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Elementary remarks on Anderson's
hyperfinite random walk
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ABSTRACT. We give a combinatorial proof that the standard part of Anderson's
hyperfinite random walk has the Gaussian distribution. We also show the connection
between moments of Gaussian variables and some combinatorial properties.
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Following the notation and the definition of Anderson's nonstandard construc-
tion of Brownian motion given in [1, p. 78-84]' we let N E *N" N, f).t = N-1,

T = {f).t, 2f).t,. , I}, and let J.L be the counting measure on n = {-I, IV. We
define the hyperfinite random walk as B : n' x T ---+ *JR( such that B(w, t) =
Bt(w) = 2:5<t w(s)VM. Then under the Loeb measure of J.L, the standard part
of B forms a Brownian motion.

The first remark here is a combinatorial proof that 0 B, has the Gaussian
distribution N(O, t) (mean 0 and variance t). Although it is well-known that
this can be done, the author was unable to find a reference; instead the result
is usually proved by using either the central limit theorem or the Fourier trans-
form. The second remark gives a combinatorial explanatiori of the significance
of the moments of Gaussian random variables.
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1. Gaussian distribution

We verify that for t E T, °t> 0, x E 'IR, J.L{Bt ~ x} ::::i J~:,(z, t)dz, where
2,(z, t) = ;A;;te- ~, , the Gaussian density of N(O, t).

Bywritingt = HD.t, H infinite, and let D.u = u», Br(w) = Ls<rW(S)~,
we note that Br(w) = y iff Br(w) = 71' Notice that B can be thought of as a
Brownian motion on another Anderson's model. (Using D.u as the step size of
the time line). So by changing the variable in the integral, it suffices to check

(1)
Ox

J.L{B1 < X}::::i 100 ,(z, l)dz.

Write y = MV!SJ,. If B1(w) = y, then Lt<l w(t)= M. So in the coordinates
of w, ~(N + M) entries are 1 and the rest are -1. Therefore the proportion of

such w in n is ~ (H~M»)'
Suppose that x = K V!SJ, is a position attained by some path at time 1.Then

at time 1, the set of possible positions not exceeding x which are attained by
some paths is s, = {KV!SJ" (K - 2)V!SJ".·. ,-NV!SJ,}. So

J.L{B1 ~ x} = L 2~ (l(N: M)) = L r(z)D.s,
M..,fC;tES", 2 zES",

where r(M~) = lll, (H~M»)' D.s= 2~. Hence we only need to show
the following

(2) If z = M ~ is finite, then I'(») ::::i Ji,re- O~2 •

As a consequence of this, r is S-integrable and (1) holds.
. First recall the Stirling's formula:

(3) m! = -/27fm (~) me*", for some 0 < c; < 1
1
2'

To prove (2), we first write

_ ..IN -/27fN(tf)NC;1
r(z) - 2N+1 ~ N M

J7f(N + M) (NteM) 2 J7f(N - M) (N 2eM) 2

N±M N-M1 N2 N 2 N -2-

= -J2iJ N2 - M2 (N + M) (N _ M) C;I,
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for some e' ;::::1. The second term J N2~~2 = J 1-\: ;::::1. So it suffices to
show

(4) (
N )N+M ( N )N-M;:::: e-z2

N+M N-M

I· If M
2

. iinit. H 0" Ii . M M
2

Calm. -H 18 zn e, > 18 m rnte, then eM ;::::eur
(1+'H)H .

Proof. By expanding e* into a power series, the left side has the form
(1 + M~H)H, where

(Use ': ;::::0). Since (1 + M~H)M = (1 + A;;')M for some e" ;::::0, we have

(1 + M~I-l)I-l ;::::(1 + M~H )M+H ;::::e~. The claim is now proved.

Now rewrite the left side of (4)

(1- M· )N+M (1+ M )N-M
N+M N-M

( )
N-M

M2 N+M l+b eM
= (1 - (N + M)2) ( M )N+M eM

1+ N+M

;::::(1 - (N :~)JN+M (by applying the claim to H = N ± M)

= (1~N~M (l:~)rM ~,-.,
So (4) holds as required.

2. Moments of Gaussian variables

Suppose that ~ is a Gaussian random variable of mean 0 and variance t. Then
by a simple argument using a moment generating function, one obtains

(5)
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On the other hand, there are exactly e:) n! 21n = ~2nnJ;ways of partition-
ing a set of size 2n into n pairs. We now explain their connections by using
Anderson's model.

Write w. = W(5)~ for wEn. So Bt(w) = 2::.<t w. and E[Brn] =
E[(2::s<t w.)2n] = E[2::.

1
,. ,S2n «t W'1 ... w.2J· By the independence, each prod-

uct WS1 ... W'2n has zero expectation unless it can be put into the form

w2 ... w2 = (ti.t)n = _1_.
Ul tin Nn

Let At,n (respectively Ct,n) be the 2n-tuples (51, ... S2n) from {u E T : u < t},
where (51,'" 52n) can be divided into n pairs (respectively n distinct pairs) such
that each pair consists of indentical elements. So

From the definition, we have the following inequality for At,n and Ct,n :

(6) (2 n ) ! ( ) ( ) I I I I (2n ) r ( ) n-2n I Nt Nt - 1 ... Nt - n + 1 = Ct,n :S At,n :S -2n I Nt .n. n.

Therefore E[ Brn] ~ ~2:J,'t", From the previous section and nonstandard inte-
gration theory, E[Brn] lifts E[en], so (5) holds.
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