Asymptotic formulae of generalized Chebyshev functions*

Catalina Calderón
María José Zárate
Universidad del País Vasco, ESPAÑA

Abstract

In this paper we study the behavior of certain generalized Chebyshev functions over the square r-free integers and will prove Selberg's inequality for such functions Key words and phrases. Selberg's formula, Chebyshev functions, prime number theorem.

1991 Mathematics Subject Classification. Primary 11N05. Secondary 11N69.

1. Introduction and preliminaries

In the last three decades a number of elementary proofs of the prime number theorem have appeared (see [3] for a survey). Most of these proofs are based, at least in part, on ideas from the original proof of Erdös [4] and Selberg [9]. One of the main ingredients of the Erdös -Selberg proof is Selberg's formula

$$
\begin{equation*}
\sum_{p \leq x} \log ^{2} p+\sum_{p q \leq x} \log p \log q=2 x \log x+O(x) \tag{1.1}
\end{equation*}
$$

which appears, in some form, in almost all these proofs.

[^0]Several proofs of Selberg's formula appeared soon (see [7], [11] ,[12]). Bombieri [1] used a class of analogues of Selberg's formulae of greater weight to improve the error term in the prime number theorem. Wirsing [13] introduced a recursion whereby each time that an error estimate was found for $\pi(x)-l i x$, it was used again to obtain an improved form of Selberg's formula.
H.N. Shapiro [11] obtained a generalization of Selberg's formula and its equivalences. Also, A. Selberg [10] gave an elementary proof of the prime number theorem for arithmetic progressions. Its starting point is the following formula

$$
\begin{equation*}
\sum_{\substack{p \leq x \\ \ell(\bmod k)}} \log ^{2} p+\sum_{\substack{p q \leq x \\ p q \equiv \ell(\bmod k)}} \log p \log q \tag{1.2}
\end{equation*}
$$

$$
=\frac{2}{\phi(k)} x \log x+O(x), \quad(k, \ell)=1
$$

In 1958 G.J. Rieger obtained formula (1.2) in an algebraic field [8].
Applying the inversion formula, K. Iseki and T. Tatuzawa [12] established the formula

$$
\begin{equation*}
\psi(x) \log x+\sum_{n \leq x} \psi(x / n) \Lambda(n)=2 x \log x+O(x), \quad \psi(x)=\sum_{n \leq x} \Lambda(n) . \tag{1.3}
\end{equation*}
$$

This result may be used in place of Selberg's formula to prove the prime number theorem.

In this paper we will prove Selberg's inequality for the generalized Chebyshev functions $\Psi_{r, k}^{*}(x), \theta_{r, k}^{*}(x)$ which will be defined in (1.4). Let G_{2} be the set of square integers and let Q_{r} be the set of r-free integers $(r>2)$. If $r=1$ we take $G_{2} \cap Q_{1}=\{1\}$. If $r \geq 2$ is even, $G_{2} \cap Q_{r}=G_{2} \cap Q_{r-1}$, so that it is sufficient to consider the case when r is odd.

We denote by $C_{r, k}$ the set of natural numbers n such that $n=N$ or $n=$ $p m N$, where $N \in G_{2} \cap Q_{r}$ and m is an arbitrary integer with $\omega(m) \leq k-1$, $(p m, N)=1, \omega(m)$ being the number of distinct prime factors of m.

For positive integers r and k, let $\psi_{r, k}^{*}(x), \theta_{r, k}^{*}(x)$ be the summatory functions

$$
\begin{equation*}
\Psi_{r, k}^{*}(x)=\sum_{n \leq x} \wedge_{r, k}^{*}(n), \quad \theta_{r, k}^{*}(x)=\sum_{\substack{n \leq x \\ n \in C_{r, k}}} \wedge_{r, k}^{*}(n) \tag{1.4}
\end{equation*}
$$

where $\wedge_{r, k}^{*}(n)$ is the function of Mangoldt type

$$
\begin{equation*}
\wedge_{r, k}^{*}(n)=\sum_{d \delta=n} \mu_{r}^{*}(d) \log ^{k} \delta, \tag{1.5}
\end{equation*}
$$

$\mu_{r}^{*}(n)$ being given by $\mu_{r}^{*}(1)=1, \mu_{r}^{*}(n)=0$ if $p^{r+1} \mid n$ for some prime p, and $\mu_{r}^{*}(n)=(-1)^{\Omega(n)}$ if $n=\prod p_{i}^{\alpha_{i}}, 0 \leq \alpha_{i} \leq r$, with $\Omega(n)=\sum \alpha_{i}$ (observe that $\mu_{1}^{*}(n)$ is the Moebius function $\left.\mu(n)\right)$.

The functions $\wedge_{r, k}^{*}(n)$ generalize the well-known von Mangoldt function $\wedge(n)$ and also Ivić functions $\wedge_{k}(n)$ (cf. [5]). Since

$$
\sum_{n=1}^{\infty} \mu_{r}^{*}(n) n^{-s}=(\zeta(2 s) / \zeta(s)) \gamma_{r}((r+1) s)
$$

for $\operatorname{Re}(s)>1$, where $\gamma_{r}(s)=1 / \zeta(s)$ if $r \geq 1$ is odd and $\gamma_{r}(s)=\zeta(s) / \zeta(2 s)$ if $r \geq 2$ is even, the Dirichlet series for $\wedge_{r, k}^{*}(n)$ is

$$
\sum_{n=1}^{\infty} \wedge_{r, k}^{*}(n) n^{-s}=(-1)^{k}\left(\zeta^{(k)}(s) / \zeta(s)\right) \zeta(2 s) \gamma_{r}((r+1) s)
$$

which is absolutely convergent for $\operatorname{Re}(s)>1 . \zeta(s)$ is the Riemann zeta function and $\zeta^{(k)}(s)$ its k-th order derivative. The function $\wedge_{r, k}^{*}(n)$ has the property $\wedge_{r, k}^{*}(n)=\sum_{d \delta=n} \wedge_{1, k}^{*}(d) h_{r}(\delta), h_{r}(n)=\sum_{d \delta=n} \mu_{r}^{*}(d)$. For odd integer r, $h_{r}(n)$ is the characteristic function of the square r-free integers.

Moreover, from [2, Theorem 2] we know that for fixed positive integers r, k, there exists a constant $C=C(k)>0$ such that

$$
\begin{align*}
\Psi_{r, k}^{*}(x) & =x P_{k-1}(\log x)+O(x \exp (-C \delta(x)), \\
\delta(x) & =\log ^{3 / 5} x(\log \log x)^{-1 / 5} \tag{1.6}
\end{align*}
$$

where $P_{k-1}(t)$ is a polynomial of degree $k-1$ in t (the case $r=k=1$ is formula (12.26) of [6]). An extension of (1.3) for $\Psi_{r, k}^{*}(x)$ is given in [2, Theorem 3]. We will give here other formulae of type (1.3) and (1.1) for $\Psi_{r, k}^{*}(x)$ and $\theta_{r, k}^{*}(x)$, the sums being extended over a certain class of integers (mentioned above).

2. The theorems

Theorem 1. For integers $r, k \geq 1$, with r odd, we have

$$
\begin{equation*}
0 \leq \Psi_{r, k}^{*}(x)-\theta_{r, k}^{*}(x) \ll x^{1 / 2} \log ^{2 k} x . \tag{2.1}
\end{equation*}
$$

Proof. From (1.4) we obtain that

$$
\begin{equation*}
\Psi_{r, k}^{*}(x)-\theta_{r, k}^{*}(x)=\sum_{\substack{n \leq x \\ n \notin C_{r, k}}} \wedge_{r, k}^{*}(n) \tag{2.2}
\end{equation*}
$$

Moreover let $n=\prod_{i=1}^{s} p_{i}^{\alpha_{i}}$ be the factorial descomposition of the positive integer n and let $\delta_{i}=\min \left\{\alpha_{i}, r\right\}$. Using (1.5) and the definition of $\mu_{r}^{*}(n)$ we get have that

$$
\begin{equation*}
\wedge_{r, k}^{*}(n)=\sum_{\beta_{1}=0}^{\delta_{1}} \cdots \sum_{\beta_{s}=0}^{\delta_{s}}(-1)^{\sum_{i=1}^{i} \beta_{i}}\left(\sum_{i=1}^{s}\left(\alpha_{i}-\beta_{i}\right) \log p_{i}\right)^{k}= \tag{2.3}
\end{equation*}
$$

$$
=\sum_{n_{1}+\cdots+n_{s}=k} \frac{k!}{n_{1}!\ldots n_{s}!} \log ^{n_{1}} p_{1} \ldots \log ^{n_{s}} p_{s} S\left(n_{1}\right) \ldots S\left(n_{s}\right),
$$

where $S\left(n_{i}\right)=\sum_{\beta=0}^{\delta_{i}}(-1)^{\beta}\left(\alpha_{i}-\beta\right)^{n_{i}}$. Since $0 \leq S\left(n_{i}\right)<\alpha_{i}^{n_{i}}, i=1, \ldots, s$ from (2.3) we get

$$
\begin{equation*}
\wedge_{r, k}^{*}(n) \leq \log ^{k} n \tag{2.4}
\end{equation*}
$$

If at least $k+1$ exponents α_{i} are such that $\alpha_{i} \geq r$ or $\alpha_{i}<r$ is odd then $\wedge_{r, k}^{*}(n)=0$ and, from the definition of $C_{r, k}$,

$$
\left\{n: n \notin C_{r, k}, \quad \wedge_{r, k}^{*}(n) \neq 0\right\} \subset M_{r, k}=\cup_{j=1}^{k} M_{r, k}^{j}
$$

where
$M_{r, k}^{j}=\left\{n=N \prod_{s=1}^{j} p_{s}^{\alpha_{s}}: 1<\alpha_{s}(\right.$ odd $)<r$ or $\left.\alpha_{s} \geq r, N \in G_{2} \cap Q_{r},\left(p_{s}, N\right)=1\right\}$.
We consider the sums

$$
\begin{equation*}
S_{j}=\sum_{\substack{n \leq x \\ n \in M_{r, k}^{j}}} \log ^{k} n \quad, \quad(1 \leq j \leq k) \tag{2.5}
\end{equation*}
$$

Let $j=1, N=1$ and let $\pi(x)$ be the number of prime numbers which do not exceed x. Since the order of magnitude of $\pi(x)$ is $x / \log x$, then

$$
\begin{aligned}
\sum_{p^{\alpha} \leq x} \log ^{k} p^{\alpha} & \lll \sum_{2 \leq \alpha \leq \log _{2} x} \alpha^{k} \sum_{p \leq x^{1 / \alpha}} \log ^{k} p \\
& \ll \sum_{2 \leq \alpha \leq \log _{2} x} \alpha^{k} \pi\left(x^{1 / \alpha}\right) \log ^{k}\left(x^{1 / \alpha}\right) \ll x^{1 / 2} \log ^{k+1} x .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
S_{1}=\sum_{\substack{n \leq x \\ n \in M_{r, k}^{1}}} \log ^{k}(n) \ll \max _{0 \leq \beta \leq k} \sum_{\substack{p^{\alpha} \leq x \\ \alpha \geq 2}} \log ^{k-\beta} p^{\alpha} \sum_{\substack{N \leq x / p^{\alpha} \\ N \text { square }}} \log ^{\beta} N \tag{2.6}
\end{equation*}
$$

$$
\ll \max _{0 \leq \beta \leq k} x^{1 / 2} \log ^{\beta} x \sum_{\substack{p^{\alpha} \leq x \\ \alpha \geq 2}} \frac{\log ^{k-\beta} p^{\alpha}}{\sqrt{p^{\alpha}}} \ll x^{1 / 2} \log ^{k+1} x
$$

because for a non-negative integer m

$$
\begin{equation*}
\sum_{p^{\alpha} \leq x, \alpha \geq 2} \frac{\log ^{m} p^{\alpha}}{\sqrt{p^{\alpha}}} \ll \log ^{m+1} x \tag{2.7}
\end{equation*}
$$

From (2.6) and (2.7) we obtain the following estimate for S_{2} (p, q are prime numbers):

$$
\begin{align*}
S_{2} & =\sum_{\substack{n \leq x \\
n \in M_{r, k}^{2}}} \log ^{k}(n) \\
& \ll \max _{0 \leq \beta \leq k} \sum_{\substack{p^{\alpha} \leq x \\
\alpha \geq 2}} \log ^{k-\beta}\left(p^{\alpha}\right) \cdot \sum_{\substack{q^{\gamma} N \leq x / p^{\alpha} \\
\gamma \geq 2, N \text { square }}} \log ^{\beta}\left(q^{\gamma} N\right) \tag{2.8}
\end{align*}
$$

$$
\ll \max _{0 \leq \beta \leq k} x^{1 / 2} \log ^{\beta+1} x \sum_{\substack{p^{\alpha} \leq x \\ \alpha \geq 2}} \frac{\log ^{k-\beta} p^{\alpha}}{\sqrt{p^{\alpha}}} \ll x^{1 / 2} \log ^{k+2} x
$$

By repeating the above argument for every $j=1,2, \ldots, k$ we get

$$
\begin{equation*}
S_{j} \ll x^{1 / 2} \log ^{k+j} x \tag{2.9}
\end{equation*}
$$

Therefore, we have

$$
\Psi_{r, k}^{*}(x)-\theta_{r, k}^{*}(x) \ll \max _{1 \leq j \leq k} S_{j} \ll x^{1 / 2} \log ^{2 k} x
$$

\square

It is well-known that

$$
\psi(x) \log x+\sum_{p \leq x} \psi(x / p) \log p=2 x \log x+O(x)
$$

In the following theorem we will get the corresponding expression for the general case.

Theorem 2. Let r be an odd positive integer and let k be a positive integer. Then

$$
\sum_{\substack{n \leq x \\ n \in G_{2} \cap Q_{r}}} \Psi_{r, k}^{*}\left(\frac{x}{n}\right) \log ^{k}\left(\frac{x}{n}\right)+\sum_{i=1}^{k}\binom{k}{i} \sum_{\substack{n \leq x \\ n \in C_{r, i}}} \Psi_{r, k}^{*}\left(\frac{x}{n}\right) \log ^{k-i}\left(\frac{x}{n}\right) \wedge_{r, i}^{*}(n)=
$$

$$
\begin{equation*}
=k\left[\frac{\zeta(2)}{\zeta(r+1)}\right]^{2}\left(\frac{k!}{(2 k-1)!} \sum_{i=0}^{k} \frac{(2 k-i-1)!}{(k-i)!}\right) x \log ^{2 k-1} x+O\left(x \log ^{2 k-2} x\right) \tag{2.10}
\end{equation*}
$$

Proof. By [2, Theorem 3], we know that

$$
\begin{aligned}
& \sum_{n \leq x} \Psi_{r, k}^{*}(x / n) \log ^{k}(x / n) h_{r}(n)+\sum_{i=1}^{k}\binom{k}{i} \sum_{n \leq x} \Psi_{r, k}^{*}(x / n) \log ^{k-i}(x / n) \wedge_{r, i}^{*}(n)= \\
& =k\left[\frac{\zeta(2)}{\zeta(r+1)}\right]^{2}\left(\frac{k!}{(2 k-1)!} \sum_{i=0}^{k} \frac{(2 k-i-1)!}{(k-i)!}\right) x \log ^{2 k-1} x+O\left(x \log ^{2 k-2} x\right)
\end{aligned}
$$

Since $h_{r}(n)$ is the characteristic function of $G_{2} \cap Q_{r}$, to deduce formula (2.10) it will be sufficient to prove that

$$
\begin{equation*}
\max _{1 \leq i \leq k}\left\{\sum_{\substack{n \leq x \\ n \notin C_{r, i}}} \Psi_{r, k}^{*}\left(\frac{x}{n}\right) \log ^{k-i}\left(\frac{x}{n}\right) \wedge_{r, i}^{*}(n)\right\} \ll x \log ^{2 k-2} x \tag{2.11}
\end{equation*}
$$

The natural numbers $n \notin C_{r, i}$ such that $\wedge_{r, i}^{*}(n) \neq 0$ are contained in $M_{r, i}$, therefore we can write the sum T_{i} within braces as

$$
\begin{equation*}
T_{i}=\sum_{j=1}^{i} \sum_{\substack{n \leq x \\ n \in M_{r, i}^{j}}} \Psi_{r, k}^{*}\left(\frac{x}{n}\right) \log ^{k-i}\left(\frac{x}{n}\right) \wedge_{r, i}^{*}(n) \tag{2.12}
\end{equation*}
$$

As a consecuence of [2, Theorem 2] we know that $\Psi_{r, k}^{*}(x) \ll x \log ^{k-1} x$, so, due to (2.4), we have that

$$
\begin{equation*}
T_{i} \ll \max _{1 \leq j \leq i} \sum_{\substack{n \leq x \\ n \in M_{r, i}^{j}}}\left(\frac{x}{n}\right) \log ^{2 k-i-1}\left(\frac{x}{n}\right) \log ^{i}(n) \tag{2.13}
\end{equation*}
$$

For $j=1$, we have

$$
\begin{aligned}
& \sum_{\substack{n \leq x \\
n \in M_{r, i}^{1}}} \frac{x}{n} \log ^{2 k-i-1}\left(\frac{x}{n}\right) \log ^{i}(n) \ll \\
& \ll x \sum_{\substack{p^{\alpha} N \leq x \\
\alpha \geq 2 N \text { square }}} \frac{\log ^{2 k-i-1}\left(x / p^{\alpha} N\right) \log ^{i}\left(p^{\alpha} N\right)}{p^{\alpha} N} \\
& \ll x \max _{0 \leq \gamma \leq 2 k-i-1} \log ^{2 k-i-1-\gamma} x \sum_{\substack{p^{\alpha} N \leq x \\
\alpha \geq 2 N \text { square }}} \frac{\log ^{i+\gamma}\left(p^{\alpha} N\right)}{p^{\alpha} N} \\
& \ll x \log ^{2 k-i-1} x
\end{aligned}
$$

because for integer numbers $m \geq 1$

$$
\begin{aligned}
\sum_{\substack{p^{\alpha} N \leq x \\
\alpha \geq 2 N \text { square }}} \frac{\log ^{m}\left(p^{\alpha} N\right)}{p^{\alpha} N} & \ll \max _{0 \leq \delta \leq m} \sum_{\substack{p^{\alpha} \leq x \\
\alpha \geq 2}} \frac{\log ^{m-\delta}\left(p^{\alpha}\right)}{p^{\alpha}} \sum_{\substack{N \leq x \\
N \leq q u a r e}} \frac{\log ^{\delta} N}{N} \\
& \ll \max _{0 \leq \delta \leq m} \sum_{\substack{p^{\alpha} \leq x \\
\alpha \geq 2}} \frac{\log ^{m-\delta}\left(p^{\alpha}\right)}{p^{\alpha}} \\
& \ll \max _{0 \leq \delta \leq m} \sum_{p \leq \sqrt{x}} \sum_{\alpha \geq 2} \frac{\log ^{m-\delta}\left(p^{\alpha}\right)}{p^{\alpha}} \\
& \ll \max _{0 \leq \delta \leq m} \sum_{p \leq \sqrt{x}} \frac{\log ^{m-\delta} p}{p^{2}} \ll 1 .
\end{aligned}
$$

In a similar way for each $j=2,3 \ldots i$, the sum of (2.13) is $\ll x \log ^{2 k-i-j} x$. Hence, $T_{i} \ll x \log ^{2 k-i-1} x,(1 \leq i \leq k)$ and formula (2.11) is proved.

It is well-known that

$$
\theta(x) \log x+\sum_{p \leq x} \theta(x / p) \log p=2 x \log x+O(x)
$$

In the following theorem we will generalize the above formula for $\theta_{r, k}^{*}$.
Theorem 3. For positive integers r, k with r odd we have,

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ n \in G_{2} \cap Q_{r}}} \theta_{r, k}^{*}\left(\frac{x}{n}\right) \log ^{k}\left(\frac{x}{n}\right)+\sum_{i=1}^{k}\binom{k}{i} \sum_{\substack{n \leq x \\ n \in C_{r, i}}} \theta_{r, k}^{*}\left(\frac{x}{n}\right) \log ^{k-i}\left(\frac{x}{n}\right) \wedge_{r, i}^{*}(n)= \tag{2.14}
\end{equation*}
$$

$$
=k\left[\frac{\zeta(2)}{\zeta(r+1)}\right]^{2}\left(\frac{k!}{(2 k-1)!} \sum_{i=0}^{k} \frac{(2 k-i-1)!}{(k-i)!}\right) x \log ^{2 k-1} x+O\left(x \log ^{2 k-2} x\right)
$$

Proof. By Theorem 2 it is sufficient to prove that

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ n \in G_{2} \cap Q_{r}}}\left[\Psi_{r, k}^{*}(x / n)-\theta_{r, k}^{*}(x / n)\right] \log ^{k}(x / n)+ \tag{2.15}
\end{equation*}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{k}\binom{k}{i} \sum_{\substack{n \leq x \\
n \in C_{r, i}}}\left[\Psi_{r, k}^{*}(x / n)-\theta_{r, k}^{*}(x / n)\right] \log ^{k-i}(x / n) \wedge_{r, i}^{*}(n) \\
& =\sum_{1}+\sum_{2} \ll x \log ^{2 k-2} x
\end{aligned}
$$

By Theorem 1 ,

$$
\begin{equation*}
\sum_{1} \ll \sum_{m^{2} \leq x}\left[\Psi_{r, k}^{*}\left(x / m^{2}\right)-\theta_{r, k}^{*}\left(x / m^{2}\right)\right] \log ^{k}\left(x / m^{2}\right) \tag{2.16}
\end{equation*}
$$

$$
\ll x^{1 / 2} \sum_{m \leq \sqrt{x}} \frac{\log ^{3 k}\left(x / m^{2}\right)}{m} \ll x
$$

On the other hand, we can deduce

$$
\begin{aligned}
\sum_{2} & \ll \max _{1 \leq i \leq k} \log ^{k-i} x \sum_{\substack{m n \leq x \\
n \in C_{r, i}, m \in M_{r, k}}} \wedge_{r, k}^{*}(m) \wedge_{r, i}^{*}(n) \\
& \ll \max _{1 \leq i \leq k} \log ^{k-i} x \sum_{\substack{m \leq x \\
m \in M_{r, k}}} \wedge_{r, k}^{*}(m) \Psi_{r, i}^{*}(x / m)
\end{aligned}
$$

Applying the argument which has been used to estimate T_{i} in the proof of Theorem 2 we can write :

$$
\begin{align*}
& \sum_{2} \ll x \max _{1 \leq i \leq k} \log ^{k-i} x \sum_{\substack{m \leq x \\
m \in M_{r, k}}} \frac{\wedge_{r, k}^{*}(m) \log ^{i-1}(x / m)}{m} \ll \tag{2.17}\\
& \ll x \max _{1 \leq i \leq k} \max _{0 \leq \gamma \leq i-1} \log ^{k-1-\gamma} x\left\{\sum_{\substack{p^{\alpha} N \leq x \\
\alpha \geq 2, N \text { square }}} \frac{\log ^{k+\gamma} p^{\alpha} N}{p^{\alpha} N}+\ldots+\right.
\end{align*}
$$

$$
\left.+\sum_{\substack{p_{1}^{\alpha_{1} \ldots p_{k}^{\alpha_{k}} N \leq x} \\ \alpha_{i} \geq 2, N \text { square }}} \frac{\log ^{k+\gamma} p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}} N}{p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}} N}\right\} \ll x \log ^{k-1} x
$$

\square

Corollary. When r is an odd positive integer and k is a positive integer the following estimate holds

$$
\begin{align*}
& \sum_{\substack{n m \leq x \\
m \in C_{r, k} \\
n \in G_{2} \cap Q_{r}}} \wedge_{r, k}^{*}(m) \log ^{k}(m)+\sum_{i=1}^{k}\binom{k}{i} \sum_{\substack{n m \leq x \\
m \in C_{r, k}, n \in C_{r, 2}}} \wedge_{r, k}^{*}(m) \log ^{k-i}\left(\frac{x}{n}\right) \wedge_{r, i}^{*}(n)= \\
& (2.18) \\
& = \tag{2.18}\\
& =k\left[\frac{\zeta(2)}{\zeta(r+1)}\right]^{2}\left(\frac{k!}{(2 k-1)!} \sum_{i=0}^{k} \frac{(2 k-i-1)!}{(k-i)!}\right) x \log ^{2 k-1} x+O\left(x \log ^{2 k-2} x\right)
\end{align*}
$$

Proof. By Abel's identity,

$$
\sum_{\substack{m \leq y \\ m \in C_{r, k}}} \wedge_{r, k}^{*}(m) \log ^{k} m=\theta_{r, k}^{*}(y) \log ^{k} y-k \int_{3 / 2}^{y} \frac{\theta_{r, k}^{*}(z) \log ^{k-1} z}{z} d z
$$

Since $\theta_{r, k}^{*}(z)=O\left(z \log ^{k-1} z\right)$, the last integral is $O\left(y \log ^{2 k-2} y\right)$. Taking $y=$ x / N and adding over $N \leq x, \mathrm{~N}$ square r-free, we have

$$
\begin{align*}
& \sum_{\substack{N \leq x \\
N \in G_{2} \cap Q_{r}}} \theta_{r, k}^{*}(x / N) \log ^{k}(x / N)= \tag{2.19}\\
& \sum_{\substack{N \leq x \\
N \in G_{2} \cap Q_{r}}} \sum_{\substack{m \leq x / N \\
m \in C_{r, k}}} \wedge_{r, k}^{*}(m) \log ^{k} m+O\left(x \log ^{2 k-2} x\right)
\end{align*}
$$

Replacing (2.19) in (2.14) the Corollary is deduced.

3. Applications and special cases

1. When $r=1$ we have $\Lambda_{1, k}^{*}=\Lambda_{k}, \Psi_{1, k}^{*}=\Psi_{k}$ and by Theorem 2 we deduce
that

$$
\begin{equation*}
\Psi_{k}(x) \log ^{k}(x)+\sum_{i=1}^{k}\binom{k}{i} \sum_{\substack{p m \leq x \\ \omega(m)<i}} \Psi_{k}\left(\frac{x}{p m}\right) \log ^{k-i}\left(\frac{x}{p m}\right) \wedge_{i}(p m)= \tag{3.1}
\end{equation*}
$$

$$
=k\left(\frac{k!}{(2 k-1)!} \sum_{i=0}^{k} \frac{(2 k-i-1)!}{(k-i)!}\right) x \log ^{2 k-1} x+O\left(x \log ^{2 k-2} x\right) .
$$

2. When $r=1$ we have $\theta_{1, k}^{*}=\theta_{k}$ and by Theorem 3 we deduce that

$$
\begin{align*}
& \theta_{k}(x) \log ^{k}(x)+\sum_{i=1}^{k}\binom{k}{i} \sum_{\substack{p m \leq x \\
\omega(m)<i}} \theta_{k}\left(\frac{x}{p m}\right) \log ^{k-i}\left(\frac{x}{p m}\right) \wedge_{i}(p m)= \tag{3.2}\\
= & k\left(\frac{k!}{(2 k-1)!} \sum_{i=0}^{k} \frac{(2 k-i-1)!}{(k-i)!}\right) x \log ^{2 k-1} x+O\left(x \log ^{2 k-2} x\right) .
\end{align*}
$$

3. For $r=3, k=1$ we have

$$
\begin{align*}
& \sum_{m^{2} \leq x}|\mu(m)| \Psi_{3,1}^{*}\left(\frac{x}{m^{2}}\right)\left\{\log \left(\frac{x}{m^{2}}\right)+\wedge_{3,1}^{*}\left(m^{2}\right)\right\} \\
&+\sum_{\substack{p m^{2} \leq x \\
(p, m)=1}}|\mu(m)| \Psi_{3,1}^{*}\left(\frac{x}{p m^{2}}\right) \wedge_{3,1}^{*}\left(p m^{2}\right) \tag{3.3}
\end{align*}
$$

$$
=k\left[\frac{\zeta(2)}{\zeta(4)}\right]^{2} x \log x+O(x)
$$

4. For $r=3, k=1$ we get

$$
\begin{align*}
& \sum_{m^{2} \leq x}|\mu(m)| \theta_{3,1}^{*}\left(\frac{x}{m^{2}}\right)\left\{\log \left(\frac{x}{m^{2}}\right)+\wedge_{3,1}^{*}\left(m^{2}\right)\right\} \\
&+\sum_{\substack{p m^{2} \leq x \\
(p, m)=1}}|\mu(m)| \theta_{3,1}^{*}\left(\frac{x}{p m^{2}}\right) \wedge_{3,1}^{*}\left(p m^{2}\right) \tag{3.4}
\end{align*}
$$

$$
=2\left[\frac{\zeta(2)}{\zeta(4)}\right]^{2} x \log x+O(x)
$$

References

1. Bombieri, E., Sulle formule di A. Selberg generalizzate per classi di funzioni arimetiche ele applicazioni al problema del resto nel "Prinzahlsatz", Riv. Math. Univ. Parma (2) 3 (1962), 393-440.
2. Calderón C., Zárate, M. J., A generalization of Selberg's asymptotic formula, Arch. Math. 56 (1991), 465-470.
3. Diamond, H., Elementary methods in the study of the distribution of prime numbers, Bull Amer. Math. Soc. 7 (1982), 553-589.
4. Erdös, P., On a new method, which leads to an elementary proof of the prime number theorem, Proc. Acad. Sci. U.S.A. 35 (1949), 374-384.
5. Ivić. A., On the asymptotic formulas for a generalization of von Mangoldt's function, Rendiconti. Mat. Roma (6) 10 (1977), 51-59.
6. Ivić. A., The Riemann Zeta-Function, J. Wiley and Sons, New York, 1985.
7. Popken, J., On convolutions in number theory, Indag. Math. 17 (1955), 10-15.
8. Rieger, G.J., Ein weiter Beweis der Selbergschen Formel für Idealklassen mof f in algebraischen Zahlkörpern, Math. Annalen 134 (1958), 403-407.
9. Selberg, A., An elementary proof of the prime number theorem, Ann. of Math. (2) 50 (1949), 305-313.
10. Selberg, A., An elementary proof of the prime number theorem for arithmetic progressions, Can. J. Math. 2 (1950), 66-78.
11. Shapiro, H.N., On a theorem of Selberg and generalizations, Annals of Math. 51 no. 2 (1950), 485-497.
12. Tatuzawa, T., and Iseki, K., On Selberg's elementary proof of the prime number theorem, Can. J. Math. 2 (1950), 66-78.
13. Wirsing, E., Elementare Beweise des Primzahlsatzes mit Restglied II, J. Reine Angew. Math. 214/215 (1963), 1-18.
(Recibido en marzo de 1995; revisado en febrero de 1996)

Catalina Calderón
Departamento de Matemáticas
Universidad del País Vasco
E-48080 Bilbao
ESPAÑA
e-mail: mtpcagac@lg.ehu.es
Maria José Zárate
Departamento de Matemáticas
Universidad del País Vasco
E-48080 Bilbao
ESPAÑA
e-mail: mtpzaazm@lg.ehu.es

[^0]: * Work supported by the University of the Basque Country and DGICYT PB91-0449.

