L) = \Theta(n(L)) \lor \Theta(n(L)')$ [4], Theorem 1.3).

Lemma 3.2. Let Q be a strict quasivariety cointained in \mathcal{K} . Let $L \in Q_{RSI}$. Let α be the Q-monolith of L. Then there exist $t, u \in n(L)$ with t < u such that (t, u) generates α .

Proof. We first claim that one may choose a, b such that $a \equiv b\Theta(n(L))$ or $a \equiv b\Theta(n(L)')$ with the pair (a, b) generating α . To prove the claim, notice that $\beta(L) = \Theta(n(L)) \vee \Theta(n(L)')$ is a Q-congruence, so $\alpha \subseteq \Theta(n(L)) \vee \Theta(n(L)')$. Pick $c, d \in L$ with c < d such that (c, d) generates α . Thus $c \equiv d(\Theta(n(L)) \vee$ $\Theta(n(L)')$. It follows from this that for some $j \in n(L)$ and $k \in n(L)', (c \lor j) \land k = 0$ $(d \lor j) \land k$. If $c \lor j = d \lor j$ then $c \equiv d\Theta(n(L))$. In this case, take a = c and b = d. Otherwise, take $a = c \lor j$ and $b = d \lor j$. In this case $a \equiv b\Theta(n(L)')$. This ends the proof of the claim. Assume now that $a \equiv b\Theta(n(L))$. Observe that since L as a lattice is distributive, either $a \wedge a' \neq b \wedge a'$ or $a \wedge b' \neq b \wedge b'$ or $a \wedge a' \neq b \wedge b'$. If $a \wedge b' \neq b \wedge b'$, take $t = a \wedge b' \wedge b$ and $u = (a \wedge b') \vee (b \wedge b')$. From $a \wedge b' \equiv b \wedge b' \Theta(n(L))$ and $b \wedge b' \in n(L)$ it follows that $a \wedge b' \in n(L)$. Then, because n(L) is an ideal, $u, t \in n(L)$. The case $a \wedge a' \neq b \wedge a'$ is taken care of similarly. If $a \wedge a' \neq b \wedge b'$, take $u = (a \wedge a') \wedge (b \wedge b')$ and $t = (a \wedge a') \vee (b \wedge b')$. Whatever the case is, $u, t \in n(L)$ and (u, t) generates α . Finally, if $a \equiv b\Theta(n(L)')$ then $b' \equiv a'\Theta(n(L))$ and α is also generated by (b', a')and in this situation one can argue as above. Now the proof is complete.

If $A \in Q$ and $a, b \in A$ then $\Theta_Q^A(a, b)$ denotes the least Q-congruence on A which contains the pair (a, b); i.e., the Q-congruence generated by (a, b).

Corollary 3.3. In the previous lemma, if Q has RCEP then t = 0.

Proof. Assume t > 0. As α is the least non-zero Q-congruence, $t \equiv u\Theta_Q^L(0,t)$. Now, since Q has RCEP, by Proposition 2.4 of [3], $t \equiv u\Theta_Q^S(0,t)$ where $S \equiv \{0 < t < u < u' < t' < 1\}$ is the subalgebra of L generated by $\{t, u\}$. Observe next that $\Theta_Q^S(0,t) = \Theta^S(0,t)$ because $S/\Theta^S(0,t) \cong \{0, u, u', 1\} \in Q$ (Proposition 3.1). But, as it is easily checked, $u \not\equiv t\Theta^{S}(0,t)$, a contradiction. Then t must be 0. \Box

Proposition 3.4. Let $Q \neq Q(C_4)$ be a strict quasivariety of Kleene algebras. Then Q does not have RCEP.

Proof. Assume on the contrary that Q has RCEP. Let $L \in Q_{RSI}$ such that L is not a chain (such an L must exist; otherwise Q would be the quasivariety generated by C_4) and let α be the Q-monolith of L. By Lemma 3.2 and Corollary 3.3 we may pick $b \in L$ with b < b' such that the pair (0, b) generates α . Pick $a \in L$ non-comparable to b. Now look at the two possibilities: $a \wedge b = c > 0$; $a \wedge b = 0$. In the first one, α is also generated by (0, c) and therefore $b \equiv 0 \Theta_Q^L(0, c)$. Since by assumption Q has RCEP, $b \equiv 0 \Theta_Q^S(0, c)$ where $S = \{0 < c < b < b' < c' < 1\}$ is the subalgebra of L generated by $\{c, b\}$. It is evident that $\Theta_Q^S(0, c) = \Theta^S(0, c)$, so $b \not\equiv 0 \Theta^S(0, c)$ and this is a contradiction. Let us consider now the possibility $a \wedge b = 0$. Denote by A the subalgebra of L generated by a and b. Without lost of generality we may assume that either a < a' or $a \wedge a' = 0$. All other possibilities about the comparability of a and a' can be reduced to one of these two. Assume first that a < a'.

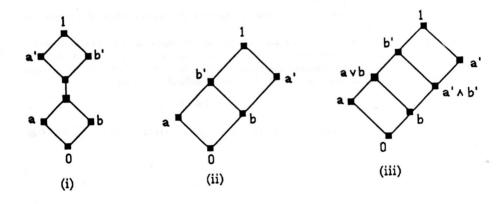


FIGURE 2. $A \leq L$

Observe that $a \lor b < (a \lor b)'$ because n(L) is an ideal $(a \lor b = (a \lor b)'$ is not possible because $\mathcal{Q} \subset \mathcal{K}$). Now, since α is the least non-zero \mathcal{Q} -congruence and \mathcal{Q} has RCEP, $b \equiv \Theta \Theta_{\mathcal{Q}}^{\mathcal{A}}(0, a)$ (see Figure 2, (i)). Next, notice that $A/\Theta^{\mathcal{A}}(0, a) \cong$ $C_{\mathcal{A}} \in \mathcal{Q}$; so, $\Theta_{\mathcal{Q}}^{\mathcal{A}}(0, a) = \Theta^{\mathcal{A}}(0, a)$ and consequently $b \not\equiv \Theta \Theta^{\mathcal{A}}(0, a)$ which is a contradiction. Now we consider the possibility $a \land a' = 0$. By Corollary 2.5 of [7], $\Theta(x, 1) = \Theta_{lat}(x, 1), x \in \{a, a'\}$, and these two congruences are complement of each other (see [8], Lemma 3.10). Thus $a' \land b > 0$ ($a' \land b = 0$ implies $b \equiv \Theta(a', 1)$). If a' and b are not comparable, we proceed as in the earliest case. If a' > b ($a' \leq b$ is not possible) then A looks like either the

HERNANDO GAITÁN

algebra depicted in Figure 2, (ii) or the one in 2, (iii). If $a \vee b = b'$ the Q-congruence generated by (0, a) on the subalgebra of A generated by a can not be extended to a Q-congruence on A, which is a contradiction. If $a \vee b < b'$, then $b \equiv 0(\Theta_Q^A(0, a) = \Theta^A(0, a))$, obviously a contradiction. Now the proof of the proposition is complete. \Box

Question. Does $Q(C_4)$ enjoy RCEP? Proposition 2.9 of [3] can not be used to answer this question in the affirmative because according to Proposition 2.4 of [5], no strict quasivariety of De Morgan algebras is relatively congruence distributive. On the other hand, the method of proof of Fact 2.5 of [3] can not be used to answer it in the negative because \mathcal{M} is not congruence permutable.

REFERENCES

- 1. R. Balbes and P. Dwinger, *Distributive lattices*, University of Missouri Press, Columbia, Missouri, 1974.
- S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York, 1981.
- 3. J. Czelakowski and W. Dziobiak, The deduction-like theorem for quasivarieties of algebras and its applications, vol. Preprint.
- 4. W. H. Cornish and P. R. Fowler, Coproducts of Kleene algebras, J. Austral Math. Soc. (Series A) 27 (1979), 209-220.
- 5. W Dziobiak, Finitely generated congruence distributive quasivarieties of algebras, To appear in Fund. Math..
- 6. H. Gaitan, Quasivarieties of distributive p-algebras, To appear in Algebra Universalis.
- 7. H. P. Sankappanavar, A characterization of principal congruences of de Morgan algebras and its applications, In Mathematical Logic in Latin America. A.I. Arruda, R. Cuaqui and N.C.A. da Costa, eds. (1980), 341-349, North-Holland, Amsterdam.

(Recibido en julio de 1991)

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, MÉRIDA 5101 - VENEZUE-LA