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QUASIVARIETIES OF DE MORGAN ALGEBRAS: RCEP

HERNANDO GAITAN

Universidad de los Andes, Mérida

ABSTRACT. In this note we prove that there is a least strict quasivariety (i.e., a
quasivariety which is not a variety) of De Morgan algebras and that such a qua-
sivariety is perhaps the only strict quasivariety enjoying the relative congruence
extension property.

§1. INTRODUCTION

For a quasivariety Q and an algebra A € Q. let C'ong(A) = {© € Con(A) :
A/O € Q}. where ('on(A) denotes the set of congruence relations on A. The
elements of C'ong(A) are called Q-congruences on A. A is said to have relative
(to Q) congruence extension property (further on RCEP) if for every subalgebra
B of A. any Q-congruence on B is the restriction of a Q-congruence on A. Q
has RCEP if all of its elements have this property. The purpose of this note
1s to prove that there is a least strict quasivariety of De Morgan algebras and
such a quasivariety is perhaps the only strict quasivariety enjoying RCEP. For
more results in this direction we refer the reader to [3] and [7]. Recall that a
De Morgan algebra is an algebra (A; A, V. ,0,1) of type (2,2,1,0,0) such that
the reduct (A;A,V,0,1) is a bounded distributive lattice and the following
identities are satisfied:

"

=z  (zVy) =2 AY.

The lattice of subvarieties of De Morgan algebras is a four-element chain 7 C
B C K C M where 7. B, K. and M denote respectively the varieties of
trivial, Boolean, Kleene and De Morgan algebras. There are three non-trivial
subdirectly irreducible De Morgan algebras each of which generates one of the
non-trivial varieties above: B is generated by the two- element chain 2 = {0, 1},
K is generated by the three element chain 3 = {0,a,1} in which @’ = a and M
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by the four-element complemented lattice 4 = {0, a,b,1} in which a’ = a and
b = b. B satisfies the identity z A2’ = 0 and K sastisfies z Az’ < yVy'. Fora
systematic study of M see [1].

The strategy of the paper is based on the analysis of the two possible cases
concerning the variety generated by the strict quasivariety. Section 2 is devoted
to the case in which such a variety is M. It is proved that under this assumption
no strict quasivariety has RCEP. In Section 3 it is proved that, except for the
quasivariety generated by the four element chain Cy = {0 < a < a’ < 1} (which
is the least strict quasivariety of De Morgan algebras), no strict quasivariety
such that the least variety containing it is K has RCEP. We still do not know
wheter or not Q(C4) has RCEP. Observe that there are not strict quasivarieties
contained in B.

The basic concepts of universal algebra can be found in [2]. We follow the
notation of this book, particularly for the operators on classes of algebras. In
addition, by A <gsp H,-GI A; we mean that A is a subdirect product of the
family {A; :i € I}. A < B means that A is a subalgebra of B. Any class A of
algebras such that Q is the least quasivariety containing A is said to generate Q
and in this case we write @ = Q(A). An algebra A € Q is said to be relatively
subdirectly irreducible or, Q-subdirectly irreducible, if it can not be subdirectly
embedded in a direct product of algebras of Q unless the composite of the
embedding with one of the projections is an isomorphism. It can be shown
that A € Q is relatively subdirectly irreducible iff there is a least non-zero Q-
congruence on A. Such a congruence is called the Q-monolith of A. We denote
the class of Q-subdirectly irreducible members of Q@ by Qrs;.

§2. QUASIVARIETIES THAT GENERATE M
In this section we prove the following proposition:

Proposition 2.1. Let Q be a strict quasivariety such that H(Q) = M.
Then Q does not have RCEP.

We pave the way for the proof of this proposition with two lemmas.

Lemma 2.2. Let A be a homomorphic image of 4 such that for all z € A,
z' # z. Then, either the algebra depicted in Figure 1, (i) or the one depicted
in 1, (ii) is in I1S(A)

Proof. Let f: A — 4 be a surjective homomorphism. Fix an element u € A
such that f(u) € {0,1}. Pick v € A such that f(u)’ = f(v). Let a = uA v
and b= v Av'. Clearly, a and b’ are not comparable. Let ¢ = (a V b) A a’ and
d = (aVb)AY. It is routine to verify the following: c and d are not comparable;
c<c;d<d;dvd=cVd =cVd;cAd=cAd =c Ad;cvd<IVd,
¢Ad < ¢ Ad'. Thus, the subalgebra of A generated by ¢ and d meets the
requirements of the lemma.
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@) (ii) (iii)

FIGURE1l. C< A

Lemma 2.3. Let A be a homorphic image of 4 such that there exists
c € A with ¢ = ¢’. Then either 4 or the algebra depicted in Figure 1, (iii), is
isomorphic to a subalgebra of A.

Proof. Let f : A — 4 be a surjective homomorphism. Clearly, u = f(c) &
{0,1}. Let v be the Boolean complement of u. Notice that v’ = u and v/ = v.
Fix b € A such that f(b) = v. Put a = bA Y and d = (¢ Aa’) Va. One checks
now that f(d) = v. Since u and v are not comparable, so are ¢ and d. Using
now the hypothesis about ¢ and the fact that a < a’ one gets d = d’. Thus, the
subalgebra of A generated by ¢ and d meets the requirements of the lemma. [

Proof of Proposition 2.1. . By Birkhoff’s subdirect representation theorem,
there exists A € @ — K such that one of its homomorphic images is isomorphic
to a subalgebra of 4. In view of the two previous lemmas, one of the algebras
depicted in Figure 1 is in Q. Let us denote such an algebra by C. Let D be
the subalgebra of C generated by t = ¢ V d. The proposition now follows from
observing that the Q-congruence on D generated by (0,t’) coincides with the
congruence on D generated by the same element and this Q-congruence can
not be extended to a Q-congruence on C'.

§3. QUASIVARIETIES THAT GENERATE K

We start this section proving that there is a least strict quasivariety of De
Morgan algebras. Notice that any strict quasivariety contains the variety B of
Boolean algebras.

Proposition 3.1. C4 generates the least strict quasivariety of De Morgan
algebras.

Proof. Let Q be a strict quasivariety of De Morgan algebras. Clearly B C Q,
so, there exists A € @ and a € A such that 0 < d=aAda'. Clearlyd < d' =
aVa < 1. If d <d, the subalgebra of A generated by d is isomorphic to Cy,
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so C4 € Q. If d = d', denote by D the subalgebra of A generated by d. As
2 x D has a subalgebra isomorphic to Cy, C4 € Q. Hence the proposition is
established. [

We now recall some definitions and results from [4]. Let L be a De Morgan

algebra. For a non-emty subset X of L, let X’ = {2/ : z € X}. T(L) 4/

{teL:t<t}={zAz :z € L}. Denote by n(L) the ideal of the
underlying lattice generated by T'(L). L is a Kleene algebra iff n(L) = T(L) iff
T(L) ={z V' :z € L} is afilter [4], Proposition 1.2). ©(n(L)) (respectively
©(n(L)")) denote the least Dy 1-congruence of the underlying lattice which has
n(L) (respectively n(L)') as a congruence class (here Dy ; denotes the variety
of bounded distributive lattices). More precisely, ¢ = y©(n(L)) (respectively
©(n(L)")) iff there exists j € n(L) (respectively k € n(L)') such that zVj = yVj
(respectively £ Ak = yAk). Let B(L) be the least congruence on the De Morgan
algebra L such that the quotient algebra L/B(L) is a Boolean algebra. Then
B(L) = ©(n(L)) VO(n(L)’) [4], Theorem 1.3 ).

Lemma 3.2. Let Q be a strict quasivariety cointained in K. Let L € QRrsy.
Let o be the Q-monolith of L. Then there exist t,u € n(L) with t < u such
that (t,u) generates a.

Proof. We first claim that one may choose a,b such that a = bO(n(L)) or
a = bO(n(L)") with the pair (a,b) generating . To prove the claim, notice
that B(L) = ©(n(L))vO(n(L)') is a Q-congruence, so a C O(n(L))VO(n(L)").
Pick ¢,d € L with ¢ < d such that (c,d) generates a. Thus ¢ = d(©(n(L)) V
©(n(L)")). It follows from this that for some j € n(L) and k € n(L)’, (cVi)Ak =
(dVJ)Ak. IfcVvj=dVjthen c = dO(n(L)). In this case, take a = ¢ and
b = d. Otherwise, take a = ¢V j and b = d V j. In this case a = bO(n(L)’).
This ends the proof of the claim. Assume now that a = bG(n(L)). Observe
that since L as a lattice is distributive. either a Aa’ #bAa or a AV #bAY
oraANa #bAV. IfaANb #bAY taket =aAb Aband u= (aAb)V(bADY).
From a Ab = bAVO(n(L)) and bA Y € n(L) it follows that a A b’ € n(L).
Then, because n(L) is an ideal, u,t € n(L). The case a Aa’ # bAd is
taken care of similarly. If a Aa’ # b AV, take u = (aAa’) A(bAY) and
t=(aAd)V (bAY). Whatever the case is, u,t € n(L) and (u,t) generates a.
Finally, if a = b©(n(L)’) then b’ = a’©(n(L)) and a is also generated by (¥, a’)
and in' this situation one can argue as above. Now the proof is complete. [

If A€ Q and a,b € A then Os(a, b) denotes the least Q-congruence on A
which contains the pair (a,b); i.e., the Q-congruence generated by (a, b).

Corollary 3.3. In the previous lemma, if @ has RCEP thent = 0.

Proof. Assume t > 0. As a is the least non-zero Q-congruence, t = uelé(O, t).
Now, since @ has RCEP, by Proposition 2.4 of [3], t = u©g(0,t) where
S={0<t<u<u <t <1} is the subalgebra of L generated by {t,u}.
Observe next that ©3(0,t) = ©5(0,¢) because S/05(0,t) = {0,u,u’,1} € Q
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(Proposition 3.1). But, as it is easily checked, u # t©5(0,t), a contradiction.
Then t must be 0. O

Proposition 3.4. Let Q@ # Q(Ci) be a strict quasivariety of Kleene
algebras. Then Q does not have RCEP.

Proof. Assume on the contrary that Q has RCEP. Let L € Qprsy such that
L is not a chain (such an L must exist; otherwise @ would be the quasivari-
ety generated by Cy) and let o be the Q-monolith of L. By Lemma 3.2 and
Corollary 3.3 we may pick b € L with b < b’ such that the pair (0,b) gener-
ates a. Pick @ € L non-comparable to b. Now look at the two possibilities:
aAb=c>0; aAb=0. In the first one, o is also generated by (0,c) and
therefore b = 005(0,c). Since by assumption Q has RCEP, b = 00(0,¢)
where S = {0 < ¢ < b < b’ < ¢’ < 1} is the subalgebra of L generated by
{c,b}. It is evident that ©5(0,c) = ©5(0,¢), so b # 00°(0,c) and this is
a contradiction. Let us consider now the possibility a A b= 0. Denote by A
the subalgebra of L generated by a and b. Without lost of generality we may
assume that either a < a’ or a A a’ = 0. All other possibilities about the compa-
rability of @ and a’ can be reduced to one of these two. Assume first that a < a'.

0 0
) (if)

FIGURE 2. A<L

Observe that a Vb < (aV b)’ because n(L) is an ideal (aV b = (aVb)’is not
possible because @ C K). Now, since « is the least non-zero Q-congruence and
Q has RCEP, b = 003(0, a) (see Figure 2, (i)). Next, notice that A/©4(0,a) =
Cs € Q; s0, ©4(0,a) = ©4(0,a) and consequently b # 004(0,a) which is
a contradiction. Now we consider the possibility a Aa’ =0. By Corollary
2.5 of [7], ©(z,1) = Ouae(z,1), € {a,a'}, and these two congruen- ces are
complement of each other (see [8], Lemma 3.10). Thus ' Ab > 0 (e’ Ab =0
implies b = 00(a’,1)). If a’ and b are not comparable, we proceed as in the
earliest case. If a’ > b (a’ < b is not possible) then A looks like either the
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algebra depicted in Figure 2, (ii) or the one in 2, (iii). If a Vb = b’ the Q-
congruence generated by (0, a) on the subalgebra of A gererated by a can not
be extended to a Q-congruence on A, which is a contradiction. If a Vb < ¥,
then b = 0(04(0,a) = ©4(0,a)), obviously a contradiction. Now the proof of
the proposition is complete. [

Question. Does Q(C4) enjoy RCEP? Proposition 2.9 of [3] can not be used
to answer this question in the affirmative because according to Proposition 2.4
of [5], no strict quasivariety of De Morgan algebras is relatively congruence
distributive. On the other hand, the method of proof of Fact 2.5 of [3] can not
be used to answer it in the negative because M is not congruence permutable.

REFERENCES

1. R. Balbes and P. Dwinger, Distributive lattices, University of Missouri Press, Columbia,
Missouri, 1974.

2. S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag,
New York, 1981.

3. J. Czelakowski and W. Dziobiak, The deduction-like theorem for quasivarieties of alge-
bras and its applications, vol. Preprint.

4. W. H. Cornish and P. R. Fowler, Coproducts of Kleene algebras, J. Austral Math. Soc.
(Series A) 27 (1979), 209-220.

5. W Dziobiak, Finitely generated congruence distributive quasivarieties of algebras, To
appear in Fund. Math..

6. H. Gaitan, Quasivarieties of distributive p-algebras, To appear in Algebra Universalis.

7. H. P. Sankappanavar, A characterization of principal congruences of de Morgan algebras
and its applications, In Mathematical Logic in Latin America. A.l. Arruda, R. Cuaqui
and N.C.A. da Costa, eds. (1980), 341-349, North-Holland, Amsterdam.

(Recibido en julio de 1991)

DEPARTAMENTO DE MATEMATICAS, FACULTAD DE CIENCIAS, MERIDA 5101 — VENEZUE-
LA



