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ON DIHEDRAL ALGEBRAIC FUNCTION FIELDS·

WILSON ZUNIGA

§1. INTRODUCTION

The purpose of this note is to present some results on the arithmetic of
dihedral algebraic function fields. A dihedral algebraic function field will be an
extension N/Yiq of Yiq(X)/Yiq, whose Galois group G = Gal (N/Yiq(X) is the
dihedral group Du, £ f:. 2,p, where p is the characteristic of Yiq(X) and £ is
a prime number. We will especifically present results on ramification of prime
divisors of Yiq(X)/Yiq in N/Yiq, discriminant, genus, relations among the zeta
function of such extension and the zeta functions of some of its subextensions,
and similar relations for zero-degree prime divisor class number and ideal class
number.

Using the well-known presentation of Du

Du =< u,r : u' = l,r2 = l,ur = ru-1 > ,

it is an easy matter to show that all non-trivial subgroups of Du are Hj =
< ruj >, j = 0,1," .£ - 1, H =< a >; H is the unique normal subgroup
of D2f and the subgroups Hj are conjugates by pairs. Let L = K (H) and
Lj = K(Hj), j = 0,1,· .. ,£ - 1, be the corresponding intermediate fields in
N/Yiq(X), so that, by Galois theory fundamental theorem, the extensions N/L,
L/Yiq(X) and N/Lj, j = 0, 1, ... ,£-1, are Galois extensions, while Lj/Yiq(X)
are not. The subfields Lj, j = 0, 1, ... , £ - 1, are conjugated by pairs.

§2. MAIN RESULTS

The following three theorems will be proved here:

Theorem 1. Let N/Yiq be a dihedral algebraic function field of charac-
teristic p f:. 2,£. Then the prime divisors of Yiq(X)/Yiq can be divided in six
disjoint classes according to their decompositions in the extensions L/Yiq(X),
Lo/Yiq(X), N/Yiq(X), as shown in Table 1.

This work is based on the author's Master Thesis, submitted at the Universidad de los
Andes, Santafe de Bogota.
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Theorem 2. Let N /JFq as above. Then
(2A) The discriminants of N/JFq(X), L/JFq(X), and Lo/JFq(X) are related

by

V (N/JFq(X» = (V(L/JFq(X»/ (V(LojJFq(X)))2

(2B) The genus of N /JFq is given by

UN = 1- ze + ~{ L fdJl'q(x)(p(X» + L 2(£ - l)dJl'q(x)(P(X»}
p(X)EC, p(x )EC~UC3

(2C) The genera of N jJFq, LjJFq, and LojJFq are related by

UN = g£ + 2g£0 .

Theorem 3. Let N /JFq as above. Then
(3A) The zeta function of N/JFq, LjJFq, and JFq(X)jJFq are related by

(3B) The zero-degree divisor class number of N jJFq is given by

h(N) = h(L)h(Lo)2 .

(3C) The ideal class number h(ON) of N is given by

where a is equal to 1 if the infinite prime ofJFq(X)jJFq is decomposed in N/JFq
as the prime divisors in class C5 in Table 1;otherwise, a is equal to zero. h( 0 £)
and h(O£o) denote the ideal class number of Land Lo, respectively.

As it has been pointed out by the anonymous referee, Theorem 3 is a special
case of a more general result due to Frey & Ruck, and Kani; their result depends
on the explicit knowledge of a relation between norm idempotents in the group
algebra [FR], [K]. The result (3C) was proved by Brauer [B] in the case of
number fields. In this note we use a direct approach to the problem following
closely the classical examples on this matter [A], [Z].
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§3. PROOF OF THE THEOREMS

In this section we will use the notations and results for ramification groups
as established in [S] (Chap. I-IV).

We shall accomplish the proof of Theorem 1 by means of a series of lemmata.

Lemma 1. Let p(X) be a prime of lFq(X)/lFq , finite or infinite, ramifying
in L/lFq, i.e., p(X) = ~2, where ~ is a prime divisor of L/IFq. Then, in N/IFq,
~ is the product of £ different prime divisors. In particular, ~ does not ramify.

Proof. Since N/ L is a Galois extension and £ = [N : L] is a prime, then
either ~ is inert (~ = l.13, where l.13 is a prime divisor of N/IFq), or is totally
ramified (~ = l.13l, where l.13 is a prime divisor of N/IFq), or splits completely
(~ = l.131l.132·· ·l.13l, where the l.13i are E distinct prime divisors of N/IFq). In
order to prove the lemma, it is sufficiente to show that the first two possibilities
cannot occur. Indeed, if~ = l.13 then G1(l.13) = DN/E.(X)(l.13) = Du; clearly l.13 is
ramified in NjIFq(X) and eN/E.(X)(l.13) = 2; thus #Go(l.13) = #TN/E.(X)(l.13) =
2, but this contradicts the fact that Go(l.13) is a normal subgroup of G-1(l.13) =
Du. Therefore ~ = l.13 cannot hold. To see that ~ = l.13l does not hold, let
us first remark that since p :f. 2, then G1 (l.13) is a p-subgroup (see [S], Chap.
IV, Paragraph 2, Corollary 3) and since p :f. £ we must have G1(l.13) = 1, and
GO/G1 ~ Du. But this is impossible since GO/G1 is always a cyclic group (see
[5], Chap. IV, Paragraph 2, Corollary 1). Therefore Q5 = l.13l cannot hold. D

Lemma 2. Let N, Land u, be as above. Then
(1) No prime divisor of IFq(X)/IFq, finite or infinte, is inert in N/IFq(X).

In particular, no prime divisor oflFq(X)/lFq is simultaneously inert in
L/IFq(X) and N/ L, or simultaneously inert in Lo/lFq(X) and N/ Lo·

(2) No prime divisor oflFq(X)/lFq ramifies totally in N/IFq.

Proof. (1) Let p(X) be a prime divisor of IFq(X)/IFq, inert in L/IFq(X) and
N/ L, then TN/E.(X)p(X) = 1 and DN/Jr.(x)(p(X) = Du, so that Du ~
DN/Jr.(x)(p(X))jTN/Jr.(x)(p(X)) ~ Gal (Np(x)/IFq(X)p(X) , which is not
possible since the latter group is cyclic. (2) Let us suppose that p(X) to-
tally ramifies, so that #TN/Jr.(X)(l.13) = eN/Jrq(X)(l.13) = 2£ and necessarily
eL/r.(X)(l.13) = £ > 1, which contradicts lemma 1. D

Lemma 3. Let N, L, and Lo as above.
(1) Let p(X) be a prime divisor oflFq(X)/lFq ramified in N/L. Then p(X)

in Lo/lFq is an i-power of a prime divisor of Lo/lFq.

(2) Let p(X) be a prime divisor oflFq(X)/lFq ramified in L/IFq(X). Then
p(X) in Lo/lFq decomposes as follows:
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Proof. (1) According to Lemma 1, the prime divisor p(X) decomposes in
LjIFq(X) either as p(X) = 1!5or p(x) = 1!511!52'Since f is a prime, then in
NjIFq we have p(X) = '+l1or p(X) = '+l1'+l~. Now the prime divisors '+l, '+l1 and
'+l2 have as decomposition groups D21, Hand H respectively, while the inertia
subgroups for each one of them is H. But

TN/lI'.(x/'+l)n Gal (NjLo) = 1, TN/lI'.(X)('+li)n Gal (NjLo) = 1,

DN/lI'.(X)('+l) n Gal (Nj Lo) = Ho, DN/lI'.(X)('+li) n Gal (Nj Lo) = 1, i = 1,2.

The equalities in the first row indicate that the prime divisors '+l, '+l1 and'+l2
do not ramify in N j Lo, while the first equality in the second row shows that
dN/Lo('+l) = 2 and rN/Lo('+l) = 1. Therefore, in the first case (p(X) = '+l1), we
have p(X) = 2!1I in LojIFq, where 2!1 is the prime divisor of LojIFq lying under

'+l.
Let 2!11 and 2!12 be the prime divisors of LojIFq lying over '+l1 and '+l2,

respectively. If 2!11 = 2!12, we have the result, since p(X) = 2!11 in LojIFq• If
2!11 :I 2!12, we get p(X) = 2lJ12!1~ in LojIFq; but since rN/Lo('+li) = 2, we get
the following decomposition of p(X) in N jIFq: p(X) = '+ll'+l~l'+l~'+l~l,where '+l1'
q3~, 'iJ2' 'iJ~ are different prime divisors in N jIFq, which contradicts our initial
hypothesis on the decomposition of p(X) in N jIFq.

(2) If p(X) =-= \!52in LjIFq(X), then the prime divisor 1!5decomposes in N j L
as 1!5= 'iJl'+l2" ''iJI; thus the decomposition subgroups DN/lI'.(X) ('iJi), i =
1,2, ... .E, are subgroups of order 2, and p(X) = u('iJd2.:r2('iJd2 ... U

l
-
1 ('iJd2,

so that the decomposition subgroups DN/lI'.(X) ('iJ;), i = 1,2,··· ,f, are mutual-
ly different.

By modifying the indexes, if necessary, we may suppose that LojIFq is the
decomposition field of 'iJi. Let now 2!1i lying under 'iJi. Since dN/lI'.(X)('iJi) = 1,
eN/lI'.(X)('iJ;) = 2, and rN/lI'.(X)('iJ;) = t, we get:

T . _ { Gal (Nj Lo) n TN/lI'.(x)('iJ;) = u,n TN/lI'.(X) ('iJi) = 1 if i :I 1,
N/Lo('iJ.) - H'f . - 1

01 1 - .

This implies that

{
I if i:/; 1 ,

eN/Lo('iJ;) = 2 if i= 1 , {
2ifi:/;l,

rN/Lo('iJ;) = 1 if i = 1,

If i :I 1, not all 2!1i are distinct, since otherwise p(X) would not be a product
of f distinct prime divisors in NjIFq, because of the value of rN/Lo('iJ;)· Let t
be the number of distinct 2!1i (i :I 1), so that 2t = f - 1. Due to all of the
above, we must have the following decomposition in N j Lo:

p(X) = 2!112!1~.. ·2!1[l+1)/2· 0
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Lemma 4. Let p(X) be a prime divisor of IFq(X)/lFq not ramified in
N/lFq(X). Then, in N/lFq, p(X) decomposes as follows:

(1) Ifp(X) is inert in L/lFq(X), then p(X) = ~1~2" '~l, where tbe~i's
are prime divisors of N/lFq.

(2) If p(X) splits in L/lFq(X), tben either p(X) = ~1~2 or p(X) =
~I ~2 ... ~l~~ ~~ ... ~~ where tbe ~i 's and the ~~ 's are prime divisors
of N/lFq.

Proof (1) If p(X) is inert in L/lFq(X), it cannot be inert in N/L. Since,
by hypothesis, p(X) does not ramify in N/lFq(X), then p(X) = ~1~2" '~l in
N/lFq(X).

(2) The proof proceeds along the same lines. 0
Lemma 5. Let p(X) be a prime divisor of IFq(X)/lFq, not ramified in

N/lFq(X). Then:
(1) If p(X) is inert in L/lFq(X), then in Lo/lFq(X), p(X) decomposes as

p(X) = 21hW2·· ,W(l+l)/2.
(2) If p(X) splits in L/lFq(X), then p(X) decomposes in Lo/lFq(X) either

as p(X) = WI or as p(X) = WI2lJ2 ... Wl, wbere the Wi'S are prime
divisors of Lo/lFq.

Proof. (1) Let p(X) be a prime divisor of IFq(X)/lFq, inert in L/lFq. Since
p(X) does not ramify in N/lFq(X), then accordingly to Lemma 4, p(X) =
~1~2" '~l in N/lFq, so that eN/I'.(X)(~i) = 1, dN/I'.(x)(~d = 2 and
rNI'.(x)(~d = 1; that is, #DN/I'.(x)(~d = 2, #TN/I'.(x)(~d = 1, and
DN/][,.(X)(~i) i- DN/I'.(X)(~i), if i :I j, as in the second part of Lemma 3.
By a convenient change of indexes, we may suppose that Lo/lFq is the decom-
position field of ~1, so that DN/Lo(~d = 1 if i :I 1, and DN/Lo(~d = Ho,
TN/Lo(~d = 1. The proof then goes on along the lines of that of Lemma 3,
(2).

(2) According to Lemma 4, if a prime divisor p(X) of IFq(X)/lFq does not
.ramify in N/lFq(X), and splits in L/lFq(X), then either p(X) = ~1~2 or
p(X) = ~1~2" '~l~~~~" .~~. In the first case, we have eN/r.(X)(~i) = 1,
dN/I'.(X)(~i) = f, and rN/I'.(x)(~d = 2, so that TN/r.(x)(~d = 1. Thus, in
N/ Lo, we have TN/Lo(~d = 1, and consequentlyeN/Lo(pgi) = 1, dN/Lo(~d =
1, and rN/Lo(pgd = 2. Let W1 and W2 be prime divisors lying under ~I and
~2, respectively. If WI :I W2, rN/Lo(~;) = 2 implies that the decomposition
of p(X) in N/lFq has the form p(X) = ~I ~2~~ ~~, where all these prime di-
visors are mutually distinct. But this contradicts our initial hypothesis on the
decomposition of p(X). Therefore, WI = W2 and p(X) = W1 in Lo/lFq. The
second case is similarly proved. 0

Proof of Theorem 1. Given a prime divisor in IFq(X)/lFq, finite or infinite,
its decomposition in L/lFq(X) can only take one of the following forms:

(1) p(X) = 02
, (2) p(X) = 0 ,
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In the first case, by lemmata 1 and 3, (2), p(X) ramifies in N/Yiq(X) as the
prime divisors of class C1, in the first row of Table 1. If the given prime divisor
ramifies in N/Yiq(X), then in the cases (2) and (3), by virtue of Lemma 3, (1),
and the fact that the extension N/ L is galoisian, we have the second and third
rows in Table 1, i.e., the prime divisors of classes C2 and Ca. If the given prime
divisor does not ramify in N/Yiq(X), then in case (2), by virtue of Lemma
4, (1), and Lemma 5, (1), we have the fourth row of Table 1, i.e., the prime
divisors of class C4. In the case (3), as a consequence of lemmata 4, (2), and
5, (2), we have the fifth and sixth rows of Table 1, i.e., the prime divisors of
classes C5 and C6. 0

Proof of Theorem 2. (2A) We denote by 1J(M / N) the different of the exten-
sion M/N. By the transitivity of the different we have the following relations:

1J(N/Yiq(X)) = 1J(N/L)1J(L/Yiq(X» = 1J(N/Lo)1J(Lo/Yiq(X)) .

Furthermore, we have 1J(N/L) = 1J(Lo/Yiq(X)), where we are considering
1J(Lo/Yiq (X)) as a divisor in N /Yiq. This statement is a consequence of the
fact that '.Pi is ramified in N/Yiq(X) if and only if'.P is ramified in L/Yiq(X)
or (exclusive) '.P is ramified in Lo/Yiq. The last statement is a consequence of
Theorem 1. Due to all of the above, we have 1J( N / L) = 1J( Lo /Yiq (X)); now,
taking norms with respect to N/ L, we find the desired relation.

(2B) The genus of N /W q is obtained by means of the Hurwitz-Zeuthen genus
formula:

2gN = [N : Yiq(X)](2gl'q(x» - 2) + L(eNrrq(x)('.P) - l)dl'q(x)('.P)
'.P

= [N : Yiq(X)](2gl'q(x) - 2) + dl'q(X) (1J(N/Yiq (X))) , (1)

where '.P runs over the ramified prime divisors of N/Yiq, and dl'q(x)('.P) denotes
the absolute degree of the prime divisor '.P.

By Theorem 1 we know that the ramified prime divisors of N /Yiq are lying
on prime divisors of Yiq(X)/Yiq that belong to the classes G1, G2, Ga. So the
slim that appears in (1) can be broken into three sums, each one of them run-
ning over one of these classes. The ramification indexes, absolute and relative
degrees, and splitting degrees can be calculated by using Table 1. After some
simple calculations we find:

2gN - 2 = -4£ + L £dl'q(X) (p(X)) + L 2(£ - l)dl'q(x)(p(X»
p(x)ec, p(x)ec,

L 2(£ - l)dl'q(x)p(X)
p~X)eC3

+
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(2C) By using the fact that V'fJ(V(N/ L)) = L,i>O(#Gi - 1) (see [S], Chap.
IV, Paragraph 1), and Table 1, we have -

drq(x)(V(N/lFq(X))) =L V'fJ(V(N/ L)drq(x)('.P)
'fJ

L 2(£- l)drq(x)(p(X)) .
p(x)ec,uc3

By a similar reasoning we get

drq(x)(V(N/ Lo) = L ldrq(x)(p(X)).
p(x)eC,

Now by replacing in the result (2B) we get the desired result. 0

Proof of Theorem 3. (3A) The zeta function of the algebraic function field
N/lFq is given by:

«N, s) = II(1 - I'.PI-·) -1 = II(1 _ q-'dvq(x)('fJ») -1 , (2)
'fJ ~

where '.P runs over the prime divisors of N/lFq, and I'.PI denotes the norm of
the prime divisor '.P. Let p(X) be the prime divisor of IFq(X)/lFq lying under
'.P, and drq(x)('.P) and dN/rq(x)('.P) denote the absolute degree and the relative
degree, respectively. The product (2) is absolutely convergent for Re (s) > 1,
so we may reorder it as follows:

«N, s) = II II (1 - UdN/Fq(X)('fJ)dg.q(X)p(X) f '
p(X) 'fJlp(X)

where U = q-'.
The following combinatorial identity is valid for every prime divisor of

IFq(X)/lFq:

II (1 - adN/Fq(X)(~»)
~lp(X)

= (1 - a)-2 II (1 - adL/Fq(X)(~») ( II (1 _ adL/Fq(x)(~»)) 2 ,

~lp(X) 'fJlp(X)

where a = Udg.q(X)(~), and the products that appear in the above identity
are taken over the prime divisors of N/lFq, L/lFq, and Lo/lFq lying over p(X).
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Indeed, this identity can be verified easily using Theorem 1. For example, if
p(X) E GI, then

The other cases can be verified in the same manner. This identity implies the
first part of Theorem 3. (The result (2C) of Theorem 2 can be also obtained
from the above result.)

(3B) The zeta function of an algebraic function field with finite constant
field is a rational function (see [W], Chap. 7) of the following form:

F(q--,N)
((N, s) = (1 _ q--)(1- ql-_) ,

where F(q-l,N) is a polynomial in the variable U = «: of degree 2gN, gN
being the genus of N /IFq. The value of F(U, N) for U = 1 is the zero-degree di-
visor class number of the field. If we take into account that (F(IFq(X)/IFq, s) =
(1- q--)-1(1_ ql-_)-l and part one of Theorem 1, we find the desired result.

(3C) By a result due to F. K. Schmidt (see [M]) we have:

h(N)J.l(N) = h(ON )R(N) , (3)

where

J.l(N) = g.c.d. ~Ioo {dl'q(x)(I.:J})} = g.c.d. ~Ioo {dN/l'q(x) (l.:J})dl'q(X)( oo)}
= g.c.d. ~loo{dN/l'q(X)(I.:J})}

and
R(N) + (D~/l'q(X)(oo) : pN/l'q(X)(oo)) ,

where D~/l'q(X)(oo) is the subgroup of zero-degree divisors generated by infi-
nite prime divisors of N /IFq, and pN/Eq(X) (00) is the subgroup of zero-degree
divisors generated by units of N /IFs By Theorem 1, we have:

J.l(N) {1 if 00 E G1 U G2 U G3 U G4 U G6

J.l(L)J.l(Lo - f if 00 E Gs

1
fa

(4)

The desired result follows now from part (3B), and (3) and (4).
Aknowledgments. The author thanks to Professor Victor Albis for sug-
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