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I. Introd uction
It is well known that the algebraic equation (A.E.) of degree n

(1)

with am E C, has in general n "roots") which can be explicitly given in terms
of simple functions of the am's only for n ::;4.

A non traditional approach to the general solution of (1) is proposed in the
present work. On the basis of rather elementary arguments, the existence of
certain linear differential equations (D.E.) to be satisfied by the roots of the
A.E.'s will be established for the cases n = 2,3,4 and 5. For each case, an
appropriate transformation allows to remove all but one parameter of (1), so
that the solutions will be complex functions of one independent variable, and
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26 CARLOS PABST & RAUL NAULIN

the D.E. 's ought to be of the ordinary type. It will be found that the basic
solutions to these D.E. 's are essentially generalized hypergeometric functions.
The reduced A.E., the associated linear D.E. and one of its basic solutions are
illustrated in the ensuing scheme:

Algebraic Elq u a t io n Auociated Differentia.! Equation
in reduced fOTUl, (co •... , are r a t io n e l numbers,

characteristic for ee c h D.E.)

Typica.! m e mb e r of the let of (n - 1)
b a eic solutions to the (homogeneous)
differentia.l equation. (I.el :s: 1)

y5 _ 531 + 4~ = 0 (.z4 _ l)yiv + C3z3ylll + C2J:2yll

+Clzy'+coy= a

For the cases n > 5, not considered here, the same method of reduction leads
to a minimum of (n - 4) parameters, and the D.E.'s would be linear partial
differential equations.

The paper is organized as follows. Section II contains a brief summary of
some known results from the classical theories of both A.E.'s and algebraic
functions, but only to the extent that they are useful in Section III, devoted to
the construction of the D,E.'s, and which constitutes the core of this work. In
Section IV the solutions to the D.E,'s which will be simultaneously solutions
of the corresponding A.E.'s are found.

II. Basic concepts and results

ILL The left hand side of (1) can be considered as an entire function ¢(Y)
with complex independent parameters am which, by the fundamental theorem
of algebra, can be expressed as

n

(2) ¢(Y) = Y" + alyn-l + ... + an-1Y + an = II(Y - Yj),

j=l

where the Yj's are the roots satisfying ¢(Yj) = O.

IL2. The product of pairs of differences of roots (for fixed j) is



DIFFERENTIAL EQUATIONS AND ALGEBRAIC FUNCTIONS 27

the existence of repeated roots being characterized by

(4) q)(}j) = (::) Y=Yj = O.

11.3.1. The elementary symmetric functions of the Yj's are

(5)

n

L Yj = -al,
1
n

TI Yj = ±an
1

S2 = L Yj Yk = a2, ... ,
j<k

(depending on whether n is even or odd).

11.3.2. The (Newton) sums of powers of the Yj's are given by

(6)
n m

S2 = L ~2 = si - 2s2, ... , s; = L ~m, ....
1 1

For a method fo find the Sm's for higher m, see [1], [2].

11.3.3. The discriminant function associated with q)(Y) is defined by

(7) Dn(al, a2,··· , an) = II(Yj - yk)2 ,
j<k

j=l, ... ,n-l.

Dn can be expressed as a sum of products of powers of the elementary sym-
metric functions, and vanishes if there exist two or more repeated roots.

11.4. The Tschirnhaus transformation. If Yk is some root of (1) and the
expression

(8)

is formed, then the Yts are the roots of a new A.E. of degree n

(9) y'n+a'y'n-l+ ... +a, Y'+a' =01 n-l n ,

which is known as the "Tschirnhaus-transform" of the original A. E. Its use-
fulness lies in the fact that the determination of the Yts leads in general to
the original Yk with no need of solving a higher degree A.E. [1]. It is natural
to look for a transformation which makes equation (9) easier to solve as com-
pared to (1), through the vanishing of some of the a~'s. This possibility -and
its limitations- are established in a proposition (sometimes called Jerrard's
theorem):

"By a Tschirnhaus transformation -involving only square and cube roots-
the second, third and fourth terms of (9) can be removed" [3].
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That the elimination of more parameters is impossible is a consequence of
the following: in the process of determining the bm's from (8) in terms of the
original am's, the necessity of solving an A.E. of degree higher than n itself
would be unavoidable.

II.5. Analytical properties of the roots Yk considered as functions of the n
complex independent parameters am' Each root Yk of equation (1) defines
an element of an algebraic function, whose (well known) basic properties are
summarized (d. [4], [5]) by:

(i) Each Yk is an analytical function of the am's.
(ii) The only singularities of the Yk's are the points where the discriminat

function (7) vanishes - the so called "critical points" - and the point
at infinity.

(iii) The Yk's are continuous at the critical points.
(iv) The singularities of the Yk's can only be algebraic branch points or

algebraic poles.

III. The differential equations

III.I. The following proposition is fundamental to the purpose of establishing
the existence and specific form of the D.E.'s:

Theorem. Let Yi be some root of 4>(Y) as defined in (2). If the discriminant
function Dn (al, ... , an) does not vanish, then:

(i) Every partial derivative ~ exists and can be reduced to the functional
J

form

BY; A yn-1 A ABa. = jl i + ... + j(n-l)Y; + jn,
J

where the Ajm's are rational functions of the ak's, the same for all
roots.

(ii) All higher order partial derivatives, including mixed ones, exist and
can be reduced to a form similar to (10).

(10)

To show part (i), the analytical properties II.5(i) and (ii) of the roots are
recalled. ext, the derivative from the A.E. satisfied by each Y;,

(11)

with respect to aj, leads to

( 2) ( Yn 1 ( ) n 2 ) 8Yi n-j _1 n i - + n - 1 1"; - + ... an-l ~ + Yi - O.
Uaj
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But, according to equation (3), (12) can be recasted as

(13) ( fJ¢) . fJYi yn-j = 0
fJy Yi fJaj + • .

If repeated roots are excluded, (fJ¢/fJY)yi:j:. 0, and (13) can be formally solved
in the form

(14)
yn-j

•
(fJ¢/fJY)y, ,

which can be reformulated as

(15) fJYi=yn_j (-1) =yn-j(fJYi)
fJaj , (fJ¢/fJY)Yi • fJan'

By using the A.E. (11) itself, any power of Yi equal to or higher than Yt, can
be reduced to a polynomial in Yi, of degree not greater than (n - 1), so that it
is enough to obtain the asserted functional form of ~ for aj = an only.

J

To simplify the notation, only the case i = 1 will be considered. Using

relation (3) for (U-) yo'

fJYI (-1)
fJan (YI - Y2)(YI - Y3) ... (YI - Yn)

(-I)(YI - y2)··· (YI - yn)· (Y2 - y3)2 ... (Y2 - yn)2 ... (Yn-I - yn)2
TI (Yk - ye)2

k<e

which, by means of expressions (3) and (7), can be written

(16)
(nyI

n-1 + ... + an-I) TIe" ....ell (Ye, - Yell)2_
or (£',£":j:.l).

Dn(al,···,an)

The primed product in (16), where YI does not appear, can be recognized as
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the product of two identical (n - 1) x (n - 1) Vandermonde determinants:

IT 2i' 'l-i" (Yi, - Yi")

Y2 y2 y'n-1
2 2

Y2 Y3 Yn Y3 y2 yn-1
3 3

y2 y2 Y4 y2 yn-12 3 4 4

y'n-1 y'n-1 y'n-1 Yn y'2 y'n-12 3 n
n n

n - 1 5' 5~_11
5' 5' 5'1 2 n
5' 5' 5~+12 3

5~_1 5' 5~n_ls

where S;" = Sm - y1m is the sum of the mth - powers of the roots different
from Y1. Sm can be expressed as an entire function of the aj's, and Y1,for
m > (n - 1), can be reduced to a polynomial whose degree does not exceed
n - 1. Thus, the primed product can be finally set in the form

II' (Yl' - YllI)2 = B1Yt-1 + ... + Bn-1Y1 + Bn·

The Bm's are entire functions of the am's and are the same for all Y;.

After the product in (16) has been carried out, the functional form (10) is
obtained for ~ and, consequently, for all ff-::. Then, through relation (15),
for all .ITi..

8aj

. To close the proof observe that the rules of differentiation and multiplica-
tion of polynomials lead to the conclusion that any higher partial derivative,
including mixed ones, with respect to each aj, will exist if Dn(a1," ., an) l' 0,
and they will have a functional form similar that given in (10). 1!1

The fundamental theorem allows to pose the question of the existence of
linear partial D.E. 's for the Yj in simplest terms: the possibility of eliminating
the (n - 2) non-linear terms 1-";n-1, Yt-2, ... , yj

2 in some set of (n -1) different
partial derivatives of Y;. Although it does not seem to be an easy matter
to find the general conditions additional to the basic one Dn (a 1, ... , an) l' 0
which would ensure the feasibility of this elimination, it can be stated that in
the specific cases considered here no new requirements emerge.

111.2. D.E. for n = 2. The A.E.

(17) Y/ - 2aYj + b = 0
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can be transformed, through the replacements }j = aYj, z = a-2b, a -# 0,
into

(18) yJ - 2Yj + z = 0

The elementary symmetric functions and discrirninat function associated with
the roots of (18) are given by:

(19)

The D.E. to be satisfied by the roots can be obtained directly from the funda-
mental theorem:

y' = dYj = _ (Yj - Yk) = _ Yj - (81 - Yj) __ 2 (Yj - 1) j = 1 2
J dz D2(z) D2(z) - D2(z) , "

so that both Y1 and Y2 satisfy the linear D.E.

(20) ( )
I 1 1.

z - 1 Y - "2Y = -"2'
which is exceptionally -- due to the fact that 81 -# 0 - non-homogeneous.

111.3. D.E. for n = 3. The transformation Yj = (~)a1 + }j, followed by an
obvious redefinition of the parameters, leads to the reduced form of the general
cubic

(21) y./3 _ 3aY.' + 2b = 0J J .

Next, the substitutions

(22)

where arg (amfp) = (m/p) arg(a) is adopted from now on, lead to the form

(23) yj - 3Yj + 2z = 0

of the A. E. The elementary functions, sums of powers of the roots and the
discriminat function associated with (23) are:

81 = 0, 82 = -3, 83 = -2z

(24) 51 = 0, 52 = 6, 53 = -6z, 54 = 18, ... ,

D3(z) = _22 .33 (z2 - 1) .

To obtain the D.E. for the roots, the following recurrence procedure is devel-
oped:
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According to the basic theorem, both the k-th and (k+l)-th order derivatives
of a particular root can be written as

(k)s;
(25) k = 0,1, ...

(k+I) A 2 B CYj k+IYj + k+IYj + k+1

If the first of equations (25) is summed over all three possible values of j, it
is easy to see, due to relations (24) for the sums of powers of the roots, that
c, = -2Ak for all k.

Next, the combination of equations (25) and y(k+I) = dy(k)jdz, and the
foregoing connection between Ck and Ak, lead to

(Ak+l - AU (yJ - 2) + (Bk+1 - BU Yj = (2AkYj + Bk)yj ,

where the "prime" symbol now stands for "djdz". If this relation is multiplied,
first by Yj and then by yJ, and if each of the new expressions is summed up
over all possible values of index i. with due account for the sums of powers
from (24), the following system turns out

2Ak/3

-Bk/3.

When this system is solved, a recurrence relation between the "k + 1" and the
"k" coefficients is established. Exposed in matrix form, it is

(26)

( ~::~) [( ~ ~)~ + 3(Z/-I) (~z ~)] ( ~: ) .c, = -2Ak.

When applied first to k = 0, to which Ao = Co = 0, B; = 1 correspond, and
then to k = 1, recurrence relation (26) leads to

yl(z) 3(zLI) [y2 + zy - 2]
(27)

The elimination of the non-linear term y2 in equations (27) is possible under
the assumption z2 - 1 :f 0, and the linear second order homogeneous D.E. for
each of the three roots of (23)

(28) ( 2 1) /I I 1 0z - y + z . Y - gY = ,
is obtained, which can be easily solved by the simple change of variable dz =
3(z2 - 1)~dt, i.e., z = cosh3t, which leads to the D.E., d:~~t) - y(t) = O.
If "initial" conditions for y(t) and y/(t) are taken at to = i~ (zo = 0), from
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the A.E. (23) and the first of equations (27) the following set of 3 solutions is
obtained:

(29) y(t) = { cosh t ± iV3senh t,
-2cosh t, with et = \/z + ~.

For higher degrees, there seems not to exist such a fortunate change of variable,
and the D.E. (28) will be solved by a method common to all four cases n =
2,3,4,5.

111.4. D.E. for n = 4. For the general n = 4 A.E.

a Tschirnhaus transformation of the following form is proposed:

(30)

where bo and bl should be determined by the condition that ~' satisfies the
new A.E.

(31) Y,4 'y' , 0
j + a3 j + a4 = .

The details can be found in [1] and [2]. A last simplification of equation (31)
can be achieved through the replacements

a~ = -4a, a~ = 3b, a =F 0,

so that the A.E. for each Yj (z) becomes

(32) yJ - 4Yj + 3z = O.

The elementary symmetric functions, the sums of powers of the roots, and the
discriminant function associated to (32) are

81 = 0, 82 = 0, 83 = 4, 84 = 3z;

(33) s. = 0, S2 = 0, S3 = 12, 54 = -12z, ... ,

D4(z) = 33 .44. (z3 - 1).

An iterative procedure for the determination of the derivatives of any order can
be again developed. If the k-th order derivative is written as
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it can be shown that the coefficients of the k + 1-th order derivative are related
to the preceding ones through

(34)

d 1
-+----,----,,----,-
dz 4(z3 - 1)

and Dk = -3Ak for all k.
Starting with k = 0, for which only Co = 1 is not zero, the following set of

derivatives turns out:

y"
(35)

+ (21z6 + 77z3 + lO)y - 3(65z4 + 43z)]

The elimination of the terms y3 and y2 in the set of equations (35) leads to the
linear homogeneous D.E.

(36) (
3 ) III 9 2 1/ 43 I 10z - 1 y + -z y + -zy - -y = 0

2 16 64 '

which must be satisfied by the four roots of the A.E. (32).

111.5. D.E. for n = 5. The corresponding general A. E. can be reduced to

(37) Y'S 'y' , 0j + a4 j + as =
by means of a Tschirnhaus transformation of the type

where b1, b2 and b3 are obtained as the solutions to a system composed of a
linear, a second-degree and a cubic equation. See [1] and [2] for details. A
further modification of equation (37) is achieved through the replacements

a~ = -5a, a~ = 4b,
I l

Yj = a'y,
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leading to the final form

(38) yJ - 5Yj + 4z = O.

The elementary symmetric functions, the sums of powers of the roots, and the
discriminat function associated to the roots of (38) are

81 = 82 = 83 = 0, 84 = -5, 85 = -4z;

(39) S5 = -20z, ... ,

The process of finding the explicit form of the derivatives is once more simplified
by a recurrence procedure: if Ak' Bv , Ck, Dk and Ek are the coefficients in
the k-th order derivative, it is found that the coefficients of the next derivative
are given by

(40)

( Ak+' )Bk+1
Ck+1
Dk+1

ru
0 00) (

4z3 3z2 2z 1 )]( Ak

)1 o 0 d 1 4 3z3 2z2 Z Bk
0 1 0 -+ 4z 3 2z3 z2 Ckdz 5(z4 - 1)
0 o 1 4z2 3z 2 z3 Dk

and Ek = -4Ak for all k.
Starting with k = 0, for which only Do = 1 does not vanish, the following

set of four derivatives is obtained:

y' _1_ [y4 + zy3 + z2y2 + z3y - 4]5(z4-1) ,

(41 ) y"
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y"' 53()_1)3 [(165z6 + 135z2)y4 + (135z7 + 165z3)y3

+(87z8 + 201z4 + 12)y2 + (36z9 + 213z5 + 51z)y

+ (2760z10 + 10380z6 + 1860z2) y3

+ (1530z11 + 9840z7 + 3630z3) y2

+ (504z12 + 7623z8 + 6642z4 + 231) y

-4 (3675z9 + 10050z5 + 1275z)] .

The elimination of s", y3, y2 in the set of equations (41), which is possible
under the condition that D5(z) t 0, leads to the D.E.

(42)
. 117 51 231

(z4 _ 1) y'V + 10z3y"' + _z2y" + -zy' - -y = O.
5 5 625

to be satisfied by the five roots of (37).

IV. The solutions to the D.E.'s
In view of the common features of the D.E.'s (20), (28), (36) and (42), it is
not surprising that the basic set of solutions for each of them can be expressed
in terms of the same type of transcendental functions: generalized hypergeo-
metric functions. The adopted notation for these functions and some of their
properties are reviewed in what follows (see [6] for more details).

(i) If c¥r(r = 1, ... ,p), the numerator parameters, and f3.(s = 1, ... , q) the
denominator-parameters, are given, the generalized hypergeometric functions
of the complex variable t with these parameters will be

(43)

where Cyh is the Pochharnrner symbol defined by

(44) (')0 = 1, (,h = ,(, + 1) ... (, + k - 1) = r(,+ k)/f(,).

(ii) If p = q + 1, f3. of. 0, -1, -2, ... , and

(45) (J' = Re(f31 + ... + f3q - C¥l - ... - c¥p) E [0,1],
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the series (43) converges for all It I ~ 1, t"# 1.
Some common features of the procedure to be followed are mentioned in

order to avoid obvious repetitions. For each D.E., the (regular) singular points
are the solutions of zn-l = 1, and z = 00; z = 0 is a regular point. Accord-
ingly, the z-plane will be divided in the regions Izl < 1 and Izl > 1, and the
usual Ansatze (Frobenius method) will be adopted for the solutions:

(46)
00

w(z) = L akzk, Izi < 1;
o

(47)
00

w(z) = z-p L akz-k, jzl> 1.
o

The trial series (46) and (47) will lead in all cases to generalized hypergeometric
functions depending on the arguments zn-l, z-(n-l), respectively, with p =
q + 1 = n - 1 and (J" = ~,so that the convergence of all series for Izi = 1,
zn-l"# 1, is ensured. The existence of (algebraic) branch points at zn-l = 1
will force to introduce (n - 1) cuts on each of the corresponding sub-regions.

IV.l. The solutions for n = 2. If the Ansatz (46) is used in the homogeneous
part of the D. E. (20), the corresponding recurrence relation is found to be

(48)

which leads to

(49)

The general solutions, satisfying both the D.E. (20) and the A.E. (18), are then
given by Yj (z) = 1 + Aj Wh (z), j = 1,2. The constants Aj can be determined
from the initial values Yj(O), which are readily found from the A.E. In a
conventional order, yJO) = 0 and Y2(0) = 2. Since Wh(O) = 1, the set of
solutions is

Yl(Z)
(50) Izi < 1.

Y2(Z)

It is interesting to notice that the value of IFo(-~;z) at "unity", i.e., at z = 1,
where D2(z) vanishes, can be obtained from (50) and the A.E. (18), which gives
Yl(l) = Y2(1) = 1. It must then be IFo(-~; 1) = O. A quite similar situation
will be found in the cases n = 3,4 and 5.
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The n 2 degree will not be prosecuted any longer. It suffices to state
that the generalized hypergeometric function (49) can be recognized as the
elementary function

as it ought to be.

IV.2. The solutions for n = 3. The replacement of the Ansatz (46) for Izi ~ 1
in the D.E. (28) leads to the following set of basic solutions":

(51)
W~l)(Z)

w~l)(z)
Izi ~ 1.

F (1 2. 3. z2)
Z 2 1 3' 3' 2'

If the independent variable in the D.E. is changed according to z -. liz and
the Ansatz (4) is now used in the transformed differential equation, the new
set of basic solutions

(52) Iz I 2: 1,

is obtained. On the region Izi ~ 1, the solutions to the A.E. (23) will be given
by

(53) ( ) (1)( (1)( )Yj z = Aj1w1 z) + Aj2w2 z, j = 1,2,3,

where the constants are to be obtained from the initial values Yj (0) and yj (0)
(equations (23) and (27)). Adopting a conventional order, and using
2F1(ar;(3.;0) = 1, the set of solutions

( ~~~;j) (_~ =t) ( w~~~(z) )
Y3(Z) 0 I W2 (z)

Y1(0) = v'3, Y2(0) = -v'3, Y3(0) = o.
is obtained. In order to establish the continuations to the region Izl > 1, the
values of each Yj(z) at some point on the common boundary Izi = 1 are needed.
A natural set of values is given precisely at the critical points Zc, z; - 1 = 0,
for which the A.E. (23) can be solved. For Zc E {-I, I}, Yj(zc) E {zc, -2zc},
and the value Yj (zc) is doubly repeated. The fact that at the points Zc both
hyper geometric functions appearing in (51) are real and positive (the first one

(54)

"Here, and in the cases n = 4,5 as well, the identification of the solutions is made
somewhat simpler through the change of variable z ~ zn-l , which leads to the usual form
of the D.E. to be satisfied by pFq(OIr; 13.; z), as quoted in [6].
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being smaller, the second, greater, than 1) gives more than enough information
to determine their values at "unity", as follows: suppose that Y3(1) = -2;
according to (54), it should then be 2Fl(~'~; ~; 1) = -3, which is obviously
false; it must then be Y3(1) = 1, leading to 2F10,~; ~ 1) = ~. A similar trial
process with the other roots leads to the results summarized in (55):

(55)
Yl Y2 Y3

Z = 1 1 -2 1
Z =-1 2 -1 -1

fl
2

F (1 2. 3. 1)
213'3'2'

3
2'

Of course, both values of 2Fl (1) could have been obtained by means of the well
known formula

(56)

The essential point is that no such general formula is known for the values
3F2(1) and 4F3(1), which will appear when solving the cases n = 4 and 5.

On the region Izi :::: 1, the solutions will be constructed as the superposition

(57)

To find the constants, it is convenient to replace (57) in the A.E. (23) and take
Z ~ 1, noticing that each hypergeometric function tends to 1 when (liz) ---+ O.
Collecting equal powers of z, it is then obtained that

(58) 1 B 2-l()2Bj1=23()j, j2=- 3j,

h 03 - l' 0 {i2': 1 _i2':}were j _ - ,l.e., j E e 3, - ,e 3 .

Equation (57) then becomes

(59)

but the exact assignation of OJ is still to be found. The first step is the deter-
mination of the values at unity for both 2Fl appearing in the set (52). By a
logical process wholly analogous to the one exposed for Izi ~ 1, except for the
fact that the values Yj(zc) are known from (55), the values

(60)

are obtained. To fix the correct OJ, it must be recalled that, due to the existence
of branch points at z: = 1, the region should be cut twice. Both cuts will be
taken along the real axis, from -00 to -1, and from +1 to +00, so that
the argument of z will be constrained to the intervals 0 ~ argz < 'If and
'If ~ argz < 2'1f.
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If the values of 2F1(1), from (60), and of the Yj(zc)'s, from (55), are used,
the following set of solutions is found on the upper half of the Izi ~ 1 region:

(61 )
("'C') ) c-'t ." )(2tw~2)(z) )e"

Y2(Z) -1 -1
Y3(Z) ei~ ." 2-1 (2\)e-',

3 W2 Z

(lzl ~ 1, 0 ~ argz < 11").

For the lower half of the region, 11" ~ argz < 211",it is found that Y1 (z) preserves
the functional form given in (61), buth Y2(Z) and Y3(Z) permute their former
forms, a fact indeed predicted by the elementary theory of algebraic functions.

Closing the case n = 3, it can be mentioned that all four 2F1 which appear in
(51) and (52) can be expressed in terms of elementary functions. For instance,
both functions in (52) can be casted in the form

2F1(Q';Q' +~; 1 + 2Q';t) = 22"[1 + (1- t)tr2".
2

When the values Q' = - i and Q' = i are replaced, the solutions given in (61)
become

which can be shown to be the same set of solutions (29) found earlier.

IV.3. The solutions for n = 4. The method to be followed is analogous to the
one applied to the foregoing n = 3 case, so that a succint report is justified.

By means of the Ansatze (46) and (47), the ensuing sets of basic solutions
t? the D.E. (36) are obtained:

(62)

(63)

(1)
3F2(-/2' 2 5 . 1 2. z3)W1 12' 12' 3' 3'

(1)
(ZhF2U2' 6 JL. l i· z3) Izi ~ 1.W2 12' 12' 3' 3'

(1) ( 2) F e 10 13. 4 5. 3)W3 z 3 2 12' 12' 12' 3' 3'z

(2)
(zthF2(-/2' 3 7 . 2 ~. z-3)W1 12' 12' 4' 4 '

(2) (Z-thF2(/2' 6 10. ~ !!.. z-3) Izi ~ 1.W2 12' 12' 4' 4'

(2) (z-~hF2U2' 9 13. 5 §.. z-3)W3 12' 12' 4' 4'
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On the region Izl ~ 1, the solutions which must satisfy both the A.E. (32) and
the D.E. (36) are written as

(64)
3

Yj(Z) = L AjkW~l)
1

j = 1, ... ,4,

where the matrix elements Ajk can be found by means of the initial values
Yj(O), yj(O) and yj'(O), which in turn are obtained from the A.E. (32) and the
first two equations (35). For the conventional order

Y4(0) = 0,

the matrix A is

( 4\
_4-1 -4-t )1 . " _4-1 _4-te-i2t

(65) (Ajk) = 43e'2,
4te-i2t _4-1 _4-~ei2t

0 3.4-1 0

To establish the continuations onto the region Izi > 1, the values of the yj's at
some point on the boundary must be known. The set of possible values can be
obtained from the A.E. (32) at the natural set determined by z3 - 1 = 0: for
each Zc E {I, ei22j-, e-i21}, we have the values

(66)

of the solutions. The values at z~ = 1 for each 3F2 appearing in equation (62)
can be obtained by a systematic trial process, leading to:

(67) F (3 6 g. 2 4. 1)
3 2 12' 12' 12' 3' 3'

4
3

F (7 !Q 13. i ~.1)
3 2 12' 12' 12' 3' 3' .
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By means of the set of 3F2(1)'s from (67), the Yj(zc)'s are readily found to be:

(68)

Zc u, (zc) Y2 (zc) Y3( zc) Y4 (zc)

1 1 (-1 + iV2) -(1 + iV2) 1

ei2i- -zc(1 + iV2) Zc zc( -1 + iV2) Zc

e-i21- zc( -1 + iV2) -zc(1 + iV2) Zc Zc

On the region Izi 2 1, the solutions will be given by:

(69)
3

'" (2)Yj (z) = ~ Bjk Wk (z),
1

j = 1, ... ,4,

and the matrix elements Bjk can be determined, up to a phase factor, by
replacing Yj from (63) in the A.E. (32), taking again z ~ 1, and considering
that each 3F2(z3) in (63) behaves as 1 + O(z-3) for (liz) ---; o. It is so
obtained that

(70) B 3-~02
j2 = - 4 j' B· - 2-1 3-!!c 03

J3 - - . 4 j'

where OJ = -1, i.e., OJ E {u, iu, -u, -iu}, u = eif.
The OJ corresponding to a certain Yj can be determined by means of the

values (68). For that purpose, the 3F2 from (63) at unity must be found. Once
again, a trial process which makes use of the Yj (zc)'s from (68) leads to the
values

(71) F (2 6 10. 3 5. 1)
3 2 12' 12' 12' 4' 4'

Due to the existence of three branch points at z~ = 1, the Izi 2 1 region must
be cut three times, and the OJ '8 are to be found separately on each of the
subregions. We only report the final result for the matrix (Bjk) on each region:
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(i) On the "fundamental" region 0::; argz < 2i,

(72)

i3-t
i3-t
-i3-t
-i3-t

(ii) On the region 2; ::; arg z < 4i, only one permutation of the yj's is
needed: in the matrix (Bjk) from (i), the second and third row are interchanged.

(iii) On the region 4i::; arg z < 21r, only one permutation is again needed:
in the new matrix from (ii), the second and fourth row must be now inter-
changed.

Note that Y1(Z) preserves its form on the whole Izi > 1 region. The permu-
tations take place only on the subset {Y2, Y3, Y4}.

IVA. The solutions for n = 5. There is nothing essentially new in the case n =
5, and only a short account of results will be given. Through the replacement
of the Ansatze (46) and (47) in the D.E. (42), the two sets of basic solutions
are obtained:

(73) Izi ::; 1 :
( 2) F (9 13 17 21. 3 5 6. 4)

Z 4 3 20' 20' 20' 20' 4"' 4"' 4"' z

( 3) F (14 18 22 26. 5 6 7. 4)
Z 4 3 20' 20' 20' 20' 4"' 4"' 4"' z

( - il.) F (3 8 13 18. 3 4 6. -4)
Z 5 4 3 20' 20' 20 ' 20' 5' 5'5' z

(74) Izl~l:
( _:L) F (7 12 17 22. 4 6 7. -4)

Z 5 4 3 20' 20' 20' 20' 5' 5' 5' z

(
_ll) F'(ll 16 21 26.6 7 8. -4)

Z 5 4 3 20' 20 ' 20' 20' 5' 5' 5' z

For Izi ::; 1, the solutions are written

4

Yj(Z) = L Ajk wP) (z)
1

~nd the A-k are found by the initial values Yj(O), yj(O), yj'(O) and yj"(O), ob-
tained fro~ the A.E. (38) and the first three equations in (41). The resulting

(75) j = 1, ... ,5
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(Ajk) matrix, whose first column contains the conventional assignments for the
Yj (O)'s, is

(Aj') ~ (

st _S-l -2-1·S-t
-2 s-l 1is t _S-l i2-1·S-t 2·S-~

(76) -st _S-l 2-1·S-t -2·S-% .
-iSt -S-l -i2-1 . S- t 2·S-~

0 4. S-l 0 0

To establish the continuations of the solutions to Izl > 1, their values at points
on the common boundary are needed. In the process of finding those values,
the 4F3 from (73) at unity are also obtained. Once more, the set of points
given by z~ - 1 = 0 is convenient. It is found that the A.E. (38) has y(zc) = Zc
as a double root, and the remaining ones must be solutions of the cubic

(77)

Equation (77) can be reduced by the procedure developed in Section 111.3, and
explicitly solved using equation (29). Summarizing, for Zc E {l, i, -1, -i} ,

(78)

where

(79)
y*2

Using the set (78) of possible values for the solutions, the 5F3(1) and the exact
assignments Yj(zc) are obtained:

(80)
F ( 1 3 7 11. 1 2 3. 1)

4 3 - 20' 20' 20' 20' 4"' 4"' 4"'

5
4"

F (9 13 17 21. 3 5 6. 1)
4 3 20' 20' 20' 20' 4"' 4"' 4"'

I

56
4 [J3 (r1 + r2) - h- r2) --15]

~: [2 (r1 + r2) - -15]F (14 18 22 26. 5 6 7. 1)
4 3 20' 20' 20' 20' 4"' 4"' 4"'
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(81)

ZC Y1 (Zc) Y2 (Zc) Y3( Zc) Y4 (Zc) Y5 (zc)

1 1 Y2 Y1 Y3 1

i iY3 i iY2 iY1 i

-1 -Y1 -Y3 -1 -Y2 -1

-2 -iY2 -iY1 -iY3 -2 -2

For the region Izi 2: 1, the solutions will be given by

(82)
4

Yj(z)=LBjkW~2) j=1, ... ,5,
1

and the Bjk are determined, up to a phase factor, through the replacement of
(82) in the A.E. (38) and taking z ~ 1. It is then obtained that

(83)
B 4_1()3

j3 = - 5 j'

5 . {i~ i2~ i2~ i" } ,where ()j = -1, i.e., ()j E es, -e--'-, -1, e---'-, -e-s . To find the ()j s,

the correspondence between the Yj (zc) 's from(82) and the values fixed in (81)
must be determined. Once more, the finding of the 4F3 in (74) at unity is
necessary. They are given by

(84)
F(3 81318.346'1) 4tb

4 3 20' 20' 20' 20' "5' "5' "5'

F (7 12 17 22. 4 6 7. 1)
4 3 20' 20' 20' 20' "5' "5' "5'

F (11 16 21 26.6 7 8'1) 4¥-d
4 3 20' 20' 20' 20' "5' "5' "5' ,
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where a, d, b, and c are solutions to the system

(85)
a - d 110Ii (7'1 + 7'2) [2J5 + 2v'5 - JlO - 2v'5]

b + c /0 Ii (7'1 + 7'2) [JI0 + 2v'5 - 2J5 - 2v'5)

and 7'1, 7'2 are defined in (79).
Finally, due to the existence of branch points at z4 = 1, the region Izl > 1

has to be cut four times, and the assignation of the OJ'S must be done separately
on each of the sub-regions. We only report the corresponding matrix elements
Bjk for (82):

(i) For 0 ~ argz < ~, the fundamental region,

(86)

4!u'
41 .2

- 5U

-4!
-4!u2

4!u

4-tu2

-4- tu'
4-t

-4-tu
4-tu·2

(ii) For ~ ~ argz < n , the second and fifth rows are permuted in (86).
(iii) For 7r ~ argz < 3~, the third and fifth rows are permuted in the

resulting matrix (ii).
(iv) For 3~ ~ arg z < 27r, the fourth and the fifth rows of matrix (iii) are

permuted.

Once more, the root Y1(Z) preserves its form on he whole Izi > 1 region, as
the permutations only occur within the subset {Y2, Y3, Y4, Y5}.
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