Revista Colombiana de Matemadticas
Volumen XX VII (1993), pdgs. 235-247
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ABSTRACT. Let X be a real Hilbert space. If A¢ is a real number and Ay, is
a real symmetric and continuous m-formn defined on X™, m =1, 2, ..., we
construct a real function f on X of class C® such that f("™) is bounded in
the bounded sets of X, f(™)(0) = Am,m =0, 1, 2, ..., and f is analytic in
X\{o}.

§1. NOTACIONES I INTRODUCCION

R y C son los cuerpos de los nimeros reales y complejos, respectivamente;
N es el conjunto de los nimeros enteros no negativos.

Denotamos por ||.|| la norma de cualquier espacio de Banach. Si X es un
espacio de Hilbert, real o complejo, y n es un entero positivo, suponemos que
la norma de X" es la hilbertiana, es decir, para cada z = (z1,22,...,%n) de
X" zj€eX,j=1,2, ..., n,escribimos

llzll : = (leall? + lleall® + - + ll2al®)? -
En particular, si z = (21, 22, ..., zn) € C",
llzll = (lz? + lz2f* + -+ |zal*)

Suponemos R"™ sumergido, en la forma usual, en C* . Si u = (uy, uz, ..., un)
y v = (v1, va,..., v,) estdn en C", entonces

UV = UV + UV + - UpVy .

Si A es una forma n-lineal continua definida en X", ponemos A para el poli-
nomio n-homogéneo determinado por A, es decir, A es la aplicacién de X en
el cuerpo sobre el cual estd definido X de manera que

Az) = Az, 2, ..., z), € X .

(*) Subvencionado en parte por la DGICYT .
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236 MANUEL VALDIVIA

Denotamos por sim A la forma simetrizada de A, o sea, si G es el grupo de

todas las permutaciones de los elementos 1,2, ..., n, entonces, paraz; € X, j =
1, 2, oy 15
. 1
(sim A)(z1,22,...,%n) = E A(Zoyy---rTa,) -
n:
7y,..0,€ G
Escribimos

[|A]] ;= sup {|A(z1,22,...,25)| : ||zj]| <1, 7=1,2,...,n},

4]l : = sup{z: |l2]| < 1} .

Si o es un mulindice de orden n, es decir, @ = (aj,az,...,a,), a; € N,
j=1,2,...,n, |a| representa su longitud, o sea, ay + a2+ -+ ap, ya! : =
alag!. .. ay!; dado el muliiindice 8 = (41, B2, - - -, On), ponemos B < a cuando
B; <aj, j=1,2,...,n; entonces

ol

(5) = =g

Si f es una funcién real definida en un abierto de R™ y de clase C'*°, entonces

dolfe) _ _ df(=)

9z ' Oz('0zy?...0zpn ]

para cada z de dicho abierto y cada multiindice a; sop f es el soporte de f.

Dados z € R*, M C R® y P C R", d(z, M) denota la distancia de  a M
y d(M, P) es la distancia entre los conjuntos M y P. Si  es un abierto no
vacio de R" y z € Q, ponemos B(z;?) para la bola abierta en C" de centro z
y radio 3d(z, R"\Q2). Escribimos

% 5 U B(z;Q) .

T€EN

Obviamente, Q* es un abierto de C" que corta a R” en Q.

En [1], E. Borel prueba que si ag,dy,...,0,,... €8 una sucesién de nu-
meros reales, existe una funcién real f definida en R y de clase C tal que
f™)(0) = a,, n = 0,1,.... Este resultado se puede extender a espacios de
Hilbert reales en la siguiente forma:
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. Sea Ao un nimero real y sea A,, una forma n-lineal, simétrica y continua
definida en X™, m = 1,2,..., siendo X un espacio de Hilbert real. Entonces
existe una funcion real f definida en X y de clase C*° tal que f(™(0) = A,
m=0,12,....

La prueba dada en [2] de este enunciado, y que generaliza la demostracion
constructiva clédsica para el caso en que .X tenga dimensién finita, [4], equivale
a lo siguiente: se toma una funcién real ¢ definida en R y de clase C™ de
manera que su recorrido esté en [0, 1], tenga soporte en [—1,1] y valga uno
en un entorno del origen; si se elige 1 > €, > 0 de manera que €x||Am|| sea
suficientemente pequeino, m = 1,2,..., se puede probar que

N Am(z _
Ao+ ) Lm(n“) ¢ (lez'ell”) , z€ X,
m=1 :

representa una funcién de clase C* tal que f(m)(O) =An,m=0,1,2,....

La funcién f anterior tiene su soporle en la bola unidad cerrada de X y,
por tanto, no es analitica en X\{0}. Si la dimensién de X es finita, se puede
obtener una funcién real g definida en X y de clase C™, analitica en X\{0}, tal
que ¢(™(0) = A, m = 1,2,..., utilizando el siguiente teorema de Whitney,

[5):
(a). Sea Q un abierto no vacio de "*. Sea Ky C K2 C ... Ky C ... un

sistema fundamental de compactos de Q tal que K,, esté contenido en el ;"m+l
de Kppy1, m = 1,2,.... Si f es una funcién real de clase C* definida en
Y€ > € > - > €n > ... son nimeros positivos, existe una funcion real
analitica g definida en Q tal que

dlelg(z)  olelf(x)
dz®  dz“

<em,E€ENKn, la|<m m=12,....

En [3], se da una extensién parcial del resultado (a) cuando X tiene di-
mensién infinita, pero que no es suficiente para dar respuesta a la propiedad de
Borel que estamos considerando. No obslante, nosotros, en el apartado 3, cons-
truiremos funciones que resuelven el teorema de Borel y que son analiticas en
X\{0)}. Para ello utilizamos una propicdad de aproximacién que probaremos
en el apartado 2.

§2. UNA PROPIEDAD DE APROXIMACION

El lema contenido en este apartado es una modificacién del resultado (a) de
Whitney. Usaremos su demostracién en el siguiente teorema, que se obtiene
observando la prueba de [5, Lemma 5]:
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(b). Sea K un compacto de R". Sea g una funcidn real de clase C*° definida
en R". Si g tiene soporte compacto, dados un ¢ > 0 y un entero positivo m,
existe Ao > 0 tal que

la| lal
d'*lg(z) 90 .::’(z) <e,z€K,|a|<mA>),

Oz 0
siendo
fA(z) 1= (m)mA" / g(t)eNt=D0=Ngt  zeC" .
m'l
Lema. Sea K; C K2 C --- C Kp C ... un sistema fundamental de com-

pactos en un abierto no vacio Q2 de R"” de manera que K, C Ig{p_H, p=1,2; ws:s
Sea g una funcién real de clase C*® definida en Q. Si la distancia de K, a
sop g es positiva, dados el nimero entero positivo r y los nimeros positivos
€0 > € > > € > ... existe una funcién ¥ holomorfa en Q* y real en 2 tal

que
alely(x)

Sa <€, z€K, |af<r,

dlely(a)  dlly(z)
Oz oz

y, para cada compacto IX contenido en K1,

<étm, TEWNN,, la|<m+r, m=1,2, ...,

| S
|p(z+iy)| <e, z€K |y < gd(I&,]R \K1) .

Demostracion. Sea
26
L := {.’L‘ eR” : (l(:t?,](l) < 3‘} A
siendo .
6 :=d(Ky,(R*\K2)U sop g) .

Tomamos funciones reales u, de clase C* definidas en R" y con valores en
[0, 1] de tal forma que

[
) = 1 en un entorno de K2\ K,
en R"\ K3

o
o 6, 1 en un entorno de K3\K32
0 en LU(R™\Ky)
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y, para p = 3,4,5,...,

]
1 en un entorno de Kp;1\Kp
up(Z) = 4 0 en un entorno de K,_;
0 en R"\Ap4o

Elegimos 7, > 1 tal que

dielu, (2)
0z

<%, le|<p+r, z€eR*, p=1,2,....

Escribimos n : = min (1,6), V, para la inedida de Lebesgue en R™ del soporte
de uy+us+---+up, p=12,...,y Hi(2)g(z) : = ui(z)g(z), = € Q. Ponemos
también para p entero y o multiindice,

- AR olelH (z n
Pp,a i = (VI) "N Vo2 sup { Tzzg—) cz€eR }
Hp: = sup {ipa : |a| <1},
Yp(z) : = (ﬁ)-"A;/ Hy(t)e *(t=2)t=2)gt s eC™, (1)
nn

en donde A, y H, los iremos definiendo paso a paso.
Teniendo en cuenta (b), podemos hallar A; > 0 tal que

222
[116—_‘;'— < 6_0 ;
2
6""1,1)1(::) 6"’|H1(:c) € i
ama — 61:0‘ 25+7’72 ) Iehz 1|a|52+r * (2)
Procedemos por induccién completa y suponemos que, para un entero p — 1,
hemos obtenido A,—; > 0 y las funciones enteras en C": 1,93, y¥p-1.

Ponemos
Hp(z) : = uplg(z) — (¥1(2) + ¥2(z) + -+ Yp-1(z)] ,2€Q.

Teniendo en cuenta de nuevo (b), hallanios A, > 0 tal que

A2,3 €
- < L
me 7 < 90 !

6'“'1/1,;(1:) s dlel Hy(2) < €p+1

, 2€Kpy ,|la|<p+14+r. (3
axa 63“ 22p+3+r7p+1 P+1 I ‘—p ( )
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Consideremos ahora la serie de funciones enteras en C™:
oo
PRACE 4)
p=1

y veamos que representa a una funcién holomorfa ¥(z) en Q*. Tomemos un
punto zp en Q*. Podemos hallar un punto C" de centro zo y radio p > 0 que
contenga en su interior a zp de tal forma que la distancia de o a R"\(2 sea
mayor que 3p. Hallamos un entero positivo ¢ tal que

) 1
{z€Q : |lz—=0| <3p} C Ky, 3p2>2—q.

Si p > 2, se tiene que

[¥p(2)l < (\/?)""r\;/ |Hy(t)|e= 2o lt==Ie5 WPt | 2 = z4iy e C™ .

Kp4a\Kp-1

Si elegimos ademds p > ¢+ 1 y z en B, resulta, para ¢ en Kp+2\Kpt1, que
lt—zll>20, lull<p,

y, por tanto,
A2 2 ¢
[¥p(2)] < l‘;re_a'\:p2 < /‘ye—_%:_<5g )

de donde se deduce que la serie (4) converge uniformemente en B y su suma
es holomorfa en zo. Se obtiene de lo anterior que dicha serie representa una
funcién ¢ holomorfa en Q*.

Para cada multiindice a y z variando en Q, se tiene, derivando (1) o veces
e integrando por partes, que

ol 1)

e ar, p=1,2,

olel
AR

Tomemos ahora z en K, y |a| < r. Entonces

6|°’¢1 z 3352 23a? €
—7;&(—) <praeM < praeT T < —i‘l :
Aol ypqy(z _a3(25)? A3 ¢
—5;}—) < p2ae 33 < pp eI < 5
y, para p > 2,
a"'"/’p("") -A242 ar L )

< Bp.a€

oz
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Se deduce de aqui que

a‘a|¢lp(3)
o

3Ial¢(x)
T oze

€0

i 4
p=1 4

23

Podemos afirmar, pues, que

dely(z)

e <€, €K, |a|<r.

o
Puesto que u;(z) vale uno en un entorno de K3\K,, se tiene, para cada
muliindice a, que

ool H,y(z) _ dlelg(a)

9z = " hga , TE I(2\I{1 5

y, teniendo en cuenta (2), resulta que

dllg(z)  alelyy(x) €

9z 9z PFroy € Ko\Ky, |a|<2+7r. (5)

o
Tomemos ahora p > 1. Puesto que Up(z) vale uno en un entorno de K41\ Kp,
se tiene, para cada multiindice a, que

dolHy(z) _ dl°lg(z)  dl°lyu(z) dlely,_(z) L E
ze = Bew  Bze T oae o €K\,

y, por tanto, se obtiene de (3),

dlalg(z)  glal
Tﬁ—l - %;(Il)l(r) + o) + -+ Pp(2))| <

€p+1 €p
RIS

€ Kpp1\Kp, |a|<p+l+r, (6)
de aqui que, parap—1> 1,

olAl o!P!
l a:t(’z) 327 V1(2) + ¥a(2) + -+ Uy 1(1‘))i 22,,:1%,—%
z€K\Kp-1, |B<p+r;

por otra parte, para p — 1 = 1, la anterior desigualdad es, exactamente, la (5).
Derivemos ahora Hy(z) a veces, |a| <p+r.
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Entonces

ol Hy(z) _
Oz

1Bly, (z) 8l*—Pl
= Z (ﬁ) Pluy(z) o'~ F1 l9(z) = (¥1(z) + ¥2(z) + - + Yp-1(2))]

B §zP
byl Oz Oz

__ % o
< Z ( )7” 22p+1+r7 T 92p+14r Z (ﬂ)
BLa

z € Kp\Kp—1,

& c
_2?:1',

y puesto que u, vale cero en un entorno de Kp_,, se tiene que

6'“’6112(16) < 2:i1 , t€Ky,, la|<p+r
y, por tanto, para dichos valores de z y de a, se obtiene, de acuerdo con (3),
elyy(z)| | 01lup(z) _ 0l*H,(2)| | |0'Hyp(2)
Oz~ Oz™ Oz 0z
<2:L+—2%:52%. ()

Sim>1,|a|<m+ry z variaen K,\K,-; para un ¢ > m, resulta, teniendo
en cuenta (5), (6) y (7), que

olel olel olel glel
) )] < | @)+ 4 ()
s alal,/](x) g €
" Jg Oue o Z=: _2—1_
Por tanto,

lely(z)  dlolg(z)
Oz« oz®
Finalmente, tomemos un compacto K contenido en K; y cuya distancia a

o
R"\K, sea (. Sea z = z + iy, ¢ , y € R", de manera que z € K, ||y|| < i¢.
Entonces

<€tm, LENKp, la]<m+r.

)2 2 A¢? A2 &5
[%1(2)] < pre MU+ = < e -+ < 2.7
.’.‘if’.:. €0

[$2(2)| < pae™ N+ <#1e ¥ <
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y, para p > 2,
;'JI(Q 22,2
6p(2)] < ppe™ s+ e < pe= 5 < ;—2 .
Consiguientemente,
0o 5 1 "
l¥(z +iy)| <) 2_2 =0,z €K, ||yll < 3d(K,R"\K1) .
p=1

§3. EL TEOREMA DIi INTERPOLACION
DE BOREL PARA ESPACIOS DE HILBERT

Sea X un espacio de Hilbert real. Sea (e; : j € J) una base ortonormal de
X. Ponemos Z para el conjunto de los elementos

z::ZZje,-, 2;€C, jeJd, Z|2j|2<°°v

j€J j€J

con su estructura ordinaria de espacio (e Hilbert. Se tiene que Z es la com-
plexificacién de X. Escribamos P para la aplicacién de Z en C tal que

P(z):ZzJ?, 2 €7 .

JjeJ

Obviameente, P es un polinomio continuo de segundo grado. Ponemos
1
D :={z€Z : |ImP(2)| < §| Re P(2)|} .

Se tiene que D es un dominio de Z tal que DN X = X\{0}.

Teorema. Sea X un espacio de Hilbert real. Sean Ay un nimero real y Ap,
una forma m-lineal real, simétrica y continua definida en X™, m =1,2,---. Si
Z es el espacio de Hilbert complexificado de X, existe una funcion holomorfa
en D cuya restriccion a X\ {0} es real y se extiende a un elemento f de C*(X)
tal que f(™(0) = A, y f(™) estd acotada en los acotados de X, m = 0,1,2,---.

Demostracién. Extendemos, en la forma usual, los polinomios A,,(z), z € X,
a polinomios complejos continuos By, (2), z € Z, m = 1,2,---. Consideramos
la sucesién de niimeros positivos 1 > €; > €2 > -+ > €, > -+, de manera que

; 1
€m ||B'(,17l)(2)”2< 1 ’ .7: 1a2,-"a1“y €m < m_— m=1)2)"'

+1’
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Elegimos una funcién ¢ de C*°(RR), que tome sus valores en [0, 1], tenga su

soporte en [—1, 1] y valga uno en un entorno del origen. Ponemos @ : = R\{0}
y, para cada entero positivo m, ¢, (z) : = p(€,,'z), z € R,
; 1
I‘mp ::[_"l P,——“]U[ ;m+p]y P=1,2,"';

m+p m+p

determinamos, aplicando el lema, una funcién ¥,,(z) holomorfa en Q* y real

en  tal que :
I'pr(rjt)(z)l < C,n ) T E 1"1111 ) J S m )

|¢$,’;)(:c) (’)(z)l <€mip, LENKpmp, j<m+p, p=12,---, (8)

y si K es un compacto contenido en Kj,|, entonces
. ; |
Ym(z+iy)|<em, z€K, |yl < id([&,R\I\ml) ;
Si ponemos ¥, (0) = 1, se deduce de (8) que ¥,(x) es de clase C™ en X y

$90)=0,j=1,2,
Los términos de la serie

A+ Y 2Dy (b)) ©)

m=1

son funciones holomorfas en D. Veamos ahora que la serie anterior representa
una funcién holomorfa en dicho dominio. Tomemos un punto 29 de D; entonces

1
| Im P(20)| < 3 |Re P(z)] .

o
Podemos hallar un compacto K de Q tal que ReP(zp) pertenezca a K y la
distancia u de K al origen sea mayor que 4|/Im P(zp)|. Entonces

1
U:={2€D : Re P(z) € K ,|lm P(z)| < ik Nzl < 2]|20]}

o
es un entorno de zo en D. Ponemos (,, para la distancia de K a R\Kp;.
Hallamos un entero positivo r tal que 4¢, > 3u. Si tomamos m > ry zen U,
se tiene que

1

Re P(z) € K , |ImP()|<4/1< Cr Cm

-3

y, por tanto,

[¥m(P(2))] < €m ,
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de aqui que

|Brm (Z)I < ol Bm|l - |l=I" _ [120]|™

Wom(P())] < APl < 22

y, por tanto, la serie (9) converge uniforiemente en U, de donde se deduce que
(9) representa una funcién ¥(z) holomorfa en D.

Sea g una funcién perteneciente a C*(IR) y s un entero positivo. Conside-
remos y(")(t), en el sentido cldsico, conio funciones escalares, k = 0,1,2,---.
Calculando derivadas de la funcién compuesta g o P, se obtiene, para cada z
en X con ||z|| < s,

(g 0 PYEU@)I| < ha()lg(P(2))] + ha(s)lg' (P(@)| + - -+ he(s)lg™ (P(=))] ,

en donde hj(s) no depende de g, j = 1,2,---,k. Entonces para todo entero
positivo m y z en X con ||z|| < s, resulta de

(Am(2)g(P(2)))® = (A(2)) ® a(P(z))*)

= sim Z( )AS%) ) ® (9.0 P)*~9)(z)

que
k
lAmg(P@)®N < Y hpgSIARD @) - 199 (P())] ,
P, 9=0

en donde hp(s), p, ¢ =0,1,2,--- , k no depende de Ay, ni de g.

Fijemos ahora un entero positivo s, un entero no negativo k y un ¢ > 0;
suponemos que  varia en la bola abierta de X cuyo centro es el origen y cuyo
radio es s. Hallamos un § > 0 tal que

k
( pr h,,.,(s)(s) sup {|l(t)] : teR, j<k}< % :
P, ¢=0

Tomemos m > sup (2k, %) de manera que €, < §2. Entonces, si P(z) pertenece
a K1, se tiene que

WPP@) <em, ol <m,

Y, por tanto,

z (k) k N
| (An(a) mEED) s% 3 AR - W)

L sm
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y si P(z) no estd en K,,;, resulta que
[¥5(P(2)) = ¢ (P(2))| < €m41, gl <m+1,

de aqui que, andlogamente,

(1:1\(1‘) ¢'"(P(z)) e

m!

es™

om(P(z)) )""

2m! ’

También se tiene, puesto que v, (P(z)) = (€1 P(z)), que go(q)(P(z)) =0
cuando P(z) > €m, y si P(z) < €, en cuyo caso P(z) no estid en K, se

verifica que
PSP (P(2))] = exfle (! (P(2))

por lo que, si P(z) > €,

(k)
( Ane)y,. (Pl )))

y si P(z) < €m, resulta, puesto que ||z||* = P(z), que

" (A\'"(,’:)zpm(P(z))) (¥) (Zm(x) Ym(P(z)) — <pm(P($))>(k)

m!
Iy, Py

es™
= 2m!’

" k
< gt o 2 hgAD @I (P @)

= 2m! " m!

pq—O

es™ X L _

£ g m, thq(s)llAL’.))H-lle Pentle (e (P(z))|
q—O

- es™
= L3 B A el (P < -
p, ¢=0 ’

Entonces para dichos valores de m, z y &,

Sy (i< o

= 2m'

y, por tanto, la serie
A
Ao+ 30 (T vm(P(2)®
m=0 :

converge uniformemente para ||z|| < s. Se deduce de lo anterior que, si
fz) =4(z), zeX\{0}, f(0) =4,

se tiene que f € C®(X), f('")(O) = Ap y f™ estd acotada en los acotados
de X, m=0,1,--- .
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