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SOBRE EL TEOREMA DE INTERPOLACION
DE BOREL EN ESPACIOS DE HILBERT

MANUEL VAWIVIA (*)

Facultad de Matematicas, Burjasot (Valencia)

ABSTRACT. Let X be a real Hilbert space. If Ao is a real number and Am is
a real symmetric and continuous m-form defined on Xm, m = 1, 2, ... , we
construct a real function j on X of clasa COO such that j(m) is bounded in
the bounded sets of X, j(m)(O) = Am, m = 0, 1, 2, ... , and j is analytic in
X\{O}.

§1. NOTACIONES Ii; INTRODUCCION

IR y e son los cuerpos de los mimeros reales y complejos, respectivamente;
N es el conjunto de los numeros enteros no negativos.

Denotamos por 1I.lIla norma de cualquier espacio de Banach. Si X es un
espacio de Hilbert, real 0 complejo, y n es un entero positivo, suponemos que
la norma de xn es la hilbertiana, es decir, para cada x = (Xl, X2,"" xn) de
X", Xj EX, j = 1, 2, ... , n, escribimos

En particular, si z = (Zl' Z2, ... , Zn) E en,

Suponemos IRnsumergido, ell la forma usual, en en . Si u = (Ul' U2, •.. , un)

y V = (VI, V2, ... , vn) estan en en, entonces

U.v: = UlVl + U2V2 + ... + UnVn

Si A es una forma n-lineal continua definida en X", ponemos A para el poli-
nomio n-homogeneo determinado por A, es decir, A es la aplicaci6n de X en
el cuerpo sobre el cual esta definido X de manera que

A(x) = A(x, x, ... , x), X EX.

(*) Subvencionadoen parte por la DGleYT .
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Denotamos por sim A la forma simetrizada de A, 0 sea, si G es el grupo de
todas las permutaciones de los elementos 1,2, ... , n, entonces, para Xj EX, j =
1, 2, ... , n,

(sim A)(X1, X2,"" xn) = ~ L A(x171,···, x17,,) •

n. "1, ... 17nE G

Escribimos

IIAII : = sup{x: IIxll ~ I} .

Si 0' es un mulindice de orden n, es decir, 0' = (0'1,0'2, ,O'n), O'j EN,
j = 1,2, , n, 10'1 representa su longitud, 0 sea, 0'1 + 0'2 + + O'n Y O'! : =
0' 1!0'2! O'n !; dado el muliiindice (3 = (llt, (32, ... , (3n), ponemos (3 ~ 0' cuando
(3j ~ O'j, j = 1,2, ... , n; entonces

O'!
. - (3! (0' - (3)!

Si / es una funci6n real definida en un abierto de ~n y de clase Coo, entonces

ol<>I/(x)
ox<>

para cada x de dicho abierto y cada multiindice 0'; sop / es el soporte de /.

Dados x E ~n, M C ~n y P C ~n, l1(x, M) denota la distancia de x a M
y d(M, P) es la distancia entre los conjuntos M y P. Si 0 es un abierto no
vacio de ~n y X E 0, ponemos B(x; 0) para la bola abierta en en de centro x
y radio ~d(x, ~n\o). Escribimos

0" : = U B(x; 0) .
xEO

Obviamente, 0" es un abierto de en quo corta a ~n en O.

En [1], E. Borel prueba que si ao, 0.1, •.. , an, ... es una sucesi6n de mi-
meros reales, existe una funci6n real / definida en ~ y de clase Coo tal que
/(n)(o) = an, n = 0,1, .... Este resultado se puede extender a espacios de
Hilbert reales en la siguiente forma:
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Sea Ao un mimero real y sea Am UIJa forma n-lineal, simetrica y continua
definida en Xm, m = 1,2, ... , siendo X un espacio de Hilbert real. Entonces
existe una funci6n real j definida en X y de clase Coo tal que j(m)(o) = Am'
m = 0,1,2, ....

La prueba dada en [2] de este enunciado, y que generaliza la demostracion
construetiva clasica para el caso en que X tenga dimension finita, [4], equivale
a 10 siguiente: se toma una funcion real ep definida en IR y de elase Coo de
manera que su recorrido este en [0,1], tenga soporte en [-1,1] y valga uno
en un entorno del origen; si se elige 1 > (m > 0 de rnanera que (mllAmll sea
suficientemente pequeiio, m = 1,2, ... , se puede probar que

~ Am(x) II 1 12Ao + L...J --,- ep ( (;;. xl ), xE X ,
m=l m.

represent a una funcion de elase Coo tal que j(m)(o) = Am, m = 0, 1,2, ....

La funcion j anterior tiene su soporle en la bola unidad cerrada de X y,
por tanto, no es analitica en X\{O}. Si la dimension de X es finita, se puede
obtener una fun cion real 9 definida en X y de elase Coo, analitica en X \ {O}, tal
que g(m)(o) = Am, m = 1,2, ... , utilizando el siguiente teorema de Whitney,
[5]:

(a). Sea n un abierto no vaefo de !ll~n. Sea [(1 C 1(2 C ... I(m C ... un
o

sistema fundamental de compactos de n tal que I(m este contenido en el I( m+1

de [(m+1, m = 1,2, .... Si j es una Iuncion real de clase Coo definida en n
y (1 > (2 > ... > (m > ... son mimoros positivos, existe una funci6n real
analftica 9 definida en n tal que

l
olalg(x) olalj(x) I .° - ° < (m , X E nV\m , lal < m m = 1,2, ...xa xa -

En [3], se da una extension parcial del resultado (a) cuando X tiene di-
mension infinita, pero que no es suficiente para dar respuesta a la propiedad de
Borel que est amos considerando. No obstante, nosotros, en el apartado 3, cons-
truiremos funciones que resuelven el teorerna de Borel y que son anallticas en
X\{O)}. Para ello utilizamos una propiedad de aproxirnacion que probarernos
en el apart ado 2.

§2. UNA PROPIEDAD DE APROXIMACION

Ellema contenido en este apartado es una modiflcacion del resultado (a) de
Whitney. Usaremos su demostracion ell el siguiente teorema, que se obtiene
observando la prueba de [5, Lemma 5]:



238 MANUEL VALDIVIA

(b). Sea K un compacta de ~n. Sea 9 una funcion real de clase Coo definida
en ~n. Si 9 tiene soporte compacto, dados un e > 0 Y un entero posiiivo m,
existe '\0 > 0 tal que

siendo

Lema. Sea /(1 C K2 C ... C /(p C ... un sistema fundamental de com-
o

pactos en un abierto no vacio n de ~n de manera que Kp C K pH, P = 1, 2, ....
Sea 9 una Iuucion real de clese Coo definida en O. Si 1a distancia de /<1 a
sop 9 es positive, dados e1 mimero entcro positivo r y los numeros positivos
eo > f1 > ... > fp > ... existe una funcion t/J bolotnorie en 0* y real en n tal
que

la1a1t/J(X) I
ax 01 < fO, a: E /(1,

l
a1a1t/J(x) alalg(x) I

axOl - axOl < fm, X E O\A'm ,

lal ~ r,

lal ~ m+r, m = 1,2, ... ,

y, para cede compacta J( contenido en J( 1,

It/J(x + iy)1 < eo , x E J( IIyll < ~d(I<, ~n\1< i ) .

Demostraciou. Sea

L : = {x E ~n tl(x,/(d ~ 2;J ,

siendo o
fJ : = d(I<1' (~n\l< 2) U sop g) .

Tomamos funciones reales Up de clase Coo definidas en ~n y con valores en
[0,1] de tal forma que
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y, para p = 3,4,5, ' , . ,

up(z) = U o
en un entorno de [{PH \I<p
en un entorno de I<p-l
en ~n\l\'p+2

Elegimos "'Yp2: 1 tal que

10'1 ::; P + 1', x E ~n, p = 1,2, ....

Escribimos 1] : = min (1,8), Vp para la medida de Lebesgue en ~n del soporte
de Ul +U2 +., .+ up, p = 1,2,., ., y H1(:J:)g(x) : = Ul(X)g(X), x E n. Ponemos
tambien para p entero y 0' multiindice,

Jlp,o: = (/1i)-nA;v;,+2 sup { lala'~~~(X)1 : x E ~n}
Jlp : = sup {Jlp,o : 10'I ::; I'} ,

tPp(z) : = Cj1i)-n A; f Hp(t)e->.;(t-z).(t-z)dt, z E en , (1)lmn

en donde Ap Y Hp los iremos definiendo paso a paso.
Teniendo en cuenta (b), podemos hallar Al > 0 tal que

laloltPl(X) _ a1oI
H1(x) 1< _f_2 - x E J{2 ,10'1::; 2 + r . (2)axo . axo 25+r"'Y2 '

Procedemos por induccion completa y suponemos que, para un entero p - 1,
hernos obtenido Ap-l > 0 y las funciones enter as en en: tPl' tP2'' .. ,tPp-l.

Ponemos

Teniendo en cuenta de nuevo (b), hallaruos Ap > 0 tal que

_ ~;;' fO
"1e • <-r: 2P ,
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Consideremos ahora la aerie de funciones enteras en en:

(4)

y veamos que rep resent a a una funci6n holomorfa 1/J( z) en n*. Tomemos un
punta Zo en n*. Podemos hallar un punto en de centro Xo Y radio p > 0 que
contenga en su interior a Zo de tal forma que la distancia de Xo a jRn\n sea
mayor que 3p. Hallamos un entero posit.ivo q tal que

o
{xEn: IIx-xoll~3p}Cl(q,

Si p > 2, se tiene que

Si elegimos adernas p > q + 1 y z en B, resulta, para t en J(p+2 \I<p+!, que

lit - xII> 2p , lIyll < p,

y, por tanto,
~ ~ ~:Z,,:J e

It/Jp(z)1 ~ !Jpe-3>'pP ~ !Jpe-~<~ ,

de donde se deduce que la serie (4) converge uniformemente en B y su sum a
es holomorfa en Zo. Se obtiene de 10 anterior que dicha serie represent a una
funci6n t/J holomorfa en n*.

Para cada multiindice 0' y x variando en n, se tiene, derivando (1) 0' veces
e integrando por partes, que

p = 1,2,··· .

Tomemos ahora x en 1(1 y 10'1 ~ r. Entonces

1

8Ial1/J1(X)I ->.~~' -~~.~ (o< "1 e 1 < "1 e ~ <-8xOl - r: .o - r: .o 2 '

y, para p > 2,

I
8_I_a_It/J.:...p..;....(X-,-)I <" e->'~~' « u e- ~i:~<.:£. .

8xa - r-p ,« - r-p,a 2P
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Se deduce de aqui que

Podemos afirmar, pues, que

o

Puesto que U1(X) vale uno en un entorno de J(2\I< 1, se tiene, para cada
muliindice 0', que

8IO'IH1(x) _ 8IO'lg(3:)
8xO' 8x"

y, teniendo en cuenta (2), result a que

laj:S2+r. (5)

o

Tomemos ahora p > 1. Puesto que Up(x) vale uno en un entorno de J(p+1 \J(p,
se tiene, para cada multiindice 0', que

8IO'IHp(x) 8IO'lg(x)
8x" 8xO'

y, por tanto, se obtiene de (3),

x E J(p+! \J(p, lal:S p + 1+ r ,
de aquf que, para p - 1 > 1,

(6)

1

81131g( x) 81131 I fp
8x13 - 8x13 (~11(X) + t/J2(x) + ... + tPP-1(x))1 < 22p+1+r,p

x E tc,\J(p-1, 1.81:Sp + 7' j

por otra parte, para p - 1 = 1, la anterior desigualdad es, exactamente, la (5).
Derivemos ahora Hp(x) 0' veces, 10'1 :S p + r.
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Entonces

la1aIHp(X)1 =
axa

y puesto que up vale oero en un entorno de [(p-l, se tiene que

lal:S p+ r

y, por tanto, para dichos valores de x y de a, se obtiene, de acuerdo con (3),

'lalaltPp(X) I <lalaltPp(x) _ a1aIHp(x)I + I olaIHp{x) ,I
axa - axa axa axa

(p (,'(p ( )
< 2P+l + 2P+! = 2P . ' 7

Si m 2: 1, [o] :s In+ r y x varia en Kq\J(q-l ,para un q > m, resulta, teniendo
en cuenta (5), (6) y (7), que

IalaltP(x) - a1alg(x) I < IalaltPp(x) - alai '(tPl(X) + ... + tP -l(Xnl
axa .ox a - axa axa q

LooIalai t/lj(x) I (q-l Loo
(j+ ~ :s -2- + 'l; < (m •

fUJ:O' U
j=q j=q

Por tanto,

Finalrnente, tomemos un compacta K contenido en [(1 y cuya distancia a
o

~n\I( 1 sea (. Sea z = x + iy, x , Y E J~n, de manera que xE K, lIyll < ~(.
Entonces
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y, para p > 2,

Consiguientemente,

11/J(x + iy)1 < f= ;~= (0 , x E J( , \Iyll < ~d(J(, ~n\kd .
,,=1

§3. EL TEO REM A DI~ INTERPOLACION

DE BOREL PARA ESPACIOS DE HILBERT

Sea X un espacio de Hilbert real. Sea (ej : j E J) una base ortonormal de
X. Ponemos Z para el conjunto de los elementos

Z : = LZjej ,
jeJ

Zj E C, j E J, L IZj 12 < 00 ,

jEJ

con su estructura ordinaria de espacio tie Hilbert. Se tiene que Z es la com-
plexificacion de X. Escribamos P para la aplicaci6n de Z en C tal que

P(Z) = L zJ, Z E Z .
jEJ

Obviameente, P es un polinomio continuo de segundo grado. Ponemos

1
D : = {z E Z : 11m P(z)1 < 31 Re P(z)I} .

Se tiene que D es un dominio de Z tal que D n X = X\{O}.

Teorema. Sea X un especio de Hilbert real. Sean Ao un ntirnero real y Am
una forma m-lineel real, eimetrice y continue delinida en X'", m = 1,2,···. Si
Z es el especio de Hilbert complexilicadu de X, existe una fundan holomorfa 1/J
en D cuya restricciot: a X\{O} es real y se extiende a un elemento j de COO(X)
tal que j(m)(o) = Am y j(m) esta ecoted« en los acotados de X, m = 0, 1,2,···.

Demostracion. Extendemos, en la forma usual, los polinomios Am(x), x EX,
a polinomios complejos continuos Bm(z), Z E Z, m = 1,2,···. Consideramos
la sucesion de mimeros positivos 1 > (1 > (2 > ... > (m > ... , de manera que

1
(m IIB~)(z)1I2 < 1 , j = 1,2,... , III, (m < --1 ' m = 1,2,'" .m+
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Elegimos una funcion <p de COO (IW.), que tome sus valores en [0,1], tenga su
soporte en [-1,1] y valga uno en un entorno del origen. Ponemos n : = IW.\{O}
y, para cada entero positivo m, <Pm(x) : = <p(f;;/X), x E IW.,

,11
limp: = [-m- p,---]U [--,m+ p], p= 1,2""

m+p 111+P

determinamos, aplicando el lema, una fun cion 'l/!m(z) holomorfa en n· y real
en n tal que

(')I'l/!~ (x)1 < fm, X E [(ml, j::; m ,

I'l/!~)(x) - <p~)(x)1 < fm+p , X E n\}{mp , j ::;m + p, p = 1,2,"" (8)

y si K es un compacta contenido en [(m l, entonces

Si ponemos 'l/!m(0) = 1, se deduce de (H) que 'l/!m(x) es de clase Coo en X y
'l/!~)(O) = 0, j = 1,2," '.

Los terminos de la serie

(9)

son funciones holomorfas en D. Veamos ahora que la serie anterior representa
una fun cion holomorfa en dicho dominio. Tomemos un punto Zo de D; entonces

]
11m P(zo)1 < 4" IRe P(zo)1 .

o
Podemos hallar un compacta K de n tal que ReP(zo) pertenezca a K y la
distancia ~ de K al origen sea mayor que 411m P(zo)l. Entonces

• U : = {z ED: Re P(z) E t: ,I[m P(z)1 < ~ J.l ,lIzll ::; 211zoll}

o
es un entorno de Zo en D. Ponemos (m para la distancia de K a IW.\[( mI.

Hallamos un entero positivo I' tal que 4(r > 3~. Si tom amos m ~ r y z en U,
se tiene que

Re P(z) E [(,11m P(::)I < ~~< ~(r ::; ~(m

y, por tanto,
l'l/!m(P(z))1 < fm ,
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de aqui que

y, por tanto, la serie (9) converge unifonuernente en U, de donde se deduce que
(9) representa una funcion t/J(z) holornorfa en D.

Sea 9 una funcion perteneciente a CN(~) y s un entero positivo. Conside-
remos g(k)(t), en el sentido elasi co , COl1l0 funciones escalares, k = 0,1,2,···.
Calculando derivadas de la funcion compuesta goP, se obtiene, para cada x
en X con IIxli < s,

lI(g 0 P)(k)(x)1I :::; h1(s)lg(P(x))1 + h2(s)lg/(P(x))1 + ... + hk(s)lg(k)(p(x))1 ,

en don de hj(s) no depende de g, j = I, 2"" ,k. Entonces para todo entero
positivo m y x en X con IIxll < s, resulta de

(Am(X)g(p(X)))(k) = (A(x)) 0 y(p(x))(k)
k

sim f; (;)A~~>(X) 0 (g 0 p)(k-n(x)

que
k

IIAmg(P(X)))(k)lI:::; L hpq(s)IIA~)(x)11 . Ig(q)(P(x))1 ,
P. q=O

en donde hpq(s), p, q = 0,1,2,'" , k no depende de Am ni de g.
Fijemos ahora un entero positivo s, un entero no negativo k y un E > 0;

suponemos que x varia en la bola abiertu de X cuyo centro es el origen y cuyo
radio es s. Hallamos 'un s > a tal que

Tomemos m > sup (2k, t) de manera qu<~Em < [y2. Entonces, si P( x) pertenece
a f(ml, se tiene que

1t/J~)(P(x))1 < Em , Iql:::; m,

y, por tanto,

II (Am (x) t/Jm~!(x))) (k)11 :::; ~! ~ ..hpq(s)IIA~~)(x)11 . 1t/J(q)(P(x))!
p, q_O

s'" k (Sm

:::; m! L hpq(s)fJ < 2m! '
p , q=O
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y si P( x) no esta en [(ml, resulta que

If/I~(P(x» - cp~)(P(x»1 < {m+l, Iql:S m + 1 ,
de aqui que, analogarnente,

/I (A(X) f/lm(P(x») ,:,CPm(P(x») (k)11 < ~:: .

Tambien se tiene, puesto que CPm(P(x») = cp({;;/ P(x», que cp~)(P(x» = 0
cuando P(x) ~ em, y si P(x) < em, ell cuyo caso P(x) no esta en [(ml, se
verifica que

Icp~)(P(x))1 = {;;//\O(q)({;;.l(p(x)) ,
por 10 que, si P(x) ~ em,

y si P(x) < em, resulta, puesto que IIxll:! = P(x), que

II (A;;.\X) .prn(P(X») (')11 " II (Arn(x) .prn(P(x» ,:,"m(P(X») (')11

+ II(Am(x) ¢m(P(X»)(k)1/
m!

{Sm 1 k:s 2m! + m! L hpq(s)IIA~!:)(x)II 1\O(q)(P(x))/
P.q=O

m 1 k

:s ~s , + I" L hpq(s)IIA~!:»)II . IIxllm-p{;;/I\O(q)({;;/(P(x»1
7n. rn: P.q=O

m 1 k m
{S '"' I ()IIA(p»11 I (q)( -lp( )1 . {S:s 2m! + m! L..J Ipq S m {m cP {m X :s m! .

P. q=O
Entonces, para dichos valores de m, x y k,

L II(Am\x) f/lm{J1(x)))kll :S {e' .
m.

y, por tanto, la serie

Ao + f(A~ VJm(p(x)))(k)
m.

m=O

converge uniformemente para IIxll < s. Se deduce de 10 anterior que, si

I(x) = f/I(x) , x E X\{O} , 1(0) = Ao ,

se tiene que I E COO(X), I(m)(o) = Am y I(m) esta acotada en los acotados
de X, m = 0,1,,,, .
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