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ABSTRACT. In this paper we extend the problem of commutativity of free prod-
ucts of groups with amalgamation (i.e. given two elements f and 9 of a group
which commute, what can be said about them?) to groups acting 011 trees in
which the action with inversions is possible. This will include the cases of tree
products of groups and H N N groups.

§1. INTRODUCTION

Magnus. Karras and Solitar [3] showed that if two elements of a free group
commute t.hen they are powers of some element in the free group. Also they
showed that if two elements of a free product of groups commute then they are
in the same conj ugate of a factor or they are powers of some elerueut in the
free product. Then they genralized the above cases t.o free products of groups
with amalgamation (Theorem 4.5., p. 209).

Free groups, free products of groups. and free products of groups with amal-
gamation are special cases of groups acting on trees. In this paper we formulate
the problem of commutativity of groups acting on trees in general to include
the cases of free products of groups and H N N groups.

§2. DEFINITIONS AND NOTATIONS

We begin by giving some preliminary definitions. By a graph X we under-
stand a pair of disjoint sets V(X) and E(X). with V(.\) non-empty. together
with a mapping E(X) ---+ \/(X) x vr.Y), y ---+ (o(y), flY)). and a mapping
E(X) ---+ E(X), Y ---+ Ti satisfying 11 = y and oCY) = t(y), for all y E E(X). The
case Ti = Y is possible for some Y E E( X).

A path in a graph X is defined to be either a single vertex v E \/ (X) (a
trivial path), or a finite sequence of edges Yl, Y2, ... ,Yn, n 2 1, such that
t(YiJ = O(Yi+\) for i = 1,2,···,n-1.
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A path Yl, Y2," . , Yn is reduced if Yi+l i 'fl;, for i = 1, 2,··· , n - 1. A graph
X is connected, if for every pair of vertices 'U and v of V(X) there is a path
Yl,Y2,'" ,Yn in X such that o(yll = u and t(Yn) = v.

A graph X is called a tree if for every pair of vertices of V(X) there is a
unique reduced path in X joining them. A subgraph Y of a graph X consists of
sets V(Y) ~ V(X) and E(Y) ~ E(),:) such that if Y E E(Y), then y E E(Y),
o(y) and tty) are in V(Y). We write Y ~ X. We take any vertex to be a
subtree without edges.

A reduced path Yl, Y2, ... ,Y" is called a circuit if a( Yl ) = t( Yn), and o( Yi) i
o(Yj) when 1 < i i j < n. It is clear that a graph X is tree if X is connected
and contains no circuits.

If Xl and X2 are two grphs, then the map f : Xl -+ X2 is called a morphism,
if f takes vertices to vertices and edges to edges in such a way that

f(y) = f(fj) .
f(o(y)) = o(f(y)), and
f(t(y) = t(f(y»), for all Y E E(X) :

f is called an isomorphism if it is one-to-one and onto. and is called an au-
tomorphism if it is an isomorphism and Xl = X2. The automorphisms of X
form a group under composition of maps. denoted by Aut(X).

We say that a group G acts on a graph X. if there is a group homomorphism
dJ : G -+ Aut (X). If x E .\ is vertex or an edge. we write g(x) for ¢(g)(x).
If Y E E(X), the g(y) = y(fj), y(o(y» = o(g(y), and g(t(y)) = t(g(y». The
case g(y) = y for some y E E(x) and 9 E G may occur. i.e. G acts with
inversions on X. If y E X (vertex or edge). we define G(y) = {g(y) : 9 E G}
and this set is called an G-orbit or simply an orbit. If x, y EX, we define
G(x. Y) = {g E G : g(y) = r ]. and G(J:. r ) = Gx. the stabilizer of x. Thus,
G(x. y) f. 0 if and only if x and yare in the same G-orbit.

It is clear that if x E V(X). Y E E(X) and u E {o(y), tty)}. then G(v, y) = 0,
Gy = Gy and Gy is a subgroup of Gu. As a result of the action of the group
G on a graph X we have the graph X I G = {G( x) : X EX} called the quotient
graph. defined as follows

V(XIG) = {G(v) : 11 E V(X)}. E(XIG) = {G(y) : y E E(X)} ,

and for' y E E("Y) we have

G(y) = G(y). t(G(y)) = G(t(y)). and o(G(y)) = G(o(y)) .

It is clear that there is an obvious morphism p : X ~ XIG given by p(x) =
G( J'). which is called the projection. It can be easily shown that if X is con-
nected. then XIG is connected. For more details. see Mahmud [4] or Serre
[6].
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Definition 2.1. Let G be a group acting on a connected graph X. A subtree
T of X is called a tree of representatives for the action of C on X if T contains
exactly one vertex from each C-vertex orbit. A subtree Y of X containing a
tree T of representatives is called a fundamental domain for the action of C on
X if each edge in Y has at least one end point in T, and Y contains exactly
one edge, say y, from eacg C-edge orbit such that CUi, y) = 0 and exactly one
pair x and x from each C-edge orbit such that C(x,x) # 0.

The following procedures for constructing a tree of representatives for the
action of a group C on a connected graph X, and a fundamental domain, are
taken from Khanfar and Mahmud [1] .

Let S be the set of all T, where T is a subtree of X containing at most one
vertex from each C-vertex orbit and at most one edge from each C-edge orbit.
S is not empty, since every vertex of X is subtree, and hence is in S. For T1

and T2 in S we define T1 ~ T2 if T1 is a subtree of T2. Hence S becomes a
partially ordered set. Let {t; : i E I} be a linearly ordered subset of S. Define
T* = UiEI 1';. We need to show that T* is a subtree of X. It is connected,
for ifu,v E V(T*), then u E V(1';) and v E V(1j) for some i,j E I. We can
suppose by symmetry that 1'; ~ 1j, so u, v E V(1j), and there is a path in
T* from u to v. The path has no circuit, for if Yl, Y2,'" , Yn is a circuit, then
Yl E E(1';I)'''' ,Yn E E(1';n)' so Yl,Y2,'" ,Yn will all be edges ofT;, where
1'; = max{TI1, ..• , 1';n}' contradicting the fact that 1'; is a subtree. It is clear
that T* has at most one vertex and one edge from each orbit under C. Hence
T* E Sand T* is an upper bound for {T; : i E I}. By Zorn's lemma,S has a
maximal element, say To·

Claim. To contains exactly one vertex from each C-vertex orbit.

O. n the contrary, suppose that v E V(X) is such that V(To) n C(V) = 0,
where C(v) is the orbit containing v. Since X is connected, there is a shortest
path Yl, Y2, ... , Yn joining a vertex of To to v. Let Yi be the first edge of of this
path such that V(To) n C(o(y;))n # 0 and V(To) n C(t(y;)) = 0. Then there
exists 9 E C such that o(g(y;)) E V(To), t(g(v;)) tt. V(To) and so g(y; (j: E(To).
Let T' be the subgraph with V(T') = V(To) U {t(g(Yi))} and E(T') = E(To) U
{g(Y;), g(Yi)}. It is clear that T' is a subtree of X that properly contains To and
at most one vertex from each C-vertex orbit. This contradicts the maximality
of To in S. Thus To is a tree of representatives for the action of Can X.

Now we need to prove the existence of a fundamental domain for the action
of C on X. Let A be the set of all Y, where Y is a subgraph of X containing
the chosen tree of representatives To such that each edge in Y has at least
one eud in To and contains at most one edge from C(y), unless C(y, y) # 0,
in which case it contains at most one pair y, y from C(y), for all y E E(X).
Since To contains at most one edge from each C-orbit, To EA. For Y1 and Y2

in A, we define Y1 < Y2 if Y1 is a subgraph of Y2, so A becomes a partially
ordered set. As in the proof of the existence of a tree of representatives, we
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can show that A contains a maximal element Yo, say. Let y E E(X). We
need to show that Yo contains exactly one edge from G(y), if G(fJ, y) = 0 and
exactly one pair y, fJ from G(y), if GfJ, y) # 0. Suppose there exists y E E(X)
such that E(Yo) n G(y) = 0. Since X is connected, ther is a shortest path
Yl, Y2, ... ,Yn = Y joining a vertex in Yo to t(y). Let Yi be the first edge of this
path such that E(Yo)nG(Y;) = 0. Since V(To)nG(o(yd) # 0 and To is the tree
ofrepresentatives in Yo, there exists 9 E G such that o(g(Y;)) E V(To). Let Y be
a subgraph with V(Y) = V(Yo) u {t(g(yd)} and E(Y) = E(Yo) u {g(yd, g(fJd}·
It is clear that each edge of Y has at least one end in To. Moreover, it is clear
that E(Y) satisfies the conditions on edges for elements of A and properly
contains Yo. This contradicts the maximality of Yo in A. Thus Yo is the
fundamental domain for the action of G on X. This completes the proof.

For the rest of this paper G will be the group acting on a tree X and Y a fun-
damental domain for the action of G on X containing a tree of representatives
ofT.

Properties of T and Y.
(1) Ifu, v E V(T) such that G(u,v) # 0, the u = v.
(2) lfu E V(X), then G(v) nT consists of exactly one vertex.
(3) G(fj, y) = 0 for all y E E(T).
(4) V(T) is in one-to-one correspondence with V(XjG) under the map

v -> G(V).
(5) IfYl,Y2 E E(Y) such that G(Yl,Y2) # 0, then u, E {Y2,jh}·
(6) If G acts without inversions on X, then Y is in one-to-one correspon-

dence with XjG under the map Y -> G(y).
(7) If u E V(X), then there exists an element 9 E G and a unique vertex

v ofT such that u = g(v).
(8) lfx E E(X), then there exists 9 E G and Y E E(Y) such that x = g(y).

If G acts on X without inversions, then y is unique.
(9) The set G(Y) = {g(y) : 9 E G, y E Y} = X. Also G(E(Y)) = {g(y) :

9 E G, y E E(Y)} = E(X).
(10) The set G(V(T)) = {g(v): 9 E G,v E V(T)} = V(X).

Definition 2.2. Let G, X, T and Y as above. For each v E V(X) let v*
be the unique vertex of T such that G( v, v*) # 0. It is clear that v* = v if
v E V(T), and in general (v*)* = v*. Also if G(u, v) # 0, then U* = 1)* for
u, v E V(X).

Note that G(v) nT= {v*, for all v E V(X)}.

Definition 2.3. For each y E E(y), define [V] to be an element of
G(t(y), t(y*)), that is, [y](t(y)*) = t(y), to be chosen as follows:

If (o(y) E V(T), then
(i) [V] = 1 if y E E(T),

(ii) [y](y) = fJ if G(fJ, y) # 0.
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If o(y) f/: V(T), then W] = [y]-1 if G(fj, y) = 0, otherwise W] = [y].

It is clear that [y]W] = 1 if G(y,y) = 0, otherwise [y]W] = [yj2. Let -y =
[yt1(y) if o(y) E V(T), otherwise let -y = y. It is clear that t(-y) = t(y)*,
and G_y = gy if G(fj, y) :f 0.

Lemma 2.4. G is generated by the set ([y] : y E E(Y)} U {g : g E Gv, v E
V(T)}.

Proof. . See Mahmud [4].

Definition 2.5. By a word of G we mean an expression w of the form
W = go . Yl . gl ..... Yn . gn, n ~ 0, where Yi E E(Y), i = 11,'" ,n, such that

(1) go E G(O(Yl))" ;
(2) Gi E G(t(y;))" for i = 1,'" , n ;

(3) (t(Yi))* = (o(Yi+d)*, for i = 1,··· ,n - 1 ,
W is called trivial if W = 1. We define n to be the length of wand denote it by
jwl. The inverse w-1 of w is defined by the word

-1 -1 - -1 -1 - -1
W = gn . Yn . gn-1' .... g1 . Yl . go .

w is called a reduced word of G if w contains no expression of the forms

(1) 1· Yi . gi . Yi . 1 with gi E G-yi, for i = 1,··· , n ,or
(2) 1· Yi . gi . Yi ·1 with gi E GYi such that G(fji, Yi) :f 0, for i = 1,··· , n .

If o(yI»)* = (t(Yn))*, then w is called a closed word of G of type (o(YdY· The
value [w] of w is the element

of G. If WI = hn . Yn+l . hn+1· ... . Ym . hm is a word of G such that
(t(Yn))* = (o(Yn+d)* then w . WI is defined to be the word

w . WI = go . Yl . g1' .... Yn . gn . hn . Yn+1 . hn+1· .... Ym . hm .

Lemma 2.6. Every element of G is the value of a closed and reduced
word of G, and if w is a non-trivial closed and reduced word of G, then [w]
is not the identity element of G. Moreover, if WI = go . Yl .. , .. Yn . gn and
W2 = ho . XI' .... Xn .hn are two reduced and closed words of G of the same value
and type, then n = m and Yi = Xi (or Yi = Xi ttct»; Xi) :f 0) for i = 1,'" ,n.

Proof. Let Vo E V(T). By Lemma 2.4, the set ([y] : Y E E(Y)} U {g :
9 E Gv, v E V(T)} generates G. Let 9 be an element of G. Then 9 can
be expressed as a product go[yd··· [Yn]gn, where gi E GUi' for some vertices
Uo, Ul, ... ,Un in T and edges Y1, Y2 ... , Yn in Y. By taking the unique reduced
paths in T between Vo and Vi, between Vo and (O(Yi))*, and between (t(Yi1)*
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and vo and the identities of G(t(y;))*, we may choose this product so that
w = go' YI' .... Yn . gn is a word of type va. Thus 9 is the value of the word
of G of type va (not necessarily unique). The performance of the following
operations called a y-reduction on w. where y is an edge of Y occurs in W

(1) replacing the form y. g' . y by [y]g'[yt I, if g' E G _y, or
(2) replacing the form y. g' . y by [y]g'[y] if G(y, y) ::f 0 and 9 E Gy,

yields a reduced word w' of G such that 9 = [w] = [w'], O(W) = o(w') and
t( w) = t( w'). Thus every element of G is the value of a closed and reduced
word of C. Now by Corollary 1 of [5], if w is not a trivial closed and reduced
word of C. then [w] ::f 1. For a similar proof see [2J (Theorem 2.1. p. 82).
Now we show that IWI = IW21. Since [WI] = [W2], the word w = Wlw21

go' YI . gl ..... Yn . gn . h;;,1 . xm' .... hjl . XI' hal has value 1. i. e. [w] = 1.
Since WI and W2 are reduced. the only way in which the word W can fail to be
reduced is that Xm = Yn (or xm = Yn if C(xm,xm)::f 0) and gnh;;,1 E C_y".
Making succesive Yi-reductions we see that n = m, i. e. IWII = IW21and Yi = Xi

(or Yi = Xi if G(Xi, x;) ::f 0). This completes the proof.

§3. THE MAIN THEOREM

Theorem 3.1. Let G be a group acting on a tree X, and f, 9 E G such
that fg = gf. Then I

(i) f or 9 may be in Cy for y E E(X).
(ii ) If 9 E G". for 11 E veX) but 9 tf- Cy, for all y E E(X), i(y) = v, then

f E G".
(iii) If neither f or 9 are in C". for all t' E VeX). then there xists an edge

x of E(X) and an element c ofC such that, f = rei and 9 = g"ck
,

(j. k are integers). where t' . g" E c.: and r. s: and c commute in
pturs.

Proof. If 9 is in Cy for y E E(X), then 9 E Gx, where x = fey)· If f E Gy,
or f E G«, there is nothing to prove. Let 9 E Gt!. for v E VeX). but not in
Gy• for all y E E(X), i(y) = v. We need show that f E Ct!. Let T be a tree of
representatives for the action of C on _\. and let Y be a fundamental domain
such that T ~ Y. Now u = per"). where u" E \/(T) and p E C. Therefore,
!J = pap': where a E C,,". a. ::f C_Y' for all y E E(Y), (t(y))" = v". Then p-I fp
commutes with a. Let w = !Jo . VI . !JI . . Yn . gn be a reduced word of C of
value p-l fp and typf' 1'". Since a tf- G-yn. w· a· w-I is a reduced word of G of
type v" and value a. By Lemma ~.6. Iw, a· w-II = lal. Since Iw, a . w-II = 2n
and lal = U. we get 11 = U. Hence. p-lfp = go, which implies that f = pgOp-l.
Since go E Ct,o. we have f E pG,,"p-l = Gpl,'O) = Gt!.

Now we prove (iii) by contradiction. Let f be an element of G of value a
closed and reduced word of G of smallest length for which there exists some
element 9 of G falsifying the assertion. Let!J be an element of C such that
9 is the value of a closed and reduced word of C of smallest length and 9
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falsifies the assertion with f. Clearly I and 9 are not in G; for all x E V(X).
Suppose then that WI = 10 . Xl . it .....Xm . 1m and W2 = 90 . Yl . 91 .....
Ym . 9m are reduced and closed words of G such that WI and W2 are of the
same type, and fwd = I and [W2] = g. By simmetry, we may suppose that
m ~ n. Now wi is reduced, or equivalently, if Imfo E G-x~, then Xl i= Xm
or viceversa,for otherwise [xmlfmff;;;l[xm]-l is the value of the closed and
reduced word L = [xmlfmfo[xm]-l it .X2 . h ..... Xm-dm-1 of lenght m - 2
which leads to a contradiction, because the elements [xm]fmff;;;l[xm]-l and
[xmllm9f;;;1 [xmt1 falsify the assertion.

Now we consider the following cases:
Case 1. WI . W2 is reduced. Since fg = gf, or equivalently WI . W2 and

W2' WI have the same value, then by Lemma 2.6, WI . W2 is reduced. But m ~ n
and so Yn-m+i = Xi (or Xi if G(Xi, Xi) i= 0), for i = 1,··· ,m. Hence st:' is
the value of the closed and reduced word M = go . Yl . gl" . Yn-m . a, where
a comes from the cancelation in the word W2 . wi1

. Since 9t:' commutes
with f and IMI < IW2\' then gf-1 and f satisfy the assertion of the theorem.
If st:' is in Gx, where X E E(X), then gf-l = li]' h-1, where X = h(y),
Y E E(Y), and I' E Gy. Hence f = h--1f and 9 = gf-1 = hf'h-1, and
the assertion of the theorem would hold for f and 9 ,contrary to ssumption.
If r:' is in Gv, where v E V(X), then f is also, and so 9 = gf-1 f. This
contradicts our assumption that f and 9 are not in Gv, for all v E V(X).
Thus it must be that 1= hf'h-1cj, gf-l = hg'h-1ck, g' E Gy, where hf'h-1

,

hg1h-1 and c commute in pairs. We take J* = hf'h-1 andg* = hg1h-1. Hence
9 = gf-1f = hg'h-1ckhf'h-1d = hg'f'h-1ck+j, and again the assertion of
the theorem would hold for f and g. Thus, case 1 leads to a contradiction.

Case 2. WI . w2is not reduced. In this case WI . W21 is reduced. Indeed, if
WI . W21 is not reduced, then we get that WI is not reduced. This contradicts
that wi is reduced. But then t:' can be used in place of f and wil in place
of WI in the preceding paragraph, for Iwi11 = IW11, and f and 9 falsify the
assertion of the theorem if and only if r:' and 9 falsify the assertion. Thus
case 2 leads to a contradiction.

This completes the proof of the main theorem.

Corollary 3.2. Let G = O*(Gi; Ajk = Akj) be a free product of the groups
c. and I,9 E G such that fg = sl Then

(i) f and 9 may be in a conjugate of Ajk;
(ii) If neither f nor 9 is in a conjugate of Ai, but f is in a conjugate of Gj,

then 9 is in that conjugate of Gj;
(iii) If neither f nor 9 is in a conjugate of a factor Gi, then f = hf'h-

1
c
m

and 9 = hg'h-lcn, where h,c E G, h,c E G, I',« E Ajk, m,n E Z,
and hf'h-l, hg'h-1, c commute in pairs.

Proof. There is a tree on which G acts in such a way that the G-vertex stabi-
lizers are the conjugates og Gi, and the G-edge stabilizers are the conjugates
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of Ajk. By the main theorem the proof of Corollary 3.2 follows.

Corollary 3.3 .. Let G =< Htt, I reI n.i.s.c;' = B, > be an HNN
group and t. 9 E G such that La = st Then

(i) / or 9 may be conjugates of Ai;
(ii) If neither / or 9 in a conjugate of Ai, but / is a conjugate of H, then

9 is in that conjugate of H;
(iii) If neither / nor 9 in a conjugate of H, then / = h/,h-1cm and 9 =

hg'h-1crn, where h, c E G. /'. g' E Ai, m, nEZ, and h/'h-1, hg'h-1,
c commute in pairs.

Proof. There is a tree on which G acts in such a way that G is transitive on
the set of vertices, and the G-vertex stabilizers are the conjugates of H, and
the G-edge stabilizers are the conjugates of Ai. By the main theorem the proof
of Corollary 3.3 follows.
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