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ABSTRACT.The lectures contain an introduction to quantum groups, q-special
functions and their interplay. After generalities on Hopf algebras, orthogonal
polynomials and basic hypergeometric series we work out the relation between
the quantum 5U(2) group and the Askey-Wilson polynomials out in detail as
the main example. As an application we derive an addition formula for a two-
parameter subfamily of Askey-Wilson polynomials. A relation between the AI-
Salam and Chihara polynomials and the quantised universal enveloping algebra
for su(l, 1) is given. Finally, more examples and other approaches as well as
some open problems are given.
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4. Quantum subgroups and the Haar functional.
5. Askey-Wilson polynomials and generalised matrix elements.
6. Addition formulas for Askey-Wilson polynomials.
7. Convolution theorem for Al-Salam and Chihara polynomials.
8. More examples.

Introd uction
In the latter half of this century it has become clear that there is an intimate
relation between special functions of hypergeometric type, such as Jacobi, Hahn
and Krawtchouk polynomials (or other polynomials within the Askey scheme of
hyper geometric orthogonal polynomials), Bessel functions and representation
theory of groups, notably Lie groups. See the books by Vilenkin [101] and its
succesor by Vilenkin and Klimyk [102] for a large number of relations between
special functions and group representations, and how group properties can
imply interesting formulae for the special functions involved.

Basic, or q-hypergeometric series and q-special functions are almost as an-
cient as their q = 1 counterparts. But the development for the q-special func-
tions has been much slower than the development for special functions. In the
1970's the works of Andrews and Askey initiated a great number of papers on
q-hypergeometric series and q-special functions. One of the highlights in this
development is the introduction by Askey and Wilson of a very general four
parameter set of orthogonal polynomials, nowadays called the Askey-Wilson
polynomials. However, before the introduction of quantum groups there was
not much known about where these q-special functions 'live' in an analogous
way as special functions live on Lie groups. Of course, there were some isolated
results such as the interpretation of certain q-analogues of special functions on
finite groups of Lie type.

Since the introduction of quantum groups by Drinfeld, Jimbo and Woronow-
icz in the mid-eighties, a lot of research has been going on developing the rela-
tions between q-special functions and quantum groups. A large number of such
relations are known by now. Since then a huge amount of papers on quantum
groups have appeared, and also a number of books on quantum groups have
been published. Since we are not dealing with all kinds of aspects of quan-
tum groups, we refer to the books by Chari and Pressley [15], Jantzen [31],
Joseph [32], Kassel [40], Lusztig [64], Majid [68] for more information. Chari
and Pressley [15] and also Vilenkin and Klimyk [102] have a chapter on the
relation between quantum groups and q-special functions. For a more physics
point of view to quantum groups and related special functions Biedenharn and
Lohe [12] can be consulted.

It is the purpose of these lectures to get some feeling for quantum groups and
its relation with q-special functions. I have chosen to do so by studying various
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aspects of one particular simple well-known example, namely the quantum
group analogue of the compact Lie group of 2 x 2-unitary matrices, 5U(2).
At the end we briefly discuss some other examples which are related to the
treatment of the quantum 5U(2) group of these lectures. After reading these
course notes it must be clear that there is a very nice and important interplay
between quantum groups and q-special functions.

What are quantum groups? Firstly, they are not groups, but they are some-
how related to groups in the sense that they are deformations of certain struc-
tures reflecting the group properties. This is rather vague, but more precise
information can be found in the books on quantum groups mentioned. We can
think of a quantum group as a deformation of the algebra of functions on a
group. For a Lie group we have the duality between functions on the group
and the universal enveloping algebra of the corresponding Lie algebra. It turns
out that for a large class of quantum groups, there exist deformations of uni-
versal enveloping algebras such that the duality survives. These defor ations
are known as quantised universal enveloping algebras, or quantum algebras, or
q-algebras, and for each simple Lie algebra there is a 'canonical' deformation,
due to Jimbo.

In these lectures we first discuss the fundamental concept in quantum group
theory, namely Hopf algebras. Two important examples, namely the algebra of
functions on a (finite) group and the universal enveloping algebra, are discussed.
Duality is an important concept. In the second lecture we investigate in detail
deformations of the universal enveloping algebra U(s[(2, C)) and the algebra
of polynomials on 5L(2, C). Orthogonal polynomials and q-hypergeometric se-
ries are discussed in lecture 3, and we combine the two in a discussion of the
Askey-Wilson polynomials. In lecture 4 we describe how we can characterise
quantum subgroups of the quantum 5U(2) group, and we derive an explicit
expression for the analogue of the Haar measure for left and right invariant
(with respect to such a subgroup) functions. In lecture 5 we then show how
the full four-parameter family of Askey-Wilson polynomials can be interpreted
on the quantum 5U(2) group as generalised matrix elements. Using this in-
terpretation an addition formula for a two-parameter family of Askey-Wilson
polynomials is derived in lecture 6. In lecture 7 we discuss how a general con-
volution formula for a subclass of Askey-Wilson polynomials can be derived
from the quantised universal enveloping algebra for su(l, 1). An overview of
related results is finally given in the last lecture.

The main line in the relation between quantum groups and q-special func-
tions as presented in these lectures uses the duality between deformed function
algebras and quantised universal enveloping algebras. It is shown that results
in the theory of quantum groups can be proved using q-special functions, and
that identitites for q-special functions can be derived using their interpretation
on quantum groups. Another approach, due to Kalnins, MiJler and coworkers,
and Floreanini and Vinet, only uses the quantum algebra, and we discuss this
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alternative shortly in lecture 8. Lecture 7 contains a result which is a kind of
mixture of these two approaches.

Each lecture ends with a number of references to the literature, which, due
to the enormous amount of papers in this area, cannot be complete. For each
lecture a number of exercises is given. There are more published lecture notes
on this subject, notably Koornwinder [57], [61] and Noumi [72]. For the general
lecture 1 I have used [61] a lot. Lectures 2, 4 and 5 follow my survey paper
[50] with a different proof of the expression for the Haar functional in lecture 4,
which is taken from joint work with Verding [54]. Lecture 6 is based on unpub-
lished work [47]. It is contained a limiting case of the far more complex and
computational result of [51]. Lecture 7 is a special case of joint work [53] with
Van der Jeugt. Lecture 8 gives a biased look to other cases, and discusses some
open ends.

Acknowledgement. These lecture notes were used for a course at the IV Escuela
de Verano, Universidad Nacional de Colombia and Universidad de los Andes,
Bogota, Colombia, July 22 - August 2, 1996. I thank the organisors, and in
particular J airo Charris and Ernesto Acosta, for the invitation and their kind
hospitality. I thank Tom Koornwinder and Jasper Stokman for pointing out
typos in a previous version.

1. Hopf algebras
The concept of a Hopi algebra is fundamental for the theory of quantum groups.
In the first lecture we study this concept in some detail and we treat some
important examples.

The ground field is C, although everything goes through when working over
a commutative ring with unit. The tensor product V I8lW of two linear spaces
is the algebraic tensor product, which means that elements of V I8lW consist
of fini te linear combinations of the form v I8lw, v E V, w E W.

§1.1: Algebras, hi-algebras and Hopf algebras. Recall that an algebra,
or better, an associative algebra with unit, is a linear space A with a bilinear
mapping A xA -+ A, (a, b) f-+ ab, called multiplication, and a distinguished non-
zero element 1 E A, called the unit, such that a(bc) = (ab)c and la = a = a1
for all a, b, c E A. This leads to two mappings, m: A I8lA -+ A, also called
multiplication, and TJ: C -+ A, also called unit, defined by m(a I8lb) = ab and
TJ( z) = Z 1. Then we can rephrase the associatitvity and unit in terms of the
following commuting diagrams;

AI8lAI8lA m0id
AI8lA CI8lA

T/0id
AI8lA

id0T/
AI8lC---+ ---+ +---

(1.1.1) id0m 1 ml ~l ml ~l
AI8lA m A A id A id A---+ ---+ +---
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where we use C0A == A == A0C by identifying z0a and a0z with za for z E C
and a E A. An algebra homomorphism means a unital algebra homomorphism,
i.e. mapping unit onto unit.

For an algebra A the tensor product A 0 A is again an algebra with multi-
plication (a 0 b)(c 0 d) = ac 0 bd and unit 101. Note that

(1.1.2)

where 0":A0A -> A0A is the flip automorphism, 0"(a0b) = b0a. Finally,
note that commutativity of A is equivalent to the condition 0"° m = m.

Definition 1.1.1. A coalgebra, or better, a coassociative coalgebra with counit,
is a linear space A with a linear mapping Ll: A -> A 0 A, called the comultipli-
cation, and a non-zero linear mapping s: A -> C, called the counit, such that
~he following diagram is commutative;

A0A0A 60id A0A C0A <0id A0A id0< A0C+---- +---- -----.

(1.1.3) lid06 16 ~1 16 ~1
A0A

6 A A
id

A
id A+---- +---- -----.

The commutative diagram of (1.1.3) is obtained from (1.1.1) by reversing
arrows.

We say that the coalgebra is cocommutative if 0" ° Ll = Ll.

Definition 1.1.2. A bialgebra is an algebra A, such that A is also a coalgebra
and the comultiplication Ll and counit e are algebra homomorphisms.

Remark 1.1.3. An equivalent definition of a bialgebra can be obtained replacing
the condition that Ll and e are algebra homomorphism by the condition that
m and TJ are coalgebra homomorphisms.

Definition 1.1.4. A Hopf algebra is a bialgebra A with a linear mapping
S: A -> A, the antipode, such that the following diagram is commutative;

S0id-----. A 0 A id0S
+----

(1.1.4)

A A A

A Hopf algebra morphism rjJ: A -> B oE two HopE algebras A and B is an
algebra morhism rjJ: A -> B such that es ° rjJ = CA, LlB ° rjJ = rjJ 0 rjJ ° LlA and
SB°rjJ=rjJoSA'
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Proposition 1.1.5. (i) If A is a bialgebra and S an antipode making A into
a Hopf algebra, then S is unique.

(ii) Let A be a Hopi algebra, then the antipode S is unital, counital, antim-
ultiplicative and anticomultiplicative. Or, with (J' the flip automorphism,

S (1) = 1, e 0 S = z , S 0 m = m 0 (J' 0 (S ® S), ~ 0 S = (J' 0 (S ® S) 0 ~.

Proof. (i) Let F and G be linear mappings of A into itself, then we define the
convolution product F*G by F*G = mo(F®G)o~. This convolution product
is associative, which follows from the associativity of m and the coassociativity
of~. Moreover, TJ 0 c::A ---+ A is the unit for the convolution product. So
the endomorphism algebra of A, End(A), becomes algebra. Now assume that
A is a Hopf algebra with antipode S, then S * id = TJ 0 e = id * 5. Or, 5
is a two-sided inverse of the identity mapping in End(A) with respect to the
convolution product and thus unique.

(ii) Use (1.1.4) to 1 E A to find 5(1) = 1. To ease notation we introduce

(1.1.5) ~(a) = L a(1) ® a(2),
(a)

(id ® ~)~(a) = L a(1) ® a(2) ® a(3),
(a)

which is well-defined by (1.1.3). Then by (1.1.3) we have L(a) c:(a(1»)a(2) = a.
Apply S and next e to see that

c:(S(a)) = c:® c:((id ® S)~(a)) = e 0 m 0 (id ® S) 0 ~(a) = e 0"10 c:(a) = c:(a).

Next

S(b)5(a) = L S(b(1»)S(a(1»)c:(a(2)b(2»)
(a),(b)

= L 5(b(1»)S(a(1»)a(2)b(2)S(l!(3)b(3»)
(a),(b)

= L c:(a(1»)c:(b(l))5(a(2)b(2)) = 5(ab).
(a),(b)

The last statement is left as an exercise. 1!1
Example 1.1.6. Let G be a finite group and A = C(G), the space of (con-
tinuous) complex-valued functions on G. Then A is a commutative algebra
under pointwise multiplication and its unit is the constant function equal to
1. Since G is finite we have A ® A == C(G X G), and then m(F)(g) = F(g,g),
"1(z)(g) = z. Moreover, A is a bialgebra if we define the comultiplication and
counit by

~(J)(g, h) = f(gh), f E A, g, hE G,
c:(J) = f(e), f E A, e E G unit of the group.
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We define 5(1)(g) = f(g-l) and then A is a Hopf algebra by a straightforward,
but instructive, check. Note that A is a commutative Hopf algebra with 52 = l.

The important observation is that the group structure -multiplication, unit
and inverse- is stored in the Hopf algebra structure -comultiplication, counit
and antipode- and so instead of studying G we can study C( G).

This works nicely for a finite group. Now suppose that G is an algebraic
subgroup of 5L(n, C), the group of n x n-matrices with complex entries and
determinant one, so G is some complex matrix group. Then we can take A =
Pol( G) consisting of complex-valued functions in g, such that considered as
functions of its matrix entries gij they are polynomials. Then Pol( G x G) '=::
Pol( G) 0 Pol( G). Let tij E A be defined by tij (g) = gij, then the tij generate A
and ~(tij) = L~=l tik0tkj, c:(tij) = Oij, 5(tij) = Tji, where 'Iji is the cofactor
of the (ji)-th entry in the matrix (tijh~i,j~n.

Example 1.1.7. Let 9 be a complex Lie algebra, i.e. a vector space over C
equipped with a Lie bracket [', -]:9 x 9 -> g, which is a bilinear mapping such
that [X,Y] = -[Y,X] and [X, [Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] = 0 (Jacobi
identity). An example of a Lie algebra is 9 = sl(n, C), the space of n x n-
matrices with complex coefficients with zero trace. The Lie bracket is [X, Y] =
XY - Y X, where the product on the right hand side is matrix multiplication.

Let A be the universal enveloping algebra of g, A = U(g). This is a unital
algebra generated by X, X E g, with relations XY - Y X = [X, Y] for X, Y, E g.
Then we define

~(X) = 10 X + X 01, €(X) = 0, 5(X) = -X, X E 9

and extend ~ and e to U(g) as algebra homomorphisms and 5 as an antiho-
momorphism. Then U(g) is a Hopf algebra. Note that it is a cocommutative
Hopf algebra, but that it is not commutative unless 9 is abelian, i.e. [X, Y] = 0
for all X, Y E g.

§1.2. Duality and Hopf *-algebras. A pairing between two vector spaces
A and U is a bilinear mapping A x U -> C, (a, u) f-t (a, u). We say that the
pairing is non-degenerate, or better, doubly non-degenerate, if (a, u) = 0 for all
u E U implies a = 0 and (a, u) = 0 for all a E A implies u = O. Such a pairing
can be extended to a pairing of A Q9 A and U 0 U by (a 0 b, u 0 v) = (a, u) (b, v).

Definition 1.2.1. Two Hopf algebras A and U are said to be in duality if
there exists a non-degenerate pairing (-, -): A x U -> C such that

(a0b,~(u)) = (ab,u), (~(a),u0v) = (a,uv),
(1, u) = €(u), (a, 1) = c:(a), (5(a), u) = (a, 5(u)).

Example 1.2.2. Recall that if G is an (algebraic) subgroup of 5L(n, C) and
its Lie algebra 9 is a subalgebra of sl(n, C), then we have a natural pairing of
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Pol( G) and 9 by

(X,!) = dd I f(exptX),
t t=O

X E g, f E Pol(G).

From Definition 1.2.1 and Examples 1.1.6 and 1.1.7 we find the familiar ex-
pression

Ok I(Xl' .Xk,f) = otl ... Otk tl==tk=/((exptlXl) ... (exptkXk))

for Xl,'" .x, E g, f E Pol(G).
Using this pairing we can define a left and right action of 9 on Pol( G) by

left and right invariant first order differential operators; for 9 E G, X E g,
f E Pol(G),

X·f(g) = dd I f(gexptX), f.X(g) = dd I f((exptX)g)
t t=O t t=O

and we extend this to U(g) by (XY).f = X.(Y!) and f.(XY) = (f.X).Y. This
gives the action of U(g) on smooth functions on G by left or right invariant
differential operators. This can be done for arbitrary Hopf algebras in duality.

Proposition 1.2.3. Let A and U be two Hopf algebras in duality, then for
u E U and a E A

u.a = (id 0 (',u)) 0 ~(a), a.u = ((0, u) 0 id) 0 t:.(a)

define a left and right action of U on A.

Proof. Using (1.1.5) we see that

(vu).a = L(a(2),vu)a(l) = La(l)(a(2),v)(a(3)'u) = v.(u.a),
(a) (a)

and and similarly for the right action. ~

Recall that an algebra A is --algebre if there exists an antilinear antim-
ultiplicative involution a f-+ c". So (Aa + J-lb)* = ~a* + [lb* J (ab)* = b*a*,
(a*)* = a for a, b E A, A, J-l E C. If ¢J: A -+ B is an algebra homomorphism of
two --algebras A and B J then ¢J is a --homomorphism if ¢J( a*) = ¢J( a)* .

Definition 1.2.4. A Hopf »-elgeor« is a Hopf algebra A, such that A is a
*-algebra and t:. and E. are »-bomomotphisms. A Hopf *-algebra morphism
¢J: A -+ B of two Hopf *-algebras A and B is a Hopf algebra morphism such
that ¢J(a*) = (¢J(a))*.

There is no requirement on the relation between the antipode Sand * in
Definition 1.2.4.
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Proposition 1.2.5. Let A be a Hopf *-algebra, then (S 0 *)2 = id. In partic-
ular, S is invertible.

Proof. For an algebra A we define the opposite algebra Aopp as the algebra
with the same vector space structure and multiplication and unit defined by

mopp = m 0 (J": Aopp @ Aopp -> Aopp, 1)opp = 1): Aopp -> C.

Aopp is a bialgebra with unchanged comultiplication and counit. If Aopp is also
a Hopf algebra then 5 is invertible and the antipode for Aopp is 5-1.

Let A be a Hopf --algebra. Use (1.1.4) on a*, and apply again the *-operator
to get, using the notation (1.1.5),

La(2)(S(a(1)))* = €(a)1 = L(5(a(a)))'a(2)
(a) (a)

or *050* is the antipode for Aopp. Using Proposition 1.1.5(i) and the previous
paragraph it follows that 5-1 = * 050 *. 1!1
Example 1.2.6. Let G C 5L(n, q be an algebraic group as in Example 1.1.6,
and let Go be a real connected group which is a real form of G. E.g. if
G = 5L( n, C) we can take Go equal to 5L( n, rr:R) (n x n matrices with real
entries and determinant one), which are the fixed points of the involution which
is entry-wise complex conjugation, or to 5U(n) (n x n unitary matrices with
determinant one), which are the fixed points of the involution which takes
adjoints. A polynomial p on G is then completely determined by its restriction
to the real form Go. Suppose that for every p E Pol( G) there exists a polynomial
p* E Pol( G) such that p* (go) = p(go) for all go E Go, then Pol( G) is a Hopf
--algebra. Conversely, if Pol( G) is a Hopf *-algebra, then

Go = {g E G I p*(g) = p(g) Vp E Pol(G)}

defines a real form of G.
So Pol( G) as a Hopf algebra carries the properties of a complex group, and

Pol( G) considered as a Hopf *-algebra carries the properties of a real group.

Definition 1.2.7. Two Hopi' e-elgebres A and U are in duality (as Hopl »-
algebras), if they are in duality as Hopi algebras and (a*, u) = (a, (5(u))*).

Example 1.2.8. From Example (1.1.7) we know that U(g) is a Hopf algebra,
which is in duality with the Hopf algebra Pol( G) if the Lie algebra of G is g.
Suppose Pol( G) is a Hopf --algebre and let Go be the corresponding real form
of G and go the corresponding real form of g = go + igo. Then fot X E go we
have

(X,p) = (X, (S(p))*) = ~lt=l(exp(-tX)) = -(X,p),

so X* = -X for X E go. E.g. in case G = 5L(n, q and Go = 5U(n), then
the *-operator on the Lie algebra level is taking adjoints.
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§1.3. Invariant functional. Let A be a Hopf algebra and assume that a linear
functional h: A ~ (( satisfies

(1.3.1) (id0 h) 0 ~ = TJ 0 h = (h 0 id) 0 ~

then we say that h is an invariant functional, or h is a Haar functional. If only
the first, respectively last, equation of (1.3.1) holds, then \}'e say that h is a left,
respectively right, invariant functional. If it exists we normalise h by h(l) = 1.

Theorem 1.3.1. If the Haar functional exists on a Hopi algebra A, then it is
unique up to a scalar multiple.

Example 1.3.2. Let G be an algebraic subgroup of 5L(n, C), then the left Haar
measure du gives a left invariant functional on Pol( G) by h(p) = fG p(g) djj(g),
assuming that the polynomials are integrable on G with respect to the Haar
measure. Here we have used that

(id0 h)~(p)(g') = 1p(g'g)djj(g) = lp(g)djj(g) = h(p).

If djj is also right invariant, i.e. if G is unimodular, then h is also a right
invariant functional.

For the special case of the quantised function algebra on the compact group
5U(2) we give a proof of the existence of the invariant integral.

Notes and references. The standard references for the theory of Hopf alge-
bras before the introduction of quantum groups are Abe [1] and Sweedler [91].
Since its introduction a wealth of papers has appeared, and we have used Chari
and Pressley [15, Ch. 4] and especially Koornwinder [61]. Important concepts
within the theory of Hopf algebras related to quantum groups are quasitriangu-
lar Hopf algebras and the quantum double construction, both due to Drinfeld
[21], see also [15], [68]. Also, we haven't mentioned corepresentations of a
coalgebra, see Exercise 1.6.

For Hopf *-algebras in duality we refer to Van Daele [98]. The invariant
functional is an important tool in the harmonic analysis on quantum groups and
proofs of Theorem 1.3.1 can be found for the C' -algebra setting in Woronowicz's
influential fundamental paper [103], see also Van Daele [99] for an up-to-date
version. A purely algebraic proof can be found in Dijkhuizen and Koornwinder
[17], see als [61].

Exercises.
1. In (1.1.2) the multiplication mA0A is defined using the flip automorphism

(Y. Now let W: A 0 A ~ A 0 A be a linear map and define mA0A = m@mo
id0w 0 id. Suppose that w(a (1) = 10 a, w(l@a) = a01 for all a E A,
and that .

w 0 (m @ id) = (id 0 m) 0 (w @ id) 0 (id 0w),

wo(id@m)=(m0id)o(id@w)o(w0id).
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Prove that A ® A is an associative algebra with unit 1 ® 1. The map \II is
called the braiding.

2. Define the notion of coalgebra homomorphism and prove Remark 1.1.3.
3. Prove the last statement of Proposition 1.1.5(ii).
4. Check that the examples in Example 1.1.6 and 1.1.7 are Hopf algebras. (First

prove that in Example 1.1.7 the mappings ~, e and S are well-defined as
follows; U(g) = T(g)j I where T(g) is the tensor algebra for 9 and I is the
ideal in T(g) generated by X ® Y - Y ® X - [X, Y] for all X, Y E g. Then
show that ~(1) C T(g) ® I + I ® T(g), c(I) = 0, S(I) C I. This means that
I C T(g) is a Hopf ideal.)

5. Prove that Aopp is a Hopf algebra, see proof of Proposition 1.2.5. Similarly,
if A is a coalgebra we define AOPP as the coalgebra with comultiplication
~OPP = (TO ~ and cOPP = c. Suppose that A is a Hopf algebra with invertible
antipode S, prove that AOPP is a Hopf algebra with unchanged multiplication
and unit and antipode s:', Prove also that A~gg = (Aopp)OPP = (AOPP)opp
is a Hopf algebra with antipode S.

6. A (left) representation 7r of an algebra A in the linear space V is a bilinear
mapping 7r:A ® V - V, 7r:a ® v 1-+ a· v, such that (ab)· v = a· (b· v)
and 1 . v = v. Rephrase this in terms of commutative diagrams using the
multiplication m and unit TJ. Define he notion of a core presentation of a
coalgebra by reversing arrows.

2. The quantum SL(2,C) group
In this lecture we consider the fundamental example of a non-commutative,
non-cocomrnutative Hopf algebra; the so-called quantised universal enveloping
algebra for 5[(2, C).

§2.1. The Hopf algebra Uq(5[(2, C)). Let Uq(5[(2, C)) be the complex unital
associative algebra generated by A, B, C, D subject to the relations
(2.1.1)

AD = 1= DA, AB = qBA, AC = q-1CA,

On the level of generators we define the comultiplication, counit and antipode
by

(2.1.2)

SeA) = D,

~(A) = A ® A, ~(B) = A ® B + B ® D,
~(C) = A ® C + C ® D, ~(D) = D ® D,

c(A) = c(D) = 1, c(C) = c(B) = 0,

S(B) = -«'B, S(C) = -qC, SeD) = A.

Here q is thought of as a deformation parameter, and at first we take q E
C" {-I, 0, I}. (It is also possible to view Uq(s[(2, C)) as an algebra over C(q).)
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The case q --> 1 is considered in a moment. However, we will always assume
that q is not a root of unity, i.e. qffi =I 1 for all m E Z+. Observe that 5 is
invertible, but 52 =I 1 since q2 =I 1.

Proposition 2.1.1. Define ~ and e on Uq(.s1(2, C)) by (2.1.2) as (unital) alge-
bra homomorphisms and 5 by (2.1.2) as (unital) anti-algebra homomorphisms,
then Uq(.s1(2, C)) is a Hopi algebra.

Proof. We have to check that ~, e and 5 are well-defined and that they satisfy
the axioms of a Hopf algebra. These are straighforward computations. E.g.

and

m 0 (id@ 5) 0 ~(B) = A5(B) + B5(D) = _q-1 AB + BA = 0 = c:(B).

Continuing in this way proves the proposition. 1!1
The element

(2.1.3)
q-1A2+qD2_2 qA2+q-1D2_2

n= (-1 )2 +BC= (-1 )2 +CBq -q q -q

is the Casimir element ofthe quantised universal enveloping algebra Uq(.s1(2, C)).
n belongs to the centre of Uq(.s1(2, C)).

To justify the name for this Hopf algebra, we replace A by exp((q -1)H/2),
and hence D by exp( (1 - q)H /2) and we let q i 1. Then we can deduce from
(2.1.1) that in the limit we get

[H,B] = 2B, [H,C] = -2C, [B,C]=.H.

To see the first relation, use A = exp((q - 1)H/2) in AB = qBA to get

1 1
B + 2"(q - l)H B = qB + 2"q(q - l)BH + O((q - 1)2) ===}

12"(q - l)(H B - qBH) = (q - l)B + O((q - 1)2).

Divide both sides by q - 1 and let q --> 1 to get the first relation. The other
relations are obtained similarly. With

B=(~ ~), C= (~ ~)

we see that {H, B, C} forms a basis for the three-dimensional Lie algebra
.s1(2,C). Moreover, we see that (2.1.2) tends to the standard Hopf algebra
structure on U(.s1(2, C) as in Example 1.1.7 as q --> 1.

For the universal enveloping algebra the Poincare- Birkhoff- Witt theorem
gives a basis for the underlying linear space. Here we have a similar result, but
the proof is not a straightforward generalisation of the PBW-theorem.
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Lemma 2.1.2. A linear basis for Uq(sl(2, C)) is given by DiCk B'" for k, mE
Z'.:+, I E Z'.: with the convention D-I = AI for I E Z'.:+.

§2.2. Finite dimensional representations of Uq(sl(2,C)). We first con-
centrate on the algebra structure of Uq(sl(2, C)). Let H be a finite dimen-
sional vector space, then B(H) is the (unital associative) algebra of linear
operators of H into itself. A representation t of Uq(sl(2, C)) in H is an al-
gebra morphism t: Uq(sl(2, C)) --+ B(H). A linear subspace V CHis called
invariant if t(X)V C V for all X E Uq(sl(2,C)), and then the restriction
tlv: Uq(sl(2, C)) --+ B(V), tlv(X) = t(X)lv is a subrepresentation of t. Ob-
viously, {O} and H are invariant subspaces of H, and if there are no more
invariant subspaces we say that the representation t in H is irreducible. Two
irreducible representations of Uq(sl(2, C)), say t: Uq(sl(2, C)) --+ B(H) and
s: Uq (sl(2, C)) --+ B(V), are said to be equivalent if there exists a linear bi-
jection T: H --+ V such that Tt(X) = s(X)T for all X E Uq(sl(2, C)).

Theorem 2.2.1. For each dimension N + 1, N E Z'.:+, there are four inequiva-
lent irreducible representations. Explicitly, there exists a basis {eo, ... , eN} of
CN+1 such that they are given byt(A)ek = >"qN/2-kekJ t(C)ek = ek+l, and

for >..4 = 1 with the convention e-l = 0 = eN+l.

Proof. Let t be an irreducible representation of Uq(sl(2, C)) in H, and let ).
be an eigenvalue of the operator t(A) for the eigenvector v. Then t(B)kv is
an eigenvector for t(A) for the eigenvalue Xq", Since H is finite dimensional
t(B)kv = 0 for k large enough, so we may assume that t(B)v = O. Define
eo = v and ek = t(C)keo for k E Z'.:+. Let N be the smallest integer such that
eN+l = 0 and eN f. 0, then span(eo, ... ,eN) is a non-zero invariant subspace
and hence equals H. Then t(C)ek = ek+l with the convention eN+l = 0 and
t(A)ek = >..qN/2-kek after rescaling >... Since t(B)ek is an eigenvector of t(A)
for the eigenvalue >"qN/2+1-k we have t(B)ek = J.Lkek-l for some constant J.Lk·
The commutation relation for Band C imply

).2qN-2k _ >..-2q2k-N
J.Lk+l-J.Lk= «-:«:' ==}

qN+l>..2(1_ q-2k) + q-l-N).-2(1_ q2k)
J.Lk= (q_q-l)2 .

This calculation takes into account the initial condition J.Lo= O. Since we also
have the end condition J.LN = (>.. -2qN - ).2q--N)/(q - q-l) these two expressions
have to be equal, and this leads to the condition ).4 = 1. The representations
obtained in this way give all finite dimensional representations of Uq(s[(2, C)).
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For different dimensions they are mutually inequivalent, and for the same di-
mension we see that they are mutually inequivalent since the spectrum of the
operator corresponding to A is different. J!1

In the sequel we only use the representations with the spectrum of A con-
tained in q~IZ+, or A = 1.

§2.3. --sta-uct.ures on Uq(s[(2,C)). We have seen that Uq(s[(2,C)) is a Hopf
algebra, and we now consider how the Hopf algebra structure depends on q
and whether Uq(s[(2, C)) can be made into a Hopf --algebra. For this purpose
we need some special elements of Uq(s[(2,C)). We call 0 -# X E Uq(s[(2,C))
group like if ~(X) = X iZl X. Note that this implies c:(X) = 1. Let X be
group like, then we say that Y E Uq(s[(2, C)) is twisted primitive with respect
to X if ~(Y) = X iZl Y + Y iZl SeX). Note that this implies c:(Y) = 0 and that
the twisted primitive elements form a linear subspace of Uq(s[(2, C)). In case
we consider the Hopf algebra U(g), cf. Example 1.1.7, the unit element 1 is
the only group like element and the elements of g C U(g) are the only twisted
primitive elements.

Proposition 2.3.1. In the Hopf algebra Uq(sl(2, C)) we have

(i) Am, m E 2::, are the group like elements;
(ii) qB, C, A - D) is the space of twisted primitive elements with respect

to A;
(iii) qAm - Dm) is the space of twisted primitive elements with respect

to Am for m -# 1.

For the proof of Proposition 2.3.1 we need the following lemma describing a
q-analogue of Newton's binomial formula. For a E C we define the q-shifted
factorial (a;q)n = I17;Ol(1 - aqi) with the empty product equal to 1. The
q-binomial coefficient is defined by

(2.3))

Lemma 2.3.2. Let x, y be elements of an associative algebra satisfying xy =
qyx, then

Proof. Use the recurrence

(23.2)
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and complete induction with respect to n. 1!1
Proof of Proposition 2.3.1. Use Lemma 2.3.2 to see that

m

Ll(Cm) = (A® c+ C ® D)m = L [m] CiAm-i ® DiCm-i
i=O Z q-2

and an expression for Ll(Bk) can be obtained in this way too. So using Lemma
2.1.2 we consider general X = L CklmDlcm Bk and rewriting each factor in
the tensor product into the basis of Lemma 2.1.2 we obtain

(2.3.3) Ll(X) = Ltf Cklm [~] [7] -2 q(i-j)(k-j+m-i)
kim j=O i=O J s? q

X DI-m+i-k+jci Bj ® DI+i+jCm-i tr:",

To prove (i) we compare (2.3.3) with

(2.3.4) X ® X = L L CuvwcabcDvCw BU ® trc:sr.
uvw abc

So w + C = m, a + u = k , b - v = m + k. Suppose m > 0, then (2.3.4) has a
non-zero term of the form DvC"' BU ® trc- B", which cannot occur in (2.3.3).
Hence, m = 0 and similarly k = O. So X = LI clDI and

L C/ckDI ® tr = LC/DI ® DI

I,k I

implying CI = 0 except for one I E ;Z and the non-zero ci has to satisfy cT = CI

or ci = 1.
In the proofs of (ii) and (iii) we have to compare (2.3.3) with the appropriate

expressions. These proofs are left as exercises. 1!1
Proposition 2.3.1(ii) shows that only for the group like element A the cor-

responding twisted primitive elements leads to a three-dimensional space. So
from now on we consider twisted primitive elements only with respect to A and
we consider these elements as the proper analogues of the three-dimensional
Lie algebra 51(2, C).

Theorem 2.3.3. Uq(51(2, C)) == Up(51(2, C)) as Hopf algebras jf and only jf
p=qorp=q-1.

Proof. Let ¢J: U, (.51(2,C)) -+ Up (.51(2,C)) be the Hopf algebra isomorphism,
then ¢J maps group like elements onto group like elements, so ¢J(DI) = DT(I).
Since ¢J is an algebra homomorphism, T is an automorphism of Z, Thus, ¢J(D) =
D or ¢J(D) = D-1 = A. In the last situation Proposition 2.3.1(ii), (iii) shows
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that ¢; maps the three-dimensional space of twisted primitive elements with
respect to A to the one-dimensional space of twisted primitive elements with
respect to D, contradicting ¢; being an isomorphism.

So ¢;(A) = A, ¢(D) = D and <p maps the twisted primitive elements onto the
twisted primitive elements (both with respect to A). Now the map X 1--+ AX D
maps the space of twisted primitive elements into itself and has eigenvalues 1, q
and q-1 for respectively the eigenvectors A - D, Band C. Hence, {I, q, «:}=
{l,p,p-1} and thus p = q or p = «:'.

From (2.1.1) we see that in case p = q we can define ¢;(B) = >.B, ¢(C) =
>.-lC for some non-zero>' E <C and that in case p = «:' we can define ¢(B) =
>.C, ¢;( C) = >.-1B for some non-zero>. E C. It is straightforward to check that
¢; defined in this way gives a Hopf algebra isomorphism. ~

So we can assume without loss of generality that Iql ::; 1. We say that two
--structures on a Hopf algebra are equivalent if there exists a Hopf algebra
isomorphism of the Hopf algebra onto itself intertwining the two *-structures.
Otherwise, they are inequivalent *-structures.

Theorem 2.3.4. The list ofmutually inequivalent *-struetures on Uq(s[(2, <C))
1S

(i) Iql = 1; A* = A, B* = -B, C* = -C and corresponding real form
Uq(s[(2, ~)),

(ii) -1 < q < 1, q i- 0; A* = A, B* = C, C* = B and corresponding real
form Uq(su(2)),

(iii) -1 < q < 1, q i- 0; A* = A, B* = -C, C* = -B and corresponding
real form Uq(su(1, 1)).

Proof. Suppose Uq(s[(2, <C)) is a Hopf --algebra, then we can think of * as an
antilinear Hopf algebra isomorphism of Uq(s[(2, <C)) onto (Uq(s[(2, <C)))opp :::'
Uq-l (s[(2, <C) as Hopf algebras. The Hopf algebra isomorphism is just inter-
changing Band C. So we must have q = q or q = r ',so q E ~ or Iql = 1.
Using the proof of Theorem 2.3.3 we see that in the first case we have to have
B* '= >.C, C* = >.-1B for some non-zero >. E ~ and in the second case we have
to have B* = >.B, C* = >.-1C for 1>'1= 1. The condition on the>. follows from
the *-operator being an involution. Now use Theorem 2.3.3 again to pick out
the inequivalent *-structures. 1!1
Remark 2.3.5. The names for these real forms are motivated by the fact that
in case q r 1 the -I-eigenspace of the corresponding *-operator in the Lie
algebra, cf. Example 1.2.8, are s[(2, ~), su(2) and suf l , 1). Note that su(l, 1) =
C s[(2,~) C-1 with C = (~ ~i), so s[(2,~) and su(l, 1) are conjugate and

hence have the same representation theory. Theorem 2.3.4 shows that this is
no longer true in the quantum case. The *-operator from Theorem 2.3.4(ii)
and corresponding Hopf --algebra is sometimes called the compact real form,
since SU(2) is a compact group.
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From now on, when considering the real forms Uq(.su(2)) or Uq(.su(I, 1)) we
always take 0 < q < 1. This can be done without much loss of generality,
since it turns out that the special functions associated to these Hopf *-algebras
essentially depend on q2.

It is straightforward to see that for Uq(.su(2)) the finite dimensional repre-
sentations of Theorem 2.2.1 are unitarisable for .A = ±1. We only consider
.A = 1 and we redefine these representations in the following theorem.

Theorem 2.3.6. For each spin 1 E ~z:.+ there exists a unique (21 + I)-dimen-
sional »<represenietion of Uq(.su(2)) such that the spectrum of A is contained
in q~z+. Equip C21+1 with orthonormal basis {e~}, n = -1,-1+ 1, ... ,1 and
denote the representation by tl. The action of the generators is given by

(2.3.5)

where e~+1 = 0 = e~I_1'

§2.4. Dual Hopf algebra. Let us now consider the fundamental two-dimen-
sional representation of Uq(.s[(2, C)) for spin 1 = 1/2. The matrix elements of
t1/2 give four linear functionals on Uq(.s[(2, C));

{

1/2( ) 1/2 () 1/2 () 1/2t X e_1/2 = a X e_1/2 + (3 X e1/2 (a(x)
'¢=} t1/2(X) -

t1/2(X) 1/2 _ (X) 1/2 + I:(X) 1/2 - ,(X)e1/2 - , e_1/2 u e1/2

(3(X) )
b(X) .

It follows from (2.3.5) that on the basis of Lemma 2.1.2 the linear functionals
are given by

a(DlemBn) = bnobmoq-I/2, (3(DlemBn) = bn1bmoq-I/2,

(2.4.1)
,(Diem Bn) = bnobmlql/2, b(Dlem Bn) = (bnobmo + bn1bmdql/2.

Theorem 2.4.1. Let Aq(SL(2, C)) be the complex unital associative subalge-
bra of the linear dual of Uq(.s[(2, q) generated by a, (3, " b. Then the following
relations hold;

(2.4.2)
a(3 = q(3a,

(3, = ,(3,

a, = q,a, (3b = q8(3, ,b = qb"

ab - q(3, = ba - q-1(3, = 1.
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Then Aq(SL(2, C)) is Hopf algebra. The comuItiplication Do, the counit e and
the antipode S given on the generators by

(2.4.3)
Do(a) = a0a+j30"

Do(,)=,0a+b0"

Do(j3)= a 0 j3 + j3 0 s,
Do(b)=,0j3+b0b,

(2.4.4) € (~ ~) = (~ ~),

Aq(SL(2, C)) has a linear basis formed by the matrix elements

t~ n:X 1--+ (tl(X)e~,e~).

For the proof we need a lemma, which is of interest on its own. First we discuss
the notion of a tensor product representation of Uq (05[(2, C)). If t and s are
representations of Uq (05[(2, C)) in V and W, then we define the tensor product
representation t 0 s of Uq(05[(2, C)) in V 0 W by using the comultiplication Do,
cf. (1.1.5),

(t 0 s) (X)v 0 W = L t(X(1)) v 0 s(X(2)) W,
(X)

X E Uq(05[(2, C)).

Then we have the following Clebsch-Gordan decomposition.

L 2 4 2 til (Q, tl2 ~ ffill +12 tlemma ... '<Y = '17/=11,-121 .

Proof. Although Lemma 2.4.2 is not concerned with *-structures we use the
--structure from Uq(05u(2)). Then til 0 tl2 is a finite-dimensional unitary rep-
resentation of Uq(05u(2)) and hence completely reducible. Since the spectrum
of (til 0 t12) (A) is contained in q ~IZ.+ we have a decomposition of the form
ti' 0t12 = EBI ml tl for certain multiplicities mi. Since e~ 0e~ is an eigenvector
of the action for A for the eigenvalue q-n-m we can read off the multiplicities
from Theorem 2.3.6 by counting eigenvalues for A. f!1
Proof of Theorem 2.4.1. Aq(SL(2, C)) is automatically a Hopf algebra by Def-
inition 1.2.1 if we can show that comultiplication maps into the (algebraic)
tensor product Aq(SL(2, C)) 0 Aq(SL(2, C)). The definition of comultiplica-
tion, counit and antipode follow from Definition 1.2.1. Using t1/2(XY) =
t1/2(X)t1/2(y) we find that

(~(a), X 0 Y) = a(XY) = a(X)a(Y) + j3(X){(Y) = (a 0 a + j3 0" X 0 Y)

by inspecting the upper left entry. Inspection of the other entries leads to
the action of the comultiplication on the other generators. In particular,
Aq(SL(2, C)) is a Hopf algebra.
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The action of the counit follows by taking l = m = n = ° in (2.4.1).
The action of 5 can be calculated by sure» Bn) = (_q)m-n B's C'" AI, so
that (S(a), Diem Bn) = (_q)m-na(Bnem A') = (onOomO + On10m1)ql/2 =
sco'c» Bn) by (2.4.1), and similarly for the other generators. From (1.1.4)
we see that

(
a (3) (0 _q-1(3) = (1 0) = (0 _q-1(3) (a (3)

'Y 0 -n a ° 1 -n a 'Y 0

which implies the relations (2.4.2).
Consider the matrix element (til ® tl')ij;lm = t;it~':n. Take /1 = 1/2 and use

induction with respect to 12 and Lemma 2.4.2 to see that the matrix elements of
all spin representations are contained in Aq(SL(2, C)). Iterating Lemma 2.4.2
shows that each matrix element t~n can be written in terms of the generators.
In order to prove the linear independence we need the following lemma.

Lemma 2.4.3. Define h: Aq(SL(2, C)) --+ C by h(l) = 1, h(t~n) = 0 for I> 0,
then h is an invariant functional on Aq(SL(2, C)) and the Schur orthogonality
relations hold;

h(S( I ) k) _ I: I: .1:. 2(I-n) 1- q2tmn tij - UlkUmJUmq 41+2'1 - q

Proof of Lemma 2.4.3. First observe that 1 = t80 and that 1 cannot be written
as a linear combination of matrix elements t~n for / > 0, since otherwise the
trivial representation would occur as a subrepresentation of tl contradicting
its irreducibility. So h is well-defined on the whole of Aq(SL(2, C)). Since
~(t~n) = L~=_lt~k ®t~n by t'(XY) = t'(X)tl(y), we immediately see that
h is an invariant functional.

In order to prove the orthogonality relations we first observe that

(2.4.5)
k I

:L h(S(t~n)t~J tjp = :L t~j h(S(t~n)t~p)'
j=-k j=-I

This follows from the right invariance of h;

I k

h(S(t~n)t~J 1 = (h ® id)(~(S(t~n)t~j)) = :L :L h(S(t~n)t~s) S(t~r)t~j
r=-I s=-k

by Proposition 1.1.5(ii). From (1.1.4) we obtain L~=_lt~m S(t~r) = c(t~r) =
Okr and this leads to (2.4.5). So the matrix T~~,i) = h(S(t~n)tfj) intertwines

tl and t", Hence, it is zero for k :I l and if k = 1 we have T~~,i) = c(n,i)omj for
some constant c(n,i) E C.
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For a representation t of Uq (5[(2, C)) in V the contragredient representa-
tion tC of Uq(5[(2,C)) in V is defined by (tC(X)en,em) = (t(S(X))em,en),
or in terms of the antipode S of Aq(SL(2, C)), t;',.n = S(tnm) for a represen-
tation t of Uq(s[(2, C)) such that the spectrum of A is contained in q!z+.
Using Theorem 2.3.6 we see that the contragredient of tl is equivalent to
tl, and consequently h(S(~)) = h(O for all ~ E Aq(SL(2, C)). So we get
T~j,i) = h(S(t~j )S2(t~n))' Now S2(t~n) are the matrix coefficients of the
double contragredient representation of tl and hence there exists an invertible
intertwining operator FE End(C21+1) such that (tl)CC(X)F = Ftl(X) for all
X E Uq(s[(2, C)) and hence S2(t~n) = L~,r=-l Fmpt~r(F-l )rn. Thus,

I
c (n,i) _ T(n,i) _ '\;"' '" h(S(tk )tl )(F-1)UklUmjC - mj - L 1'mp ij pr rn

p,r=-I
I

= bk1(F-1)in L FmpcU,p),
p=-I

or c(n,i) = c( F-1 )in for some constant c E C. To determine the constant we
observe that L~=-I S(t~m)t~r = bkr implies 1 = L~=-l c(m,m), so c-1 =
tr( F-1 ). Summarising,

(2.4.6) h(S( I ) k) c (F-1)in
tmn tiJ' = UklUmj ( 1)'tr F-

In this case we easily show that Fe~ = s" e~ is such an intertwiner. Then
(2.4.6) and a calculation finish the proof. 0"

Finally, assume that Limn Clmnt~n = 0, then multiply this element from the
left by S(t~m) and apply the invariant functional h. We get C[mnh(S(t~n)t~n)
= 0 from Lemma 2.4.3 and this shows Clmn = 0. 0"
Remark 2.4.4. If we let q i 1 in the definition of Aq(SL(2, C)) we obtain a
commutative Hopf algebra which is nothing but Pol(SL(2, C)) by identifying
o , (3, , and b with the coordinate functions. So for g E S L(2, C) we let
cx(g) = gll, (3(g) = g12, ,(g) = g21 and b(g) = g22·

§2.5. More on the dual Hopf algebra. Do the relations in (2.4.2) describe
all the relations between the generators of Aq(SL(2, C))? We show that the
answer is yes.

Lemma 2.5.1. Let B be the algebra generated by cx, (3, , and b subject to the
relations of(2.4.2), then a linear basis for B is given by bl,m(3n, I, m, n E Z+,
and cxl,m(3n, IE f::l, m, n E Z+.

Proof. From (2.4.2) it follows that these elements span B. We have to show
that they are linearly independent.
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Consider the infinite dimensional representation of B in £2(Z+ x Z) with
standard orthonormal basis en,k, n E Z+, k E Z. The action of the generators
is given by

0' en,k = )1- s": en-l,k, /3 en,k = _qn+l en,k-l,

,en,k = qn en,k+l, 8 en,k = VI - q2n+2 en+l,k.

Using this representation we show that a non-trivial linear combination of such
elements cannot give the zero operator. ~

To show that the same elements also give a basis of Aq (SL(2, C)) we proceed
by explicitly calculating the duality for such elements. The exercises contain
some hints on how to prove the following theorem.

Theorem 2.5.2. Define

CL,M,N _ I(L+M -N)/2 -L(m+n)/2 -m(m-l)/2 -n(n-l)/2 (q2; q2)n(q2; q2)m
I,m,n - q q q q (1 _ q2)m+n '

then

and

Corollary 2.5.3. A linear basis for Aq(SL(2,C)) is given byol,m/3n, I,m,n E
Z+, and ohm/3n, IE f':l, m, n E Z+. In particular, Aq(SL(2,C)) is isomorphic
to B defined in Lemma 2.5.1, and (2.4.2) are the only relations in Aq(SL(2, C)).

Proof. Suppose that in Aq(SL(2, C)) we have

Let m be the minimal M such that CLMN # 0, and n the minimal N such that
CLmN # O. Testing against ire»B" shows .

0= L CLmnC(m, n)q-L(m+n)/2qIL/2,
LE7l

VI E Z,

for some non-zero constant C(m, n) by Theorem 2.5.2. So CLmn = 0 for all L.
~
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Corollary 2.5.4. The duality between Uq(s[(2, C)) and Aq(SL(2, C)), consid-
ered as an abstract algebra generated by a, 13, , and 0, subject to the relations
(2.4.2), defined on the generators by

(2.5.1)
\A,(~ ~))=(q~2 q-~/2)' \B,(~ ~))=(~ ~),
\ c, (~ ~)) = (~ ~), \ D, (~ ~)) = (q-~/2 ql~2)'

and extended as Hopf algebra duality, is doubly non-degenerate.

§2.6. Action of Uq(s[(2, C)) on Aq(SL(2, C)) and *-structures on
Aq(SL(2, C)). Now that we have established Uq(.s[(2, C)) and Aq(SL(2, C))
in duality as Hopf algebras, we may consider the action of Uq(s[(2, C)) on
Aq(SL(2, C)) as defined in Proposition 1.2.3. It is a simple calculation to give
the action on the level of generators using (2.4.3) and (2.5.1). We get in an
obvious notation
(2.6.1)

A. (~ .
13) = (ql/2a q-l/213) (as ql/2, q-l/20' ,

(a 13) (0 a) (a 13) (, 0)
B. , 0 = 0 " ,o·B = \.0 0 '

C. (~ ~) = (~ ~), (: ~).c = ( ~ ~).
For q t 1 (2.6.1) corresponds to the action between U(s[(2, C)) and Pol(SL(2, C))
as described in Example 1.2.2.

Corresponding to the three inequivalent *-structures on Uq(s[(2, C)) de-
scribed in Theorem 2.3.4 we obtain three --structures on Aq(SL(2, C)) making
it .into a Hopf *-algebra by transposing the *-operator from Uq(s[(2, C)) to
Aq(SL(2, C)) by Definition 1.2.1.

Theorem 2.6.1. The list of mutually inequivalent *-struetures on Aq (S L(2, C))
IS

(i) Iq[ = 1; a· = a, 13· = q-ll3, ,. = Qi, o· = 0 and corresponding real
form Aq(SL(2, ~)),

(ii) -1 < q < I, q oF 0; a· = 0, 13· = -Qi, ,. = -q-ll3, o· = a and
corresponding real form Aq(SU(2)),

(iii) -1 < q < 1, q oF 0; a· = 0, 13· = Q!, ,. = q-ll3, o· = a and
corresponding real form Aq(SU(I, 1)).

Proposition 2.6.2. The invariant functional h on Aq(SU(2)) satisfies

h(( 1 )* k.) _ s: f: . f:. 2(I-n) 1- q2
tnm tt} - UlkUm} umq 41+2 .1- q



QUANTUM GROUPS AND q-SPECIAL FUNCTIONS 115

In particular, h: Aq(SU(2)) --+ C is a positive linear functional, h(C f,) > 0 for
o =f f, E Aq(SU(2)).
Proof. Since q is real, Lemma 2.4.3 shows that it suffices to prove S(tL) =
(t};)*. By Theorem 2.3.6 we know that t1 is a *-representation of Uq(su(2)), so

((tL)*,X) = (t:j,S(X)*) = (eLtl(S(X)*)e}) = (t1(S(X))eLe}) = (S(t}i)'X)

for all X E Uq(su(2)). I!'f
Proposition 2.6.2 shows that the Hopf *-algebra Aq(SU(2)) has the proper

q-analogue of the Schur orthogonality relations. It is also a nice *-structure
since we can give a complete list of mutually inequivalent *-representations of
Aq (SU(2)). It is straightforward to check that the *-representations defined in
the next theorem are indeed representations.

Theorem 2.6.3. The following is a complete list of irreducible inequivalent
»<teptesetiteiious of Aq(SU(2)).

(i) The one-dimensional *-representations tre defined by 7re(a) = eie and
'Tre(f3) = 0 for () E [O,h).

(ii) Infinite dimensional »-represeuteiions acting in the Hilbert space
£2(:7:+). For an orthonormal basis {en}nEZ+ the action of the gen-
erators is given by

7ro(a) en = VI - q2n en-1, 7roCy) en = eiB qn en,
with the convention f-1 = O.

Sketch of Proof. It is straightforward to see that the representations given
in Theorem 2.6.3 are irreducible *-representations of Aq(SU(2)). Conversely,
let 7r be an irreducible --representation of Aq(SU(2)), then it follows from the
commutation relations (2.4.2) that the kernel of 7r(-y) is an irreducible subspace.
Hence, 7r( 1') = 0, leading to the one-dimensional representations, or ker( 7r(-y))
is trivial.

In the last case we can use the Spectral Theorem for the normal operator
7r( 1') to show that the spectrum is of the form >.qk, k E :7:+, for some >. E C.
From the commutation relations (2.4.2) it follows that 1>'1 = 1, and that 7r(a)
and 7r( 8) are acting as shift operators on the eigenvectors. We then find that
7r is equivalent to an infinite dimensional representation as in (ii), since the
eigenspaces of 7r(-y) are one-dimensional. 1!1
Remark 2.6.4. For>. =f 0 we also define one-dimensional representations of
Aq(SL(2,C)) given by

TA (a) = >., TA ((3) = 0 = TA (1'), TA (8) = >.-1.

Note that TA is a *-representation of Aq(SU(2)) if and only if >. = eie, or
TA = 7re, for some () E [0, 27r). The counit c coincides with the special case
T1 = 7ro·
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Notes and references. The quantised universal enveloping algebra for
s[(2, C) is the simplest case of a series of quantised universal enveloping al-
gebras. In fact, there is a canonical way to associate to any simple Lie algebra
9 a quantised universal enveloping algebra Uq(g). The PBW-basis in Lemma
2.1.2 can be proved in various ways, such as by use of the representations in
Theorem 2.2.1 or by using the so-called diamond lemma. As is the case for
9 = s[(2, C) the representation theory of simple 9 and Uq(g) is very similar, see
[15] and references therein.

The approach to Uq(s[(2, C)) and its dual algebra presented here is much
inspired by the paper [69] by Masuda et al. The existence of the invariant func-
tional and the corresponding orthogonality relations for the invariant functional
have several proofs, see [17], [61], [99], [103].

Theorem 2.6.3 is due to Vaksman and Soibelman [96] and can be used to
complete Aq(SU(2)) into a CO-algebra, and so making the connection with
Woronowicz's [103] approach to compact quantum groups. See also [43] for the
details of the proof of Theorem 2.6.3. For general simple compact quantum
groups the *-representations have been classified by Soibelman, see references
in [15].

Exercises.
1. Finish the proof of Proposition 2.1.1.
2. Verify (2.3.2).
3 Prove (ii) and (iii) of Proposition 2.3.1.
4. Replace in Uq(su(2)) its generators A, B, C and D by A, p-1 B, p-1C and D.

Let p ! 0 and determine the Hopf *-algebra structure in the limit case. This
Hopf *-algebra is denoted by Uq(m(2)), and is related to the Lie algebra for
the gro p of orientation and distance preserving motions of the Euclidean
plane.

5. The proof of Theorem 2.5.2 has to be done in the following stages, which
each can be proved using induction and Definition 1.2.1.
• First show that for X E Uq(s[(2, C))

(8L,M (IN, D/X) = q/(L+M-N)/2(8L,M (IN, X),

(aL,M ;IN, D1 X) = q-l(L+M -N)/2 (aL,M (IN, X).

• Show that

{

m(l-L) (q2L; q-2)m(q2; q2)m
(8L,cmBn) = q. (1- q2)2m '

0,
(aL,cmBn) = 8mo8no.

• Show that

("YM(JN c:Bn) = 8 8 -(n(n-1)/2 -m(m-1)/2 (q2; q2)m(q2; q2)n
" mM nNq q (1 _ q2)m+n

if m = n ~ L,

otherwise,
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and finish the proof of Theorem 2.5.2.
6. Let k > 0 and let {en}~=o be the standard orthonormal basis for £2(:Z+).

Prove that there exists a unitary representation of Uq (su( 1,1)) in £2 (:z+)
such that A . en = qk+n en, and C . eo = O. Give an explicit expression for
the action of Band C on a basis vector. These representations of Uq(su(l, 1))
are positive discrete series representations. (Be aware that D is represented
by an unbounded operator, since -1 < q < 1.)

7. Prove that the representation in the proof of Lemma 2.5.1 is also a *-
representation of Aq(SU(2)). Decompose this *-representation in terms of
the irreducible *-representations of Theorem 2.6.3.

3. Orthogonal polynomials and
basic hypergeometric series

In this lecture we consider first some general theory of orthogonal polynomi-
als and next some explicit examples which can be written in terms of basic
hypergeometric series, in particular the famous Askey-Wilson polynomials.

§3.1. Orthogonal polynomials on the real line. Let J-L be a non-negative
Borel measure on lR such that all moments exist, i.e. J xk dJ-L(x) < 00 for all
k E :z+, and such that supp(jz] contains at least a countably infinite number of
points. The polynomials {Pn(x)}~=o with degree(Pn) = n and real coefficients
are said to be orthogonal polynomials with repect to J-L if

(3.1.1) hn > O.

This definition is equivalent to

(3.1.2) s« i- 0, 0:::; rn :::;n,

or with xm replaced by any other polynomial of degree rn. The orthogonal
polynomials are uniquely determined up to a scalar depending on the degree n.
There are two canonical choices; (i) such that the leading coefficient is 1, and
then we speak of monic orthogonal polynomials, (ii) such that hn in (3.1.1) is
independent of n and that the leading coefficient is positive and then we assume
J-L normalised by rna = J-L(lR) = 1 so that hn = 1 and we speak of orthonormal
polynomials.

Orthogonal polynomials satisfy a fundamental three-term recurrence rela-
tion.

Theorem 3.1.1. Let Pn be orthogonal polynomials, then
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with An, s., C; E lR and An-l C; > 0 for n ::::1.

Proof. xPn(x) is a polynomial of degree n + 1, so xPn(x) = 2::Z~~ckPdx). The
orthogonality relations (3.1.1) show that

Now hk > 0 and the integral is real-valued and zero for k = 0, ... ,n - 2 by
(31.2). We also see that An-lhn = JPn(x)xPn-l(x)dl-l(X) = Cnhn-l, so that
An-lCn ::::0 since hk > O. It cannot be zero since An f. O. ~

On the other hand, the three-term recursion relation together with the initial
conditions p-l(X) = 0, Po(x) = 1 defines polynomial Pn as polynomials of
degree n. Then the converse also holds, and this is commonly called Favard's
Theorem.

Theorem 3.1.2. (Favard) Define polynomials Pn of degree n by

with initial conditions p-l(X) = 0 and Po(x) = 1. Assume An, Bn, Cn E lR and
An-l Cn > 0 for n ::::1, then there exists a non-negative Borel measure p on lR
such that {Pn }~=o are orthogonal polynomials with respect to p:

Remark 3.1.3. (i) Observe that for monic polynomials An = 1 and that for
orthonormal polynomials An-l = Cn·

(ii) Note that the orthogonality measure from Favard's Theorem is not
unique. However, under some extra conditions on the coefficients, e.g. the
polynomials are orthonormal, i.e. An-l = Cn and the coefficients An, Bn are
bounded for n -> 00, the measure p is unique. In the case mentioned we even
have that supp(p) is compact.

Sketch of Proof. By rescaling we may suppose that we deal with

with initial conditions p-l(X) = 0 and Po(x) = 1. In the Hilbert space £2(Z+)
with orthonormal basis {en }~=o we define a linear operator J by

i.e. J is a tridiagonal operator which are also called Jacobi matrices. We
now prove Favard's Theorem under the extra assumption that an and bn are
bounded. This implies that J is a bounded self-adjoint operator on £2(Z+),
hence the Spectral Theorem applies and J = J >..dE( >..) for some projection
valued Borel measure E on JR. Define p(B) = Eeo,eo(B) = (E(B)eo, eo), then
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J-l is a non-negative Borel measure on lR. Moreover, supp(J-l) is compact, since
supptu) C supp(E) C (T(l) and the spectrum of 1 is compact.

Define the mapping

where L2(p,) = {f:lR -+ lR I f If(xWdJ-l(x) < oo} is a weighted L2-spac~. The
three-term recurrence relation then implies A 0 1 = M 0 A, where M f( x) =
xf(x) is the multiplication operator. Moreover, A is a unitary mapping. In-
deed, the polynomials are dense in L2(J-l) since supp(u) is compact. And from
Alneo = xn we get

The unitarity implies

A similar, but more delicate, construction works if 1 is unbounded. The
deficiency indices are (0,0) or (1,1), in the first case the measure is still unique
but might cease to have compact support, and in the second case the orthogo-
nality measure depends on the self-adjoint extension and is no longer unique.

~

§3.2. Basic hypergeometric series. The series L:Ck is a basic hypergeo-
metric series if Ck+I!Ck is a rational function of qk for a base q. So

Ck+l (1 - alqk) (1 - arqk) (_qk)l+s-r
Ck (1-b1qk) (1-bsqk) 1_qk+1 z ,

and we have the following form for basic hypergeometric series, also known as
q-hypergeometric series,

(3.2.1)

with the notation for q-shifted factorials

k-l

(a; qh = IT (1 - aqi).
i=O
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When dealing with q-hypergeometric series our standard assumption on q is
o < q < 1. Then the q-shifted factorials are also well-defined for k -> 00,

(a;q)oo = limk_oo(a;qk
Since (q-n;qh = 0 for k > n we see that the series (3.2.1) terminates if

one of the upper parameters a, equals c: for n E z::+. If one of the lower
parameters equals s:" for N E z::+ the series (3.2.1) is not well-defined, unless
one of the upper parameters equals c: for some n E {O, 1, ... , N}. In case
n = N we follow the convention that the series consists of the first N + 1 terms.

The ratio test shows that for generic values of the parameters the radius of
convergence is 00, 1 or 0 for r < s + 1, r = S + 1 or l' > s + 1.

Theorem 3.2.1. (q-binomial theorem) lepO(a;-;q,z) = (~z;~)oo for Izi < 1.z;q 00

Proof. Let ha(z) = lepo(a;-;q,z), which is analytic in the unit disc. Simple
calculations show ha(z) - haq(z) = -azhaq(z) and ha(z) - ha(qz) = z(1 -
a)haq(z). Eliminating haq(z) leads to

h ( ) - 1 - az h ( ) _ (az; q)n h ( n )
a Z - a qz - ( .) a q z.'1 - z z,q n

Finally, let n -> 00 and use that ha(z) is continuous at z = 0 and ha(O) = 1.
~

Corollary 3.2.2.
(i) lepO(q-n;_;q,qnz) = (z;q)n for z E C,

(ii) eq(z) = lepO(O;-;q,z) = (z;q)~l for Izi < 1,
(iii) Eq(z) = oepo( -; -; q, -z) = (-z; q)oo for z E C.

Remark 3.2.3. We call eq and Eq q-exponential functions. To motivate this
terminology we note that limqjl eq(z(l- q)) = e' = limqjl Eq(z(l- q)), which
follows formally from the power series representation for eq and Eq.

Proof. Case (i) and (ii) follow from Theorem 3.2.1 by specialisation of a. Case
(iii) follows from replacing z by z/a in Theorem 3.2.1 and letting a -> 00. ~

Identities for q-hypergeometric series can be obtained by playing around
with the q-binomial Theorem thmref3.2.1. As an example we derive Heine's
transformation formulae for the 2epl-series.

Theorem 3.2.4. (Heine)

( ) (b,az;q)oo (/b '11112epl a,b;c;q,z = ( ) 2epl C ,z;az;q,b), z, b < 1,
c,z;q 00

(c/b, bz; q)oo
2epl(a,b;c;q,z) =' ( ) 2epl(abz/c,b;bz;q,c/b), Izl,lc/bl < 1,

c,z;q 00

(abz/c; q)oo
2epl(a,b;c;q,z) = ( ) 2epl(c/a,c/b;c;q,abz/c), Izl,labz/cl < 1.z;q 00
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Proof. The second equality follows from the first by applying it twice. The
third equality follows from the second on the first, or by a threefold application
of the first equality. Hence it suffices to prove the first equality. Write

( b:c: ) _ (b;q)oo ~ (a;q)n(cqn;q)oo n
2<;'1 a, , c, q, z - ( .) LJ ( . ) (b n . ) Z

C, q 00 n=O q, q n q , q 00

= (b; q)CXJ f= (a; q)n zn f= (c/b; q)m (bqn)m
(c; q)CXJ n=O (q; q)n m=O (q; q)m

by the q-binomial Theorem 3.2.1

by the q-binomial Theorem 3.2.1 again

(b,az;q)oo ( /b b)= ( ) 2<;'1C ,z;az;q, .c,z;q 00

Interchanging summations is allowed for Izl, Ibl < 1, since then the double sum
is estimated easily by a product of two absolutely convergent series. ~

Corollary 3.2.5. (q-Saalschiitz summation) For n E IZ+

(
q-n,a,b ) (c/a,c/b;q)n

3<;'2 c,q1-nab/c;q,q = (c,c/(ab);q)n'

Proof. Consider the last of Heine's transformation formulae in Theorem 3.2.4.
Use the q-binomial Theorem 3.2.1 for the quotient of the infinite q-shifted
factorials to write it as a power series of z . Now compare the coefficients of z
on both sides. Finally, replace a, b by cia, c/b. ~

Remark 3.2.6. Theseriesr+1!pr(a1,'" ,ar+1;b1, ... ,br;q,z) is called balanced,
or Saalschiitzian, if b: ... br = qo., ... ar+1 and z = q. Corollary 3.2.5 shows
that any balanced 3<;'2-series is summable.

§3.3. Askey-Wilson polynomials. To formulate the celebrated Askey- Wil-
son integral we have to introduce the following weight function;

(1( -1)) (z2,z-2;q)00w - Z + z = -'----:-.--,---:----':,--,--:-~~:.::..,,--,,---,---_:__
2 (az,a/z,bz,b/z,cz,c/z,dz,d/z;q)oo

and we use w( x) = w( x; a, b, c, dlq) to stress the dependence on the parameters
when needed.
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Theorem 3.3.1. Assume lal, Ibl, [c], Idl < 1, then

171" 271"(abcd; q)oo
w(cosB;a,b,c,dlq)dB= .

o (q, ab, ac, ad, be, bd, cd; q)oo

Theorem 3.3.1 is the key to the Askey-Wilson polynomials. To motivate its
introduction define the monomial function mdcosB;a) = (aei9,ae-9;qh and
then we consider

lr271"10 mj (cos B; a)mdcos B; b )w( cos B; a, b, e, dlq) dB

1 171"= - w(cosB;aqj,bk,e,dlq)dB
271" 0

_ (ab;q)k+j(ae,ad;q)j(be,bd;q)k (abed;q)oo
(abcd; q )k+j (q, ab, ac, ad, be, bd, cd; q)oo .

So we can try to find orthogonal polynomials rm(x) = L:J=oejmj(a;x) such
that Trn is orthogonal to each mk(x;b) for 0 :::;k < m. Hence the coefficients
Cj have to satisfy

(3.3.1)
~ (abqk;q)j
LJCj ( b d k. ). (ac,ad;q)j = om,kgm
j=O acq,qJ

for 0 :::; k :::;m.

Take Cj = (q-m,abcdqm-l;q)jqj!(q,ab,ae,ad;q)j, then (3.3.1) equals

(
«:". abedqm-l ,abqk) (qk-m+l , cd; q)m

3<{J2 ab, abcdq': ; q, q = (abcdqk, ql-m!( ab); q)m

by the q-Saalschiitz formula of Corollary 3.2.5. This is zero for 0 :::;k < m and
non-zero for k = m, and thus

(3.3.2) (
q-m abcdqm-l aei9 ae-i9 )

rm(cosB;a,b,c,dlq) = 4<{J3 'b 'd' ;q,qa , ae, a

are the orthogonal polynomials with respect to the Askey-Wilson integral of
Theorem 3.3.1. Since the value of gm also follows from this calculation, and
since the leading coefficients of rm and mm(x) are easily calculable, we can also
calculate the norm of rm with respect to the Askey-Wilson measure.

Theorem 3.3.2. Define the Askey- Wilson polynomials as

Pm (cos B; a, b , c, dlq)

(
q-m abedqm-l aei9 ae-i9 )

=a-m(ab,ac,ad;q)m4<{J3 'b 'd' .s.s i •
a , ae, a
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and assume [c], Ibl, lei, Idl < 1, then Pm(x) = Pm(x; a, b, e, dlq) satisfies

1 1"- Pn(coS(J)Pm(Cos(J)w(cos(J)d(J = 8nmhn
211" 0

with

(1-qn-labed) (q,ab,ae,ad,be,bd,ed;q)n h
(1 - q2n-labed) (abed; q)n 0,

(abed; q)=
ho = -;--~--'----~~:,::-~.......,---.

(q,ab,ae,ad,be,bd,ed;q)=

Remark 3.3.3. The factor in front of the 4!P3-series in Theorem 3.3.2 is cho-
sen such that the squared norm is symmetric in the parameters. Since the
weight function possesses this symmetry as well, the Askey-Wilson polynomi-
als are symmetric in its parameters. Using the symmetry in a and b leads to a
transformation for 4!P3-series, which is Sears's transformation formula.

For more general values of the parameters the Askey-Wilson polynomials
defined in Theorem 3.3.2 are still orthogonal. The more general result can be
obtained by working with contour integration and next use contour shifts and
residue calculus.

Proposition 3.3.4. Let a, b, e and d be real and let all the pairwise products
of a, b, e and d be less than 1. Then the Askey-Wilson polynomials Pn(x) =
Pn (x; a, b, c, dlq) satisfy the orthogonality relations

The points Xk are of the form ~(eqk + e-1q-k) for e any of the parameters a,
b, c or d with absolute value greater than 1; the sum is over k E &.:+ such that
leqkl> 1 and Wk is the residue of Z t-+ w(~(z + z-I)) at z = eq" minus the
residue at z = e-1q-k.

The orthogonality relations remain valid for complex parameters a, b, c
and d, if they occur in conjugate pairs. If all parameters have absolute value
less than 1, the Askey-Wilson orthogonality measure is absolutely continu-
ous, i.e. we are in the situation of Theorem 3.3.2. We use the notation
dm(x) = dm(x;a,b,c,dlq) for the normalised orthogonality measure. So for
any polynomial P

(3.3.3) 1 1 ( 1 /1 dx )p(x) dm(x) = -h - p(x)w(x) v'f=X2 + LP(Xk)Wk .
IE ° 211" -1 1 - x2

k
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Notes and references. There is an enormous amount of literature available
on general orthogonal polynomials, and we only have given a very small portion
of the available results. Further introductions can be found in e.g. Chihara [16],
Temme [93, Ch. 6], Szego [92]. More details on this proof of Favard's Theorem
3.1.2 and the relation between orthogonal polynomials and functional analysis
can be found in Berez anskif [9, Ch. 7.1]' see also Dombrowski [20]. Chihara
[16] gives another proof of Favard's Theorem. In case the moment problem
is not determined, i.e. there exist more than one orthogonality measure for
the corresponding orthogonal polynomials, the analysis becomes much more
delicate, see Berg [10] and references given there.

The basic hypergeometric 2!Pl-series was introduced in 1846 by Heine. Since
then research has been going on, and a very good account of properties of basic
hyper geometric series can be found in the book [27] on this subject by Gasper
and Rahman. A number of connections with other fields, such as quantum
groups, Lie algebras, number theory, statistical mechanics and other areas in
physics are known, see e.g. Andrews [4] for a nice account and references in
[27].

The Askey-Wilson integral of Theorem 3.3.1 is due to Askey and Wilson [8],
who evaluated the integral by calculating residues and a number of summation
formulas. See also [27, §6.1] for another proof and further references. A nice
proof of Theorem 3.3.1 is given by Kalnins and Miller [36] using the symmetry
in a, b, C and d and a suitable iteration, see [61], and Exercise 3.7, for an
adaptation of this method. Another recent elegant proof of the Askey-Wilson
measure is given by Berg and Ismail [11].

The Askey-Wilson polynomials, together with their finite discrete counter-
part, the so-called q-Racah polynomials, form the top level of the q-analogue of
the Askey-scheme. A very useful compendium of properties of orthogonal poly-
nomials both from the Askey scheme and its q-analogue is given by Koekoek
a~d Swarttouw [42].

Exercises.
1. Let Pn be orthonormal polynomials, prove the Christoffel-Darboux formula

What is the resulting identity for y -+ x?
2. Let Pn be orthogonal polynomials. Prove that P« has n real simple roots in

the convex hull of supp(f.L). (Hint: Use Exercise 3.1 with y = x.)
3. Suppose that f.L is a finite discrete non-negative measure with the support

containing N + 1 points. Show that we can still define a finite collection of
orthogonal polynomials {Pn };;=D' In this case the Jacobi matrix is a self-
adjoint (N + 1) x (N + I)-matrix whose eigenvalues are the mass points. As
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an example, consider the q-Krawtchouk polynomials

and prove the orthogonality relations

with

Deduce from this that the dual q-Krawtchouk polynomials

-x x-N -0 ° (q-n, «", -«:" -0 )R,..(q -q ;q ,N;q)=3<P2 q-N,O ;q,q

= Kx(q-n;qo,N;q)

satisfy the orthogonality relations

N+o N
( ~.). 'IJRnRm)(q-x_qx-N-O;q",N;q)hx(q",N)
-q ,qN+1x=o

= On,m(Wn(qO, N)fl,

4. Derive the three-term recurrence relation for the AI-Salam and Chihara
polynomials Sn, which are Askey-Wilson polynomials with c = d = 0, so
sn(x) = sn(x;a,blq) = Pn(x;a,b,O,Olq);

5. Define the q-integral by

b 001 f(x)dqx = (1- q)b ~f(bqk)qk,
o k=O

lb
f(x) dqx = lb

f(x) dqx -la

f(x) dqx,
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whenever f is such that the series involved are convergent. Show thatJ: f(x) dqx tends to J: f(x) dx as q t 1 for Riemann integrable t Show
that the inverse operator Dq, the q-derivative, is given by Dq/(x) = (J(x)-
f(qx))/(1 - q)x for x f. o.

6. Prove GauB's summation formula;

)
(e/a,e/b;q)oo

2'P1(a,b;e;q,e/ab = ( / b ) ,e,ea;qoo
(Hint: use the first of Heine's transformation formulae.) Then prove Jack-
son's transformation formula

( ) (az;q)oo (/ )2'P1 a,b;e;q,z = ( ) 2'P2 a,e b;e,az;q,bz,
z;q 00

(Hint: develop (b; q)k/(e; q)k in the summand on the left hand side using the
terminating Gauf formula, i.e. a = q-k.)

7. In this exercise we sketch a proof of the Askey-Wilson integral in Theo-
rem 3.3.1, which is taken from [61] which in turn is motivated by [36]. So
[ai, Ibr, [c], Idl < 1 and consider Wa,b.c,d(Z) = w((z+z-l )/2) as in §3.3. Define
the contour integral

le/abl < 1.

Izi < 1.

I = _1~i W (z) dz.a,b,c,d 2'· a,b,c,d
1rZ Izl=l z

Prove that la,b,c,d = (1 - abed)laq,b,c,d/(1 - ab)(1- ae)(1- ad). Do this by
giving two expressions for

i Waql/2,bql/2,cql/2,dql/2 dz

I z - Z-1 -;Iz =1

by shifting the contour to Izi = q±1/2 and scaling back to Izi 1, and
subtracting the result. Then prove as a consequence

I - (abed;q)oo I
a,b,c,d - ( b db bd d') 0,0,0,0'a , ae, a . C, ,e, q 00

Then prove l1,ql/2,_1,_ql/2 = 1. (Why is this choice okay?) Now finish the
proof of Theorem 3.3.1.

8. Formulate Sears's transformation formula, cf. Remark 3.3.3, and prove

3'P2 (q-;,,:,e;q,q) = (d~~~;~~)n(be/d)n3'P2 (q-;,,~~~~:/C;q,q).

9. Define fq(x) = (q; q)oo(1 - q)l-x /(qX; q)oo, show that the first of Heine's
transformation formulae of Theorem 3.2.4 can be written as

(
a b. c. ) _ fq(e) r1 b-1 (tzqa, tq; q)oo

2'P1 q ,q ,q ,q,z - fq(b)fq(e-b) 10 t (tz,tqc-b;q)oo dqt.

Assuming fq(x) ----+ I'x as q I 1, what is the corresponding limit as q I
1? See the q-binomial theorem as the analogue of the binomial theorem
L::=o(a)kzk /kl = (1 - z)-a, where (a)k = a(a + 1) ... (a + k - 1) = f(a +
k)/f(a) is a shifted factorial, or Pochhammer symbol.
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4. Quantum subgroups and the Haar functional
We discuss a way to consider the analogues of bi-K-invariant functions on
5U(2) for arbitrary one-parameter subgroups K. In the group case it is not
of much importance which K is chosen, since these groups are all conjugated.
However, in the quantum group case it makes a difference. Of particular interest
is the Haar functional on bi-K -invariant functions. We also start investigating
the analogues of functions on 5U(2) behaving like f(kgh) = XK(k)xH(h)f(g)
for possibly different one-parameter subgroups K and H of 5U(2) having
characters XK respectively XH· For XK == 1 == XH the functions live on
K" 5U(2)/H.
§4.1. Generalised matrix elements. Recall from Proposition 2.3.1 that the
twisted primitive elements are the analogues of the Lie algebra. In the group
case we have that f E Pol( G) is left and right K -invariant for the one-parameter
group K = exp(tX) if and only if X.f = 0 = f.X with the action of U(g) on
Pol( G) as in Example 1.2.2. Such functions are called spherical.

For the quantum 5L(2, C) group we already know that

1
I ""' I I . -' 1(D - A).tij = LJ tik tkj(D - A) = (qJ - q J)tij

k=-l

and similarly t~j .(D-A) = (qi_q-i)t~j' So for IE Z+ we may consider t~o as the
spherical functions on Aq(5L(2, C)) with respect to the subgroup 'generated'
by D - A. We now want to do this for more general twisted primitive elements.
The *-structure of the real form Uq(.su(2)) and Aq(5U(2)) is needed.

For a E JR we define

(4.1.1) X" = iqtB - iq-!C - q" - q~l" (A - D) E Uq(su(2)).
q-q

We also define

(4.1.2)

recovering the case of the previous paragraph as a special case. From (2.1.2)
and Theorem 2.6.1(ii)

Note that X"A is self-adjoint, so we consider it as the analogue of the element

(~i ~<r) in isu(2) C s[(2, C) instead of an element of the real form su(2).

Instead of considering X" we can take a self-adjoint element in the space of
primitive elements, but we need this definition in order to be able to prove
certain multiplicative properties in the dual algebra later.

Fundamental for what follows is that we can explicitly calculate the eigen-
vectors and eigenvalues of each self-adjoint matrix t'(X"A).
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Proposition 4.1.1. The self-adjoint operator tl(XuA) has an orthonormal
basis of eigenvectors vl,j (CT)= L~=-I v~j (CT)e~ corresponding to the eigenvalue

«:":: _ qu+2j + qU _ «:
A)(CT) = l' j=-I,-I+l, ... ,I.q - q-

The coefficients v~j (CT) are explicitly known by

, (( 41. -2) ) 1/2I,j( ) _ c»; )'n-I u(l-n) !(I-n)(I-n-1) q, q I-n
vn CT - CTZ q q ( 2. 2)q ,q I-n

X RI_n(q2j-21 _ q-2j-21-2U;q2U,21;q2),

where RI-n is a dual q-Krawtchouk polynomial, d. Exercise 3.3, and the
constant is given by

C1,j(CT) =
I [2/ ]1/2 (1+q-4j-2U)1/2 ( 2-2u. 2 2+2u. 2 )-1/2

q +j 1- j q2 1+ q-2u (-q ,q )l-j(-q ,q )l+j .

Proof. The relation tl (XU A) L~=-l cme~ = A L~=-I cme~ leads to a (fi-
nite) three-term recurrence relation for the coefficients Cm by (4.1.1) and The-
orem 2.3.6. Comparison with the three-term recurrence relation for the dual
q-Krawtchouk polynomials Rn(Y) = Rn(y; s", N; q)

yRn(y) =
(1- «:", Rn+1(y) + (q-N _ q-N-u)qn Rn(y) - (1- qn)q-N-u Rn-1(Y)

for' Y = q-X - r:":',X E {O, ... ,N}, gives the value for the coefficients and
for the eigenvalues. The normalisation follows from the orthogonality relations
for the q-Krawtchouk polynomials, cf. Exercise 3.3. ~

Since the vectors vl,j(CT) are orthonormal in a finite dimensional space, we
have the orthogonality relations

(4.1.4)
I

'" I,j ( )--v-( ) _ s ..L.-.t Vn CTVn CT - 0,,) ,

n=-l

1

'" I,i( )~() cL.-.t Vm CTVn CT = °n,m'
i=-I

The first part of (4.1.4) is equivalent to the orthogonality relations for the q-
Krawtchouk polynomials, and the second part of (4.1.4) is equivalent to the or-
thogonality relations for the dual q-Krawtchouk polynomials, cf. Exercise 3.3.
With this orthonormal basis for C21+1 we can define generalised matrix ele-
ments.
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Lemma 4.1.2. In Aq(SU(2)) we define

aL(r, u)(X) = (tl(X)vl,i(u), vl,i(r)), u,rE~, i,j=-I,-I+l, ... ,I,

then
I

a~,i(r,lT) = L v~(u)v~i(r)t~,m E Aq(SU(2)),
",m=-l

and

Proof. The first statement is obvious from Proposition 4.1.1 and to prove the
last we observe that (Y, X.~) = (Y X,~), so that for all Y E Uq (.su(2))

(Y, (X<1A).aL( r, u)) = (tl(Y)tl (X<1A)v',i (u), vl,i( r))

= Ai(U)(tl(Y)vl,i(u),vl,i(r)) = Ai(u)(Y,a~,i(r,u)).

The other case is treated similarly using (XTA)* = XTA. ~

We want the action of X<1 and XT to be more symmetric than in Lemma
4.1.2. For this we define bL(r,u) = A.aLi(r,u), then
(4.1.5)

X<1.b~,i(r,u) = Ai(U)D.bLi(r,u) and bLi(r,u).xT = Ai(r)bL(r,u).D

since (X.~).Y = X.(~.Y) by the coassociativity of ~. Explicitly,

(4.1.6)
I

bl ( ) - "'" I,i( )~( ) -m t'i,i r, (J' - LJ Vm U Vn r q n,m
n,m=-l

E Aq(SU(2)).

The case I = 1/2 is of particular interest and we write

or explicitly

O:T,<1= ql/2o: _ iq<1-1/2j3 + iqT+l/2, + q<1+T-l/20,

j3T,<1= _q<1+1/2o: - iq-l/2j3 _ iq<1+T+l/2, + qT-l/20,

'T,<1 ::;::_qT+l/2o: + iqT+<1-1/2j3 + iql/2, + q<1-1/20,

OT,<1= qT+<1+1/2o: + iqT-l/2j3 _ iq<1+1/2, + q-l/20.

The following two propositions are fundamental in giving explicit formulas
for bL (r, u) and hence for the generalised matrix elements aL (r, o ).
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Definition 4.1.3. ~ E Aq(SU(2)) is a (T,cr)-spherical element if

Proposition 4.1.4. (i) Let ~ E Aq(SU(2)) be a (T, cr)-spherical element and
Jet TJE Aq(SU(2)) satisfy

(4.1. 7) Xa.TJ = A D.TJ and TJ,XT = J.lTJ·D.

for A,J.l E C. Then TJ~ satisfies (4.1.7) for the same A, u, Moreover, if A,J.l E ffi.,
then TJ"TJis a (T, a )-spherical element. In particular, the space of (T, a )-spherical
element forms a *-subalgebra of Aq(SU(2)).
(ii) IfTJ E span(t~m) satisfies (4.1.7) for arbitrary A,J.l E C and TJ is non-zero,
then A = Aj(cr), J.l= A;(T) for some i,j E {-l, -l+l, ... ,l} and TJ is a multiple
oIbL( T, cr).

Proof. To prove (i) we first note that by Definition 1.2.1 and Proposition 1.2.3
we have in general for Hopf algebras in duality

(4.1.8) u.(ab) = 'L(U(1).a)(U(2).b),
(u)

~(u) = 'L U(l) 0 u(2),
(u)

with the notation of (1.1.5).
First consider TJ~, then

since X" is twisted primitive and D group like. Similarly we prove (1}~),XT =
J.l(TJO·D.

To prove the other statement of (i) we observe that in general for Hopf *-
algebras in duality the left action satisfies u.a" = (S(u)" .a)*. Now proceed as
before to obtain

Xa.(TJ"TJ) = (A.1J*)(Xa.TJ) + (X".1J*)(D.TJ) = (A - >-)(D·TJ)*(D.1}),

since S(A)" = D and S(Xa)* = -Xa. This yields zero for A E R Similarly we
prove (TJ"TJ),XT = 0 for real u,

The proof of (ii) follows immediately from the linear basis of Aq(SU(2)) given
in Theorem 2.4.1 and the multiplicity of each eigenvalue oft1(XaA) being one.

1!1
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Proposition 4.1.5. Let 7] satisfy (4.1.7) with ,\ = '\j(O") and I-" = '\i(r), then
(i) O:T+2i,a+2j7] satisfies (4.1.7) with ,\ = '\j-1/2(0") and I-" = '\i-1/2(r),
(ii) (3T+2i,a+2j7] satisfies (4.1.7) with ,\ = '\j+1/2(u) and I-" = '\i-1/2(r),
(iii) ''fT+2i,a+2jTJ satisfies (4.1.7) with,\ = '\j-1/2(0") and I-" = '\i+1/2(r),
(iv) c5T+2i,a+2jTJ satisfies (4.1.7) with ,\ = '\j+l/2(0") and I-" = '\i+1/2(r).

Remark 4.1.6. Proposition 4.1.5 gives a way to express the corner elements,
i.e. b;j(r,0") with 1= max(lil, iii), in terms of products of O:T,a, (3T,a, 'YT,a, c5T,a,
but with integer shifts in the parameters rand 0".

Sketch of proof. Take ~ E Aq(SU(2)) arbitrary for the moment, then as in the
proof of Proposition 4.1.4,

So, if ~ satisfies

(4.1.9)

for some '\1,1-"1 E C, then we get

and

Next we assume ~ = ao: + b{3 + C"'f + dc5 for some complex constants a, b,
c and d. Using (2.6.1) we see that the first requirement of (4.1.9) leads to

M (~) (~), M (~) (~) for a 2 x 2-matrix depending on A, '\1

and 0". From det(M) = 0 it follows that for ,\ = '\j(O") we have .AI = '\j±1/2'
Similarly, the second requirement of (4.1.9) leads to linear equations of a similar
form and again a determinant condition implies I-" = '\i(r) and 1-"1= '\d1/2(r).
Combining each of the cases leads to a solution for a, b, c and d up to a scalar.

~

Since '\i (0") = 0 ¢:> i = 0 we see from Proposition 4.1.4(ii) that there is no
(r,O")-spherical element in span(t~~) and that there is a one-dimensional space
of (r, O")-spherical elements in span(t~m)' Take such an element and keep only
the non-constant terms to find the following (r, 0")-spherical element;

1PT,O = '2(0:2 + 152+ n2 + q-1{32 + i(q-a - qO)(qc5[ + (30:)

_ i(q-T _ qT)(c5{3 + q'YO:) + (q-O _ qO)(q-T - qT){3[).
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Proposition 4.1.7. The »-snbelgebre of Aq(SU(2)) of (T,O')-spherical ele-
ments is generated by the self-adjoint element PT,U' Moreover,

(3 - 2 T+U 2u-l 2T+l
T+l,u-lIT,U - q PT,U - q - q ,

(3 - 2 T+U 2u+l 2T-l
IT-l,u+l T,U - q PT,U - q - q ,

<: 2 T+u+l 1 2u+2T+2
O'T+l,u+l UT,U = q PT,U + + q ,
c 2 T+u-l + 1 + 2u+2T-2UT-l,u-1O'T,u = q PT,U q .

Proof. Indeed, P;,u = PT,U for the *-operator of Theorem 2.6.1(ii). From Propo-
sition 4.1.4(ii) and Ai(O') = 0 if and only if i = 0, it follows that a linear basis
for the space of (T,O')-spherical elements is given by b~O(T,O'), 1 E Z+. From
Lemma 2.4.2 we see that p~,u has a non-zero component in span(t~m)' Since
span(t~m) is invariant under the left action of Xu and under the right action
of X T it follows by induction on 1 that b~o( T, 0') is a polynomial of degree 1
in PT,U' From Proposition 4.1.5 it follows that each product on the left hand
side is a (T, 0' )-spherical element, and by considering the degrees it has to be
a polynomial of degree 1 in PT,U by the first part. It remains to calculate the
leading and constant coefficient by comparing the coefficients of 0'2 and the
unit 1 on both sides. ~

Corollary 4.1.8. The following relations hold in Aq(SL(2, C));

''(T,UPT,U = PT+l,u-l ''(T,u,

(3T,UPT,U = PT-l,u+l(3T,u,

8T,uPT,U = PT+l,u+18T,u.

O'T,UPT,U = PT-l,u-1O'T,u,

Proof. The proofs of these statements are all similar. To prove the first, mul-
tiply the last equation of Proposition 4.1.7 by O'T,U and use the third equation
in the left hand side. Cancelling terms proves the first statement. ~

Remark 4.1.9. We define PT,OO' Poo,u and Poo,oo as limit cases of PT,U as follows;

I· 2 u+T-lPoo,u = im q PT,U,
T-OO

and Poo,oo = limu_oo Poo,u = limT_oo PT,OO = -"., Since we take 0 < q < 1,
this is just replacing qOO = O. The corresponding factorisations of Proposition
4.1.7 remain valid under these limit transitions, since we can take limits in O'T,U,

etcetera. In case 0' = T --+ 00, Proposition 4.1.7 reduces to part of the relations
(2.4.2) in Aq(SU(2)).

§4.2. The Haar functional restricted to (T, 0' )-spherical elements. Re-
call that the invariant functional or Haar functional is a positive linear func-
tional on Aq(SU(2)), which is defined by h(t~n) = 8/0.
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Lemma 4.2.1. h(f/,m(Jn) = h(al,m(Jn) = 0 unless I = 0 and n = m and

h( m(Jm) ( )m 1- q2, = -q 1 _ q2m+2 .

Proof. The invariance of h implies h(a.x) = h(a)c:(X) = h(X.a). Use this
with X = A, and X = D (so that the left and right action is a homomorphism
because A and D are group like), (2.6.1) and a = 8/,m(Jn and a = a1,rri(Jn to
see that the Haar functional applied to these basis elements gives zero unless
1= 0, in = n.

In this case we take X = C and we calculate, using the analogue of (4.1.8)
for the right action,

8,( - q-l(J,)n.c

= (8,(_q-l (J,)"-l .A)( -«:' (J, .C) + (8,(-«'(J,)"-l .C)( -«'(J, .D)
= (q-18,(_q-l(J,)"-l)( _q-l/2(Ja) + (8,( _q-l(J,)"-lC)( _q-l(J,)

= q-l/2-2n(_q-l(J,)"(1 + q-l(J,) + (8,(_q-l(J,)"-1.C)(_q-l(J,)

and together with the initial condition for n = 0 we get

-1/2-2n= q ((1- q2n+2)(_q-l(J,)" - (1- q2n+4)(_q-l(J,)"+1).
1- q2

Apply hand c:( C) = 0 to get a two-term recurrence relation, which is uniquely
solved with the initial condition h(l) = 1. ~
Corollary 4.2.2. Let D be the self-adjoint positive diagonal operator £2(~+)
with orthonormal basis {en};;"=o defined by D: en f---t q2nen,

(1 2) 12
71"h(a) = - q tr(D7r¢'"(a)) d</J,

27r 0
a E Aq(SL(2, C))

Proof. Check that the right hand side coincides with h for a = 81,m (3n or
a = al,m (3n . ~

Remark 4.2.3. The trace operation in Corollary 4.2.2 is well-defined due to the
appearance of D. Since D1/2 is a Hilbert-Schmidt operator, so is 7r¢'"(a )D1/

2
,

since 7r¢'"(a) is a bounded operator. The trace of the product of two Hilbert-
Schmidt operators is well-defined. Moreover, tr(D7r¢'"(a)) = tr(7r¢'" (a)D) and
it is independent of the choice of the basis. The trace can be estimated
by the product of the Hilbert-Schmidt norms of D1/2 and 7r¢'"(a)D1

/
2
, i.e.

tr(D7r¢'" (a)) I :SII a II /(1 - q2), so that the function in Corollary 4.2.2 is in-
tegrable. Here II a II, a E Aq(SU(2)), denotes the supremum of the operator
norm 7rr(a) as B varies, where we use the notation of Theorem 2.6.3.

The next theorem is the key in determining the generalised matrix elements
of the previous section in terms of q-special functions.
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Theorem 4.2.4. The Haar functional on the subalgebra generated by the
self-adjoint element PT,<Jis given by

for any polynomial p. Here a = _q<J+T+1, b = _q-<J-T+l, C = q<J-T+l, d =
q-<J+T+I and dm( x; a, b, c, dlq2) denotes the normalised Askey- Wilson measure.

The proof is based 'on Corollary 4.2.2 and the spectral theory of Jacobi
matrices and their connection with orthonormal polynomials. The proof of the
general statement is of some computational complexity. We first consider the
case a --+ 00 of Theorem 4.2.4. This limit case is also needed in the proof of the
general statement. We then illustrate the procedure for the general case in a
less computational case, namely the Haar functional restricted to the co-central
elements. In these two cases the calculations are much simpler, and the proof
of the general case is contained in the exercises. The limiting case a --+ 00 of
Theorem 4.2.4 is phrased in terms of the q-integral introduced in Exercise 3.5.

Theorem 4.2.5. The Haar functional on the subalgebra generated by the
self-adjoint element PT,OOis given by the q-integral

for any polynomial p.

To prove Theorem 4.2.5 from a spectral analysis of '7r;r(PT,OO)we use the
following proposition.

Proposition 4.2.6. £2(Z+) has an orthogonal basis of eigenvectors vL where
A = _q2k, k E Z+, and A = q2T+2k, k E Z+, for the eigenvalue A of the
self-adjoint operator '7r;r(PT,OO)'The squared norm is given by

A = -s",
A = q2T+2k.

(4.2.1)

Moreover, v~ = 2::::=0 ineinBpn(A) en with the polynomial Pn(A) defined by

«': qn(n-I)/2
Pn(A) = -=---~==- 21f'1(q-2n q2T/A·Q·q· _q2A)I( 2. 2) " , ,V q ,q n

( l)nqnT n(n-l)/2
- .q ( -2n -1/A.Q .. 2-2TA). I( 2. 2) 2 If'l q, " q, q .

V q I q n

Remark 4.2.7. The basis described in Proposition 4.2.6 induces an orthogonal
decomposition of the representation space P(Z+) = VI

B EElV!, where vt is the
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subspace with basis V~q2" k E ~+, and V2
8 is the subspace with basis V:2T+2k'

k E ~+.
Sketch of Proof. Consider the Al-Salam and Carlitz polynomials

u~a)(x; q) = (_afqn(n-l)/2 2'Pl(q-n, x-I; 0; q, qx/a)

= (-lfqn(n-l)/22'Pl(q-n,a/x;0;q,qx).

The equality follows from the second of Heine's transformation formulae of
Theorem 3.2.4. Take b = q-n and reverse the order of summation on the right
hand side before letting c ---+ O. The Al-Salam and Carlitz polynomials are
orthogonal polynomials satisfying the three-term recurrence relation

Compare this with the action of Pr,oo in £2 (~+),

7r'9 (Pr,oo) en =
iqr+nei8 VI - q2n+2 en+l - (1 - q2r)q2n en - iqr+n-le-i8 VI - s": en-I,

to see that vf as defined in Proposition 4.2.6 is indeed formally an eigenvector
for 7r'9(Pr,oo) for the eigenvalue A. For>. = -s" or A = q2r+2k, k E ~+, it is
easy to show that vf E £2(~+). The orthogonality follows, since 7r't'(Pr,oo) is
self-adjoint.

It remains to calculate the squared norm and to prove the completeness in
£2(~+). The squared norm can be calculated using the fact that we already
have established orthogonality and some easy calculations using Theorem 3.2.1
and Corollary 3.2.2(iii). The completeness follows, since the dual orthogonality
relations also hold, which are in fact the orthogonality relations for the AI-
Salam and Carlitz polynomials. ~

Proof of Theorem 4.2.5. We calculate the trace with respect to the orthogonal
basis of eigenvectors described in Proposition 4.2.6;

So it remains to calculate the matrix coefficients on the diagonal of the operator
D with respect to this basis. This can be done by a straightforward calculation,
or by use oJ the so-called q-Charlier polynomials, cf. Exercise 4.3. The result
. /
IS

(D 8 8) _ ( 2r+2. 2) (2. 2) ( 2-2r. 2)V_q2k,V_q2k - -q ,q 00 q ,q k -q ,q i ,

(D 8 8 )_( 2-2r.2) (2.2) ( 2+2r.2)Vq2T+2k,Vq2T+2k - -q ,q 00 q,q k -q ,q k,
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Thus

tr( D7r'/f(P(PT,OO))) = 1 +\2T (~p(_q2k)q2k + q2T ~p(q2T+2k)q2k).

This expression is independent of (J, so that we obtain from Corollary 4.2.2

which is precisely the definition of the q-integral. ~

The proof of Theorem 4.2.5 is straightforward, since the representation space
£2 (LZ+) has an orthonormal basis of eigenvectors of 7r'/f (PT,OO) for each (J, so that
the spectrum of 7r'/f(PT,OO) is purely discrete.

To prove the general case we have to invoke Jacobi matrices, as in §3.1.
We can show that 7r'8(PT,a) on each of the components of the decomposition
£2(LZ+) = vt EElvj of Remark 4.2.7 is represented by a Jacobi matrix, al-
though 7r'8(PT,a) in the standard basis is represented by a five-term recurrence
operator. On each of the components we can determine the corresponding or-
thogonality measure using Al-Salarn and Chihara polynomials, see Exercise 3.4.
Then the Poisson kernel for the Al-Salam and Chihara polynomials comes into
play, which is a (very-well poised) 8!P7-series, on each of these components. Fi-
nally, the results have to be matched using Bailey's formula for the sum of two
of such 8!P7-series of the correct form. In Exercises 4.4-7 more explicit hints
are given. In order to show how this works we consider the case of the Haar
functional on the cocentral elements, in which all ingredients are contained but
in which the computations are much simpler.

T'heorem 4.2.8. The Haar functional on the subalgebra generated by the
self-adjoint element a + a* is given by the integral

211

h(p((a + a*)/2)) =;: _/(x)~ dx

for any polynomial p.

Proof. Consider

(4.2.2)

So the operator 7r'/f (( a +a*)/2) is represented by 'a Jacobi matrix with respect
to the standard basis of £2(LZ+). ~

Take a = b = ° in the Al-Salarn and Chihara polynomials of Exercise 3.4 to
obtain Rogers's continuous q-Hermite polynomials Hn(xlq) satisfying
(4.2.3)
2x Hn(xlq) = Hn+1(xlq) + (1 - qn) Hn-1(xlq), H_1(xlq) = 0, Ho(xlq) = 1.
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The continuous q-Hermite polynomials satisfy the orthogonality relations

with w(cos4>lq) = (e2i¢,e-2i¢;q)00, by taking a = b = c = d = 0 in the
Askey-Wilson orthogonality measure of Theorem 3.3.2.

Compare (4.2.2) with the three-term recurrence relation (4.2.3) to see that
the orthonormal polynomials associated to the Jacobi matrix 1r'[' (( a + a* )/2)
are the orthonormal continuous q-Hermite polynomials u; (xlq2)/ J(q2; q2)n.

We use the spectral theory of Jacobi matrices as in the proof of Theorem 3.1.2
with Pn(x) = Hn(xlq2)/ J(q2; q2)n as the orthonormal polynomials and the ab-
solutely continuous measure dm( xlq2) = (21r)-1 (q2; q2)00w( x Iq2)(I- X2)-1/2dx
on [-1,1] as the (normalised) orthogonality measure. So we obtai a unitary
mapping A, intertwining 1r'[' ((a + a*)/2) on £2(IZ+) with the multiplication
operator M on £2([-1,1], dm(xlq2)). Hence,

00
tr (D1r'[' (p( (a + a*)/2))) = L q2n (1r'[' (p(( a + a*)/2)) en, en)

n=O

= L q2n(A1r'[' (p((a + a*)/2)) en, Aen)
n=O

where Pt(x; Ylq) is the Poisson kernel for the continuous q-Hermite polynomials.
Explicitly, P is given by

It I < 1.(tei¢+it/J tei¢-it/J te-i¢+it/J te-i¢-it/J. q) ,, , , , 00

Interchanging summation and integration is easily justified.
From the explicit expression for the Poisson kernel we get

2 2 4(I-x2
)

w(xlq )Pq2(X, xlq ) = (1- 2)( 2. 2) ,q q,q 00
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so that

2 11

tr( D7r'8(p((o: + 0:*)/2))) = 7r(1- q2) -1p(x)~ dx.

Since this is independent of the parameter () of the infinite dimensional repre-
sentation, the proof follows from Corollary 4.2.2. f!1
Notes and references. The introduction of these infinitesimally generated
'subgroups' of the quantum SU(2) group is due to Koornwinder [60]. This
paper has been very influential for the development of the relation between
q-special functions and quantum groups. The rest of §4.1 has been taken from
an unpublished announcement [76] by Noumi and Mimachi, of which an even
shorter announcement [75] has appeared, see also [79], and from [45], [50], [51].
The (dual) q-Krawtchouk polynomials and the element of XaA also naturally
occur when determining the spherical functions on the Heeke algebra of type
Bn with respect to the parabolic sub algebra corresponding to An-I, see [52].

Lemma 4.2.1 is due to Woronowicz [103], but its proof is taken from Noumi
and Mimachi [80], and Corollary 4.2.2 is due to Vaksman and Soibelman [96].
See Dunford and Schwartz [22, Ch. XI, §6] for more details on Hilbert-Schmidt
operators and trace class operators. In fact, II a II, a E Aq(SU(2)), is a C*-
norm, and we can complete Aq(SU(2)) into a C*-algebra in which Aq(SU(2))
is a dense subalgebra. This corresponds to Woronowicz's approach to the quan-
tum SU(2) group, [103], [104]. The key Theorem 4.2.4 is due to Koornwinder
[60], but the proof sketched here is taken from Koelink and Verding [54]. The
details of the last part of the proof of Proposition 4.2.6 can be found in [48].
Theorem 4.2.8 is due to Woronowicz [103], with a different proof. The Poisson
kernel is known from the work by Rogers (1894-6) on the continuous q-Hermite
£olynomials, see [5], [13J.

Exercises.
1. Fill in the proof of Proposition 4.1.5.
2. Fill in the gaps of the last paragraph of the proof of Proposition 4.2.6. Use

the orthogonality relations for the AI-Salam and Carlitz polynomials;

11
U~)(q; x)U~a)(q; x)(qx, qx/a; q)oo dqx =

bnm( -ar(l - q)qn(n-1)/2(q; q)n(q,'a, l/a; q)oo

assuming a < 0 for the measure to be non-negative.
3. Define the discrete orthogonality measure Ii- by
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and define the q-Charlier polynomials

Prove from Proposition 4.2.6

Assuming k 2 I, prove that

and calculate the last integral explicitly using the summation formulas of
§3.

4. Use the notation V~(qT) = v~ for the orthogonal basis of Proposition 4.2.6
in order to stress the r-dependence. Prove that

OO( ) 8( T) s«. 1/2-T(1 ') 8 (T-l)1r8 aT,oo 'VA q = e zq + A VA/q2 q ,

1r8'(f3T,OO)V~(qT) = e-i8iql/2v~(qT-l),

1r8'(-yT,OO)V~(qT) = ei8iql/2(q2T _ .x)V~(qT+l),

1r8'(8T,OO)V~(qT) = _e-i8iql/2+TV~q2(qT+l)

and from this that

21r8'(PT,rJ )v~ =
qe-2i8 Vfq2 + «:e2i8 (1 _ q-2T A)( 1 + A)vf/ q2 + Aql- T (q-rJ - qrJ )vf.

Use Proposition 4.1.7 and that aT,rJ can be written as a linear combination
of aT,oo and f3T,OO' and similarly for the other elements.

5. 1r8'(PT,rJ) preserves the orthogonal decomposition of Remark 4.2.7, and is
given by a Jacobi matrix on each component. Let

Df,2)
D~,2

be the corresponding decomposition of D. So that
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Denote by w;;", mE&':+, the orthonormal basis of V/ obtained by normal-
ising V~q2=' mE&':+, and by u;;", mE&':+, the orthonormal basis of V2

8

obtained by normalising V:2r+2=, mE&':+. Show that the corresponding or-
thonormal polynomials can be given in terms of orthonormal Al-Salarn and
Chihara polynomials,

with the notation of Exercise 3.4. And prove that

trV,9 (Dfl7rO(P(PT,a))) = 1p(x) f f (Dw~, w;;")x
llt n=Om=O

hn (x; q T , qa Iq2)hm (x; q T , q" Iq2)e2i(m-n)8 dm( x; ql+a-T, -c:: ,0, 01q2)

and similarly

hn (x; «:', c: Iq2)hm(x; «:', «: Iq2)e2i(m-n)8 dm( x; ql-a+T, _ql+a+T, 0, OJq2)
using the notation for the normalised orthogonality measure for Askey-Wilson
polynomials, cf. (3.3.3).
6. Prove that h (P(PT,a)) =
t;/22

r f
llt

p(X)Pq2 (x, x; ql+a-T, -c::: Iq2) dm(x; ql+a-T, -s:":', 0, Olq2)+

--.!.=L t p(x)P (x z :ql-a+T _ql+a+T Jq2) dm(x' ql-a+T _ql+a+T 0 01q2)
1+q- 2-r J]j, q2 1 ,) "'"

where
D( . bl) _ ~ kSk(x;a,blq)sk(y;a,blq)
-'I x,y,a, q - L.Jt (b)

k=O q,a ;q k

is the Poisson kernel for the Al-Salam-Chihara polynomials.
7. Using the standard notation for very-well poised 8¥'7-series, cf. [27, Ch. 2],

( b d ) ( a, qva, -qva, b, c, d, e, / )
8W7 a; ,c, .e.I,s,» = 8¥'7 r: r: /b / /d / //;q,z,ya,-ya,qa ,qa c,qa ,qa e,qa

the Poisson kernel for the AI-Salam and Chihara polynomials has been eval-
uated by Askey, Rahman and Suslov, see [7, (14.8)],

(atei8 ate-i8 btei,p bte-i,p t· q)
Pt ( cos t'J, cos 1/>; a, b Iq) = -(t-e"""i8.,....+~i'""',p-,-te~'i"""8--""'i,p,....,-t.:....~.,....i,p'""'--i-8':'-,t-e--"""i,p..,.....:.~.,.,i8.:....',~a:..::::=-;-q..,...)-oo

( abt. b i8 -i8 i,p -i,p. )X 8W7 -,t, e ,be ,ae ,ae ,q,t.
q
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Use Bailey's formula, cf. [27, (2.11.7)]'

1 ( ) (aq,c,d,e;q)oo
( / )

8W7 a;b,c,d,e,f;q,q + (/b ) (/ /d / /f)b a;q 00 a ;q 00 aq c,aq ,aq e,aq ;q 00

(f,bq/c,bq/d,bq/e,bq/f;q)oo W (b2b be bd be bf. )
x (bc/a,bd/a,be/a,bf/a,b2q/ajq)00 8 7 -;:' ,-;:,-;,-;:,-;,q,q

(aq,aq/(cd),aq/(ce),aq/(cf),aq/(de),aq/(df),aq/(ef)jq)00

(aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a;q)oo

to finish the proof of Theorem 4.2.4. The absolutely continuous part of the
measure has to be treated differently from possible discrete mass points.

5. Askey-Wilson polynomials
and generalised matrix elements

We have now developed all the necessary ingredients for the interpretation of
Askey-Wilson polynomials on the quantum SU(2) group. In this section we first
show that orthogonal polynomials are of importance in describing generalised
matrix elements. Next these polynomials are explicitly calculated in terms of
Askey- Wilson polynomials.

§5.1. Generalised matrix elements and orthogonal polynomials. First
we establish a relation between generalised matrix elements and orthogonal
polynomials.

Theorem 5.1.1. For fixed i,j E ~&:+ such that i - j E &:, there exists a
system of orthogonal polynomials (PkhEZ+ of degree k such that for I ~ m =
max(lil, Ijl), 1- mE &:+,

Proof. We first prove that an expression of this form exists. Consider for any
polynomial SI-m of degree 1- m the expression bi,j(r,O')sl_m(PT,a). If we
decompose this product with respect to the linear basis the decomposition of
Aq(SU(2)) of Theorem 2.4.1 we get

I

brj(r, O')SI-m(PT,a) = I: bk,
k=12m-ll

where the upper and lower bound follow from Lemma 2.4.2. The mappings
X. and .x preserve span(t~m)' Proposition 4.1.4(i) shows that the left hand
side satisfies (4.1.7) with ,\ = '\j(O') and J..L = '\j(r). Consequently, each bk has
to satisfy (4.1.7) with ,\ = '\j(O') and J..L = '\j(r). Proposition 4.1.4(ii) implies



142 ERIK KOELINK

that bk = 0 for k < m and bk = ckbL(T,<T) for k 2: m and some constants Ck·
Hence,

I

b';:j(T,<T)SI-m(PT,a) = L ckb~,j(T,<T).
k=m

Since both sides contain the same degree of freedom, the existence of such poly-
nomials follows once we know that the mapping Sl-m ........bij(T,<T)SI-m(PT,a) is
injective. This can be seen by applying the one-dimensional *-representation 1f9

of Aq( SU (2)), cf. The~rem 2.6.3, and use of the explicit expression of b';:j (T, <T),
cf. (4.1.6). Then use 1f9 (PT,a) = cos 2() and 1f9 (t~m) = s.;«>', which follows
by observing that 1f9(O = (A2i9/lnq,O holds (formally) for ~ E Aq(SU(2)).

For i,k 2: m, i- m,k - m E:Z+ we have bL(T,<T) E span(t~m)' bf)T,<T) E
span(t~m)' so that the Schur orthogonality relations for the Haar functional h,
cf. Theorem 2.6.2, imply

(5.1.1)

Now (b';:j(T,<T)rb';:j(T,<T) = Wm(PT,a) for some polynomial Wm of degree 2m,
by Proposition 4.1.4(i) and 4.1.7, and the Clebsch-Gordan series of Lemma
2.4.2. Hence,

since we, have already established the existence of such polynomials and since
P;,a = PT,a' Consequently, by Theorem 4.2.4 the polynomials Pl-m, 1- m E
:z+, form a system of orthogonal polynomials with respect to the measure
wm(x)dm(x;a,b,c,d I q2) on lR?, where dm(x;a,b,c,d I q2) is the measure
described in Theorem 4.2.4. 1!1

§5.2. Generalised matrix elements and Askey-Wilson polynomials.
Combining Theorem 5.1.1, and in particular the description of the orthogonal-
ity measure, with Theorem 4.2.4 shows that it suffices to calculate

m = max(lil, Ijl),

to find the orthogonality measure for the orthogonal polynomials from Theo-
rem 5.1.1. The first step is the following proposition, where we use the one-
dimensional representations T).. defined in Remark 2.6.4.

Proposition 5.2.1. For i,j E ~:z+, i - j E:Z and m = max(lil, Ijl) we have
(i) In case m = i or -i :S j :S i,

T).. (b:) T, <T)) =
ci,j (<T)Ci,i (T )q-i A -2i (A 2 qHT-a; q2)i_ j (-A 2ql+T+a; q2)i+i'
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(ii) In case m = j or -j ::;i ::;i,

T).(bL( T, 0")) =
Cj,i (T )Cj,j (O")q-j A-2j (A2ql+<1-T; q2)j -i (_A2ql+T+<1; q2)i+j.

(iii) In case m = -i or i ::;j ::; -i,

T).(b~i(T, 0")) =
c:": j (-0" )C-i,-i( _T)qi A2i(A 2ql-T+<1; q2)j -i( -A 2ql-T -<1; q2) -i-j .

(iv) In case m = -j or j ::;i ::;-j,

T).(bi,j(T,O")) =
C-j,-i( -T)C-j,-j (-O")qj A2j (,\2ql-<1+T; q2)i_j( _,\2ql-T-u; q2)_i_j.

Proof. First we observe that the function T). (bL (T, 0")) of ,\ satisfies the sym-
metry relations

(5.2.1)

T).(b:,j(T,O")) = TX(b},i(O",T))

= T). (b~j,_i( -0", -T))

= TX(b~i,_j (-T, -0")).

This follows from TA(t~m) = 8nm>.-2n and v~j(O") = v~-j(-O"), which in turn
follows from C1,j(O") = c1,-j(-0") and Exercise 3.8.

So it suffices to prove the first statement. Use Proposition 4.1.5 to find

l+m-l I-m-l

X II 8T+21-1-k,u+2m-l-k II
k=O j=O

'h+'-m-l-j,u-'+m+l+j'

Apply T). to find

T),(bLm(T,O")) = c1,m(0")c',l(T)qu(m-l)qW-m)(l-m-l)
l+m-l

X II (qT+u+21+2m-2-2k+l/2>'+q-l/2,\-1)
k=O

l-m-l
X II (_qT+l-m-l-i+1/2'\+qu-l+m+l+j-l/2,\-1)

j=O

= cl,m( 0")C", (T )q-I ,\ -21 (,\ 2 ql+T-<1; q2)I_m (_>. 2 ql+T+u; q2)'+m
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and this proves (i).

Remark 5.2.2. We can lift the symmetry relations of (5.2.1) to the algebra
Aq(SU(2)), as follows. Let \If: Aq(SU(2)) ----> Aq(SU(2)) be the algebra iso-
morphism obtained by interchanging f3 and /. It follows from Corollary 2.5.3
that this is well-defined. From (2.4.3) we see that \If is an anti-coalgebra iso-
morphism. Hence, \If gives a coalgebra-isomorphism and anti-isomorphism of
Uq(s[(2, C)), which is just interchanging Band C. Using this, Theorem 2.3.6
and Lemma 2.1.2, then implies \If(t~m) = t~n' Similarly, let <1>: Aq(SU(2)) ---->

Aq(SU(2)) be the anti-algebra isomorphism obtained by interchanging a and 8.
Again Corollary 2.5.3 implies that it is well-defined. From (2.4.3) we see that
c:I> is an anti-coalgebra isomorphism. Hence, c:I> gives a anti-coalgebra isomor-
phism and anti-isomorphism of Uq(s[(2, C)), which is just interchanging A and
D. Using this, Theorem 2.3.6 and Lemma 2.1.2, then implies <1>(t~m) = t~m,_n"
Combining gives <1> 0 \If(t~m) = t~n -m' where <1> 0 \If is interchanging f3 and /
and a and 8. '

We can now prove the main result of this section in which we relate Askey-
Wilson polynomials to generalised matrix elements. The Askey-Wilson poly-
nomials involve four continuous parameters. In the following theorem we es-
tablish an interpretation of the Askey-Wilson polynomials with two continuous
and two discrete parameters. We rewrite the Askey-Wilson polynomials using
the following notation;

In this way the Askey-Wilson polynomials are q-analogues of the Jacobi poly-
nomials. The case s = t = 1 goes under the name of continuous q-J acobi
polynomials. Note also that the Al-Salarn and Chihara polynomials with the
parametrisation as in Exercise 4.5 can be considered as the corresponding
Hermite polynomial of p~a,,8)(x; s, tlq), i.e. they can be obtained by letting
a = f3 ----> 00.

Theorem 5.2.3. For i,j E ~Z+, i - j E Z and 1- m E Z+, m = max(lil, Ijl)
we have
(i) In case m = i or -i ~j ~i:

bl ( ) - d1 ( ) bi ( ) (i - i, i+j) ( . r 11 I 2 )i,j T, (J - i,j T, (J i,j T, (J PI-i Pr,I1' q , qq.

(ii) In case m = j or - j ~ i ~j:

b/ ( ) - d/ ( ) ci ( ) U - i, i +j )( . 11 r I 2)i,j T, (J - j,i (J, T lJi,j T, (J PI_j Pr,I1' q , qq.

(iii) In case m = -i or i ~j ~-i:

bl ( ) - d/ ( )b-i() U-i,-i-j)( . -r -11 I 2)i,j T,(J - -i,-j -T,-(J i,j T,(J P/+i Pr,l1,q,q q.
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(iv) In case m = -j or j ::;i::; -j:

b1 ( ) _ d1 ( )b-j() (i-j,-i-j)( . -a -T I 2)i,j 7,U - -j,-i -U,-7 i,j 7,U Pl+j PT,a,q,q q.

Here the constant is given by

Proof. The explicit form for the orthogonality measure given in the proof of
Theorem 5.1.1, the symmetry relations of (5.2.1) and 'lr8/2(PT,a) = cose being
independent of a , 7, show that it suffices to prove the first statement.

From the explicit form of the Askey-Wilson weight measure, cf. Proposition
3.3.4, we immediately get

( / ) d ( b dl)
(ab,ac,ad;q)rd (r I)

az , a z; q r m x; a, , c, q = (b d) m aq ,b, c, d q
a c; q r

for r E Z+, x = (z + z-1)/2. A double application shows that for r, s E Z+,
x=(z+z-1)/2,

(az, a/ z; q)r(dz, d] Zj q), dm(x; a, b, c, dlq) =

(ab, ac; q)r(bd, cd; q), ((~d~:))+, dmiaq", b, c, dq"q).
a c , q r+,

Hence, Proposition 5.2.1(i) and Theorem 4.2.4 imply that the looked-for poly-
nomials are multiples of the Askey-Wilson polynomials

P .(p . _qa+T+l+2i+2j _q-a-T+l qa-T+l qT-a+l+2i-2j Iq2)
I-I T,U, , " ,

which we rewrite in the shorthand notation.
It remains to calculate the constant. We apply the one-dimensional *-

representation 'lr8/2 to both sides of (i), and next we compare the coefficient of
e-il8 on both sides. The coefficient of e-i18 on the left hand side is

The coefficient of e-i(l-i)8 of Pl-i is (q21+2i+2j q2)I_i = (q41; q-2)I_i, so that the
coefficient of e-il8 on the right hand side equals ci,j(u)Ci,i(7)q-i(q41; q-2)I_i,
from which we obtain the value for d~,j (7, u). f!f

Since the generalised matrix elements a~j( 7, u), see Lemma 4.1.2, are ob-
tained from b~j(7,U) by applying the simple algebra isomorphism D., we also
have explicit expressions for the generalised matrix elements in terms of Askey-
Wilson polynomials.
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§5.3. Limit cases. Theorem 5.2.3 remains valid for the limiting cases a --+ 00

or T --+ 00 or even U = T --+ 00, cf. Remark 4.1.9. If we let either a or T

tend to infinity, we see a similar expression with the Askey-Wilson polynomials
replaced by the big q-J acobi polynomials, which a.re defined by

a rqn+a+,B+1, xqa+1 [c )
(5.3.1) PA ,,B)(x;c,d;q) = 3'P2 qa+1, -qa+1d/c ;q,q.

This is due to the limit transition
xq1/2 fC

l~(aJcq/dr( - q/a2; q)n p~a,,B) (2avci a, V dlq)

= (qa+1, _q,B+1c/d; q)n PAa,,B)(x; c, d; q),

which follows by taking term-wise limits in the 4'P3-series expression for the
Askey- Wilson polynomials. This limit transition is motivated from the defini-
tion of PT,oe and Poe,o in Remark 4.1.9.

For a = T --+ 00 we need the limit transition of the Askey-Wilson polynomi-
als to little q-J acobi polynomials defined by

p~a,,B)(x;q) = 2'P1(q-n,qn+a+,B+1;qa+1;q,qx)

_ (q-n-,B; q)n I (q-n, qn+a+,B+1, xq,B+1 . )
- (01+1.) 3P2 ,13+1 0 ,q,q.q ,q n q ,

Using the 3'P2-series representation for the little q-J acobi polynomials we can
prove the limit transition

xq1/2
lim

o
( - q1/2+,Ba2r p~a,,B)(-2 2 ja,alq)

a- a
= (-1r qn,Bqn(n-1)/2( qa+1; q)n p~a,,B)(x; q).

(5.3.2)

,

This limit transition is motivated from the limit transition of PT,O to Poe,oe

in Remark 4.1.9. This limit case is stated separately. Note that it suffices to
do the calculations in the first case and then use the symmetry relations of
Remark 5.2.2 and the commutation relations in Aq(SU(2)).
Corollary 5.3.1.

tl - I .n+m n-m (n-m,n+m)(_ -1(3 . 2) (n ~ m ~ -n),n,m - cn,mv , PI-n q" q , _

tl = 1 .n+m(3m-n (m-n,m+n)(_ -1(3 . 2) (> > _ )n,m cm,nV Pl-m q" q, m _ n _ m,

t~,m = c~n,_m(3m-na-m-n P;:'n-n,-n-m)( _q2m+2n-1 (3,; q2), (-n ~ m ~ n),

t~,m = c~m,_n ,n-ma-m-n p;~-;;.,m,-n-m)( _q2m+2n-1 (3,; q2), (-m ~ n ~ m),

with p~a,,B)(x; q2) a little q-Jacobi polynomial and

c~,m = [1 - m] 1/2 [ 1+ n ] 1/2 q-(n-m)(l-n).
n - m q2 n - m q2
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Notes and references. The main Theorem 5.2.3 is due to Koornwinder [60]
and was already announced in 1990, see [57], in the case l E Z+ and i = j = 0,
i.e. in the case of (T, IT )-spherical elements. This has led to Koelink [45] in
which the case j = 0 is calculated in order to be able to give a quantum group
theoretic proof of the addition formula for continuous q-Legendre polynomials.
Noumi and Mimachi [75], [76] then announced Theorem 5.2.3 in general. There
are some other ways of proving Theorem 5.2.3, notably by using the Casimir
operator leading to the q-difference equation for Askey-Wilson polynomials [60]
or by the Clebsch-Gordan decomposition leading to the three-term recurrence
relation for the Askey-Wilson polynomials. This proof uses the techniques of
[45], see also [50]. The symmetry relations in Remark 5.2.2 can already be
found in [56].

The limit transitions of the Askey-Wilson polynomials to big and little q-
Jacobi polynomials is taken from Koornwinder [60]. See [27], [42], [ 1] for more
information and further references on the big and little q-J acobi polynomials,
which were originally introduced by Andrews and Askey. Corollary 5.3.1 is one
of the first known interactions between q-special functions and quantum groups
due to Koornwinder [56], Masuda et al. [70] and Vaksman and Soibelman [96].
A number of other special cases of Theorem 5.2.3 in the case j = 0 have been
considered before, see Noumi and Mimachi [77], [78], [80].

Exercises.
1. Prove that hi of (5.1.1) can be written as

(1 - q2)q21 I I
1_ q41+2 T...;q(bj,j(lT, 1T))T...;q(bi,i(T, T)).

2. Use Proposition 5.2.1 to derive the following generating function for the dual
q-Krawtchouk polynomials of Exercise 3.3;

N (-N )'\--"tn n(N+a)/2!l....~ D( -x _ x-N-a. a N. )LJ q () '''n q q , q, , q
n=O q;qn

= (_tq-(N+a)/2; q)x(tq(a-N)/2; q)N-x

for N EN, x E {O, ... , N}.
3. Prove the limit transitions of the Askey-Wilson polynomials to the big and

little q-Jacobi polynomials.
4. Prove the second equality in (5.3.2).
5. Prove the orthogonality relations for the little q-J acobi polynomials;

11 (qt·q)
P(o,!3)(x· q)p(o,!3)(x· q) to , 00 d t = 8 hn , m , ( P+1.) q nm no q ,q 00

and calculate the squared norm hn.
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6. Addition formulas for Askey-Wilson polynomials
As an application of the interpretation of Askey-Wilson polynomials on the
quantum SU(2) group established in the previous section we derive two addi-
tion formulas for the q-Legendre polynomial p~O,O) (-; qT, qeT Iq2) in this section.

§6.1. Abstract addition formulas. Since tl defines a unitary representation
of the --algebra Uq(511(2)), we obtain the properties

1

~(t~m) = L t~k Q9 t~m' c:(t~m) = 8nm, S(t~m) = (t:r.nf,
k=-I

I I

L t~p(t~pf = 8ij = L (t~ift~j'
p=-I p=-I

which are easily verified by testing against appropriate elements of Uq(511(2».
The analogous statements for the generalised matrix elements is the following.

Proposition 6.1.1. The elements aL (r, u), a, r E lRU {oo}, i, j = -I, -I +
1, ... ,I, I E ~Z::+I defined in Lemma 4.1.2, satisfy

1

~(aL(r,u») = L a~,p(r,J.I)Q9a~,j(J.I,O'), 'v'J.lElRU{oo},
p=-I

(aL(r, u»)" = S(a~,i(u, r»), c:(aL(r, u») = (vl,j (u), vl,i(r»),
I 1

L a!,p(r,J.I)(a~,p(u,J.I»)" = (vl,j(u),vl,i(r») = L (a~,i(J.I,r)ra~,j(J.I,u).
p=-I p=-I

Proof. These statements are proved by testing against appropriate elements.
Firstly,

(X Q9 Y, ~(aLj(r, u»)) = (XY, a~,j(r, u») = (tl(X)tl(y)vl,j (u), vl,i(r»)
1

= L (tl(X)vl,P(J.I), vl,i(r»)(tl(y)vl,j (o), vl,P(J.I»
p=-I

1

= L (X, a~,p(r, J.I»)(y, a~,j(J.I, u»), 'v'X, Y E Uq(.511(2»,
p=-I

by developing tl (y)vl,j (u) in the orthonormal basis {vl,P (J.I)}p=_I, ... ,1' The next
statement follows from

(X, (aL(r, u»)") = (S(X)·, (al,j(r, u») = (tl(S(X)·)vl,j(u), vl,i(r»)

= (tl(S(X»vl,i(r),vl,j(u») = (S(X),a~,i(u,r») = (X,S(a~,i(u,r»))
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for arbitrary X E Uq(5u(2)) and

c:(aL(T,O")) = (1,aL(T,0")) = (vl,j(O"),vI,i(T)).

To prove the last statement we apply (id Q9S) to the first statement and we
use the Hopf algebra axiom m 0 (id Q9S) = "l 0 c:, cf. Definition 1.1.4. The first
equality then follows from the second property. The second equality is proved
similarly using the map m 0 (S Q9id). 0
Corollary 6.1.2. Fori E Z+, 0",T E llW{ oo} the action of I::i. on (T, 0")-sphericaJ
elements is given by

I

l::i.(b~O(T,O")) = L (D.b~n(T,jJ)) Q9b~o(jJ,O"),
n=-I

Vj.LEJRU{oo}.

Proof. Use Proposition 6.1.1, a~j(T,O") = D.bL(T,O") and l::i.oZ. = (idQ9Z.)ol::i..
This follows from

(I::i.(Z.~),XQ9Y) = (~,XYZ) = (I::i.XQ9YZ) = ((idQ9Z.)I::i.(~),XQ9Y),

where we use (Z.~,X) = (~,XZ). 0
Corollary 6.1.2 is the starting point for the derivation of an addition formula

for a two-parameter family of Askey-Wilson polynomials, and in this sense we
may call it an abstract addition formula. Most of the ingredients of the proof
have already been established. But let us first note that applying the one-
dimensional representation TVAQ9·T-.(Vto the identity in Aq(SU(2))Q9Aq(SU(2))
of Corollary 6.1.2 leads to the addition formula
(6.1.1)

(O,O)(~(.A) IJ TI 2) (O,O)(~( ) IJ al 2)
(q2;l)Iq-lp~O,O\~(A//);qT,qalq2) = PI t ;~2IJq PI2+21J' ~);q ,q q

-q ,-q ,q I

+ I (1 + q4p+21J)(q2; q2)I+p(A//)-P(AqlJ-T, _AqT+IJ, I/qlJ-a, -vs":": q2)p
~ (1 + q2!-,)(q2; q2)I_p( _q2-21J; q2)I_p( _q2+21J; q2)I+p

X P;~':)(~(A); qlJ, « Iq2)p;~':)(~(//); qlJ, qa Iq2)

I (1 + q4p-21J)( q2; q2)I+p( A// )-P (AqT-!-', _ Aq-T-!-" //qa-!-' , _//q-!-'-a; q2)p
+ ~ (1 + q-2!-')(q2; q2)1_p( _q2+2!-,; q2)I_p( _q2-2!-,; q2)1+p

x P;~':)(~(A); q-IJ, q-T Iq2)p;~':)(~(//); q-IJ, q-alq2),

with ~(A) = ~(q-l A + qA-1). The one-dimensional representation TVA Q9T.,jV

has a very large kernel, so we may expect that a more general addition formula
than (6.1.1) holds. This is indeed the case, and we proceed to derive this for
the special case jJ -+ 00.
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§6.2. Suitable basis for the right hand side. Our plan is to derive an
addition formula from Corollary 6.1.2 for the case J.1 ----> 00. We first determine
the explicit form of the terms in the right hand side of Corollary 6.1.2.

Lemma 6.2.1. For I E ~+ fixed and n E {O, ... ,I} we have

with the constant given by

( 2n+2 2<7-21. 2)
C ( ) - (l-n)(I-n-l)/2 -<71 q ,-q ,q I-n

n (J' - qq. V( q2, q21+2n+2; q2)I_n

Proof. Use Theorem 5.2.3 and the limit transition of the Askey-Wilson poly-
nomials to big q-J acobi polynomials in §5.3 to obtain this form. The form of
the factors in front follows from Proposition 4.1.5. 1!1

Theorem 5.2.3 and Lemma 6.2.1 give explicit expressions in term of orthog-
onal polynomials for all the elements in the identity in the non-commutative
algebra Aq(SU(2)) 0 Aq(SU(2)) of Corollary 6.1.2 for J.1 ----> 00. Although iden-
tities in non-commuting variables have their charm and are useful, we want
to obtain an identity in commuting variables. In order to do so we use the
*-representations of Aq(SU(2)) described in Theorem 2.6.3. Now any one-
dimensional *-representation leads to a trivial identity, so we have to con-
sider infinite dimensional *-representations. Since the result is independent
ofthe () of 'Ire, we may restrict ourselves to () = 0, and we denote 'Ir = 'irQ'
The idea is to let the right hand side act on suitable eigenvectors of the self-
adjoint operator 'Ir(PT,OO) 0 'Ir(POO,<7)' and to determine the (generalised) eigen-
vectors of the self-adjoint operator 'Ir 0 'Ir( Cl(PT,<7)) in terms of the eigenvectors
of 'Ir(PT,OO) 0 'Ir(POO,<7)'

Proposition 6.2.2. £2(~+) has an orthogonal basis of eigenvectors V,l,(qT),
where). = -s'", n E ~+, ). = q2T+2n, n E ~+, for the eigenvalue). of the
self-a.djoint operator 'Ir(PT,OO)' For). = -s": ).= q2T+2n, n E ~+, we have

'Ir(Q'T,OO)V,l,(qT) = iql/2-T(1 + ).)V,l,/q2(qT-l),

7f'(f3T,OO)V,l,(qT) = iql/2V,l,(qT-l),

'Ir(-yT,OO)V,l,(qT) = iql/2(q2T _ ).)V,l,(qT+l),

7f'(8T,oo)v,l,(qT) = _iql/2+TV,l,q2(qT+l).
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Proof. The first statement is Proposition 4.2.6 for ()= 0, and the second state-
ment is Exercise 4.4 for () = 0. This can be proved as follows. First observe that
the result for 7r({3T,OO) and 7r(8T,00) imply the result for 7r(-YT,OO) and 7r(aT,oo)
by Proposition 4.2.6 and the case U -+ 00 of Proposition 4.1.7. Let us prove
the statement for 7r(8T,00). Take U -+ 00 in Corollary 4.1.8 using Remark
4.1.9, to see 8T,ooPT,OO = q-2PT+1,oo8T,oo. By the first part of the proposition
we must have 7r(bT,oo)v),(qT) = CV),q2(qT+1) for some constant C. Using the
normalisation (V),(qT), eo) = 1 we get

C = (7r(8T,oo)v),(qT), eo) = (V),(qT), 7r(8T,oo' )eo) =
(V),(qT), 7r(iqT+1/2, + q-1/2a)eo) = _iqT+1/2.

The statement for 7r({3T,OO) is proved analogously. 1!1
Proposition 6.2.3. £2(2:+) has an orthogonal basis of eigenvectors v),(q<1),
wliere X = _q2n, n E :l+, and .\ = q2<1+2n, n E :l+, for the eigenvalue .\ of the
self-adjoint operator 7r(POO,<1)' Moreover,

(v),(q<1), vA(q<1» = q-2n(q2; q2)n( _q2-2<1; q2)n( _q2<1; q2)00,

(vA(q<1), vA(q<1» = q-2n(q2; q2)n( _q2+2<1; q2)n( _q-2<1; q2)00,
.\ = ->.

x = q2<1+2n.

For X = -s", .\= q2<1+2n) n E :l+, we have

1r(aOO,<1)vA(q<1) = iq1/2-<1(1 + .\)vA/q2(q<1-1),

1r({3oo,<1 )vA(q<1) = iq1/2(q2<1 _ .\)vA(q<1+1),

1r('OO,<1)vA(q<1) = iq1/2vA(q<1-1),

(J: ) (<1) _ . 1/2+<1 (<1+1)7r UOO,<1 VA q - -zq VAq2 q .

Proof. Use -q7r(,) = 1r({3) to find 7r(PT.<1) = 7r(P<1,T), 1r(aT,<1) = r.(a<1,T)'
1r({3T,<1) = 7r('<1,T), 7r('T,<1) = 7r({3<1,T) and 7r(8T,<1) = 7r(8<1,T)' to reduce to Propo-
sitions 4.2.6 and 6.2.2. f!1
Corollary 6.2.4. For n E {O, ... ,l} we have

1r(b~,D(oo, u»vA(q<1) = Cn(u)qn<1 pt~n\.\; q2<1, 1; q2) VAq2n(q<1),

(D bl ( » (T) C ( ) n(T+1) p(n,n)( . 2T i. 2) ( T)7r . D,n T,oo vlJ q = n T q I-n Il,q , ,q VIJq2n q

and

7r(b~n,o(oo, u»v),(q<1) = Cn(u)( _ltqn(<1-1)( -.\, .\q-2<1; q-2)n

X p(n,n)llq-2n.q2<1 1·q2)v _ (q<1)I-n ~ , " Aq 2n ,

7r(D.b~,_n(T, oo»VIJ(qT) = Cn(T)( _ltqn(T-2)( -11,Ilq-2T; q-2)n

X pt~n)(M-2n; q2T, 1; q2) VlJq-2n(qT).
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p(a,{3)(Ax' Ac Ad· q) = p(a,{3)(x' C d: q)n '" n , , ,

for A> a and Propositions 6.2.2 and 6.2.3 and Lemma 6.2.1. ~

§6.3. Suitable basis for the left hand side. The basis V/-'(qT) ® vA(q") of
£2(£+) ® £2(£+) is very well suited for the action of the right hand side under
1r ® 1r, cf. Corollary 6.2.4. Next we study 1r® 1r(~(PT,,,)) with respect to this
basis.

Lemma 6.3.1.

2(1r ® 1r)~(PT,,,)V/-,(qT) ® VA(q") = q2vM2(qT) ® VAq2(q")+
q-2(1 + 'x)(1 + fl)(1- 'xq-2")(1 - flq-2T)V/-,q_2(qT) ® VAq-2(q")

+ (,Xq1-"(q-T _qT)+J.lQ1-T(q-" -q,,)+,Xflq1-T-"(I+q2))v/-,(qT)®vA(q").

Proof. Use

1/2

~(bif\T, u)) = L qnbi~2(T, 00) ® b~?(oo, u),
n=-1/2

cf. C0r011ary 6.1.2, to get

~(,6T+1,"-1IT,,,) = q-1(¥T+1,00IT,00 ® ,600,,,-1(¥00,,, + (¥T+1,008T,00 ® ,600,,,-1100,,,

+ ,6T+1,00 IT,oo ® 800,"-1(¥00,,, + q,6T+1,008T,00 ® 800,,,-1100,,,.

Now the lemma follows from Propositions 4.1.7, 6.2.2 and 6.2.3. ~

Lemma 6.3.1 implies that each subspace of the form

with either fl E {-I, q2T} or >. E {-I, q2"} is invariant under (1r ® 1r)~(PT,,,).
We pick one, say J.l = -1, >. = _q2p for p E £+ fixed, and we call this subspace
W '= £2(£+). Using fl = -1, >. = _q2p and in Lemma 6.3.1 we obtain a
three-term recurrence relation, which can he solved using a sub-class of the
Askey- Wilson polynomials. If viewed as q-J acobi polynomials as in §5.2, the
polynomials we need are the Laguerre case of the q-J acobi polynomials, i.e. we
let ,6 -+ 00. So we define
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From the three-term recurrence relation for the Askey-Wilson polynomials we
get

2xln(x) = In+1(X) + (1- qn)(l_ qa+n)(1 + qns-2)(1 + qn+aC2)/n_1(x)

+qn ((t _ C 1)q1/2 s-l + (s _ S-l )q1/2+aC1 + (1 + q)q1/2+n+a s-lC 1) In( x),

where In(x) = I~Q)(x;s,tlq). The orthogonality measure for the q-Laguerre
polynomials follows from (3.3.3) and we denote the normalised orthogonality
measure by

V_q2~(qr) 0 V_q2~+2P(qO) f->

q-2m-p J( q2, -e>, q2)p ( _q2T , -s": q2)oo I~) (-; qT ,qO Iq2),

then A is- a unitary operator intertwining (7r 0 7r)~(PT,O) on W with the mul-
tiplication operator on L2(dmCp)(-;qT,qOlq2)).

Proof. (7r 0 7r )~(PT,O) is a Jacobi matrix on Wand the recurrence relation can
be matched with the three-term recurrence relation for the q-Laguerre poly-
nomials I~)(-; qT, qO Iq2), so we can use the technique of the proof of Theorem
3.1.2. The constants involved follow from Propositions 3.3.4,4.2.6 and 6.2.3.

0'

§6.4. Addition formula for Askey-Wilson polynomials. We now have
sufficient information on the action of both sides of Corollary 6.1.2 for IJ -+ 00.

Theorem 6.4.1. The following addition formula holds for I, m, p E IZ+! (J', T E

~,x EC;

p~O,O)(.c; q T ,qO Iq2)/~) (x; q T, qO Iq2) =
I

LDn,1 (T, (J')pt:)( -s?", q2T, 1; q2)pt~n)( _q2m+2p; q20, 1; q2)/~~n (x; qT ,qO Iq2)
n=O

I
+ L Dn,1 (T, (J')(q2m, q2m+2p, _q2m+2p-20, _q2m-2T; q-2)n X

n=l
pCn,n)(_ 2m-2n. q2T l' q2)pCn,n)(_q2m+2P-?n. q20 i: q2)/Cp) (x' qT qO'lq2)

I-n q " l I-n ' " m-n)' 1
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with the constant given by

Dn,l(r,(1) =
(_q2<7-21 _q2T-21. q2) (q2(I-n+l); q2)n (q2(n+l). q2) q(l-n)(I-n-2<7-2T)

, , I-n (2. 2) , 1 .q ,q n

Proof. Let 7r (9 7r act on Corollary 6.1.2, J.l -+ 00, and restrict the action
to W, which is also invariant under the action of the right hand side by
Corollary 6.2.4, as it should be. Let the resulting operator identity act on
V_q2m (qT) (9 V_q2m+2p (q<7) and apply A of Proposition 6.3.2 to get as an identity
in L2(dm(p)(-; qT, q<7Iq2));
q-2m-p J( q2, _q2-2<7; q2)p (_q2T , _q2<7; q2)oo p~O,O)(x; qT , q<7Iq2)/~\ x; qT , q<7Iq2)

= A (p~O,O\ 7r (9 7r(~(PT,<7)); «', q<7Iq2)V_q2m (qT) (9 Lq2m+2P( q<7))

1

= L c; ((1)Cn (r)qn(T+<7+1) pt~n)( ->, q2T, 1; q2)pt~n)( _q2m+2p; q2<7, 1; q2)
n=O

X A(V_q2m+2n(qT) (9 V_q2m+2P+2n(q<7))+
IL Cn( (1)Cn( r)qn(T+<7-3)( q2m, q2m+2p, _q2m+2p-2<7, _q2m-2T; q-2)n

n=l

X p(n,n)(_q2m-2n.q2T i: q2)p(n,n)(_q2m+2P-2n. q2<7 l' q2)
I-n '" I-n ' "

X A(V_q2m_2n(qT) (9 V_q2m+2P_2n(q<7)).

Use Proposition 6.3.2 and simplify to get the results, which holds for all x E C
by continuity. 1!1
Remark 6.4.2. It seems that in deriving Theorem 6.4.1 there is some arbitrari-
ness in the choice of the subspace W of 12(Z+) ® 12(&:::+), to which we have
restricted our attention. Apart from the choice of p E Z+ there are 8 of such
possible choices for W, which lead to 8 of such addition formulas. These are
obviously four by four equivalent by interchanging rand (J' and noting that
the q=Legendre polynomial involved is alse invariant under such a change. The
remaining four typea of addition fcrmulea differ, since the big q=ultraspherical
pelynernials are evaluated at other points of the spectrum. However, from
(6.4.1)

p(fJ,fJ) (=:C' e d: q) = (_qfJ-fJd/c)n (q1H
1

, -qfJ+
1c/dj q)n p«(J,fJ) (:C' d e: q)

1'1 I " = (ql)+l, -qfJ+1d/c; q)n 1'1 '" J

(which ia a direct consequence of the orthogonality relations) and the trivial
relation p~I)I(J)(A:I:;Ac,Adjq) ~ p'~I),fJ)(:Cjc,d;q), for A > 0, Wesee that
(6.4.2)

p(n,n)(_qm. qT l' q) = (_q-'I')I-n (_qn+1+
1'j q)'-n p(n,n)(qm-r. «" l' q).

I-n 1 " (_qn+1-rjq)l_n 1-1'1 " ,
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If we use this transformation for the big q-J acobi polynomials in Theorem 6.4.1
and we next change x into -x using p~()',6)( -Xj s, tlq) = (_l)np~(),,6)(Xj -s, tlq)
for the q-Legendre polynomial, 0: = (J = 0, and for the q-Laguerre polynomial,
(J -+ 00, and we change q1' to _q-1', then we obtain the same addition formula as
if we had started off with the space W spanned by the vectors type Vq'r+'m (q 1')181
V_q,m+,,(q<1), m E ~+. A similar approach can be used for the other big q-
ultraspherical polynomial, and a combination of both shows that Theorem 6.4.1
contains all the other possibilities by symmetry considerations.

Using the orthogonality relations for the q-Laguerre polynomials, d. Propo-
sition 3.3.4, we can pick out the term for n = 0 from the right hand side of
Theorem 6.4.1 and we obtain the following product formula for big q-Legendre
polynomials.

Corollary 6.4.3. For I, n E ~+, 0::; n ::; I we have the product formula

p/o,O) (_q2m; q2T , 1; q2)p/O,O) (_q2Cm+p); q2<1,1; q) =
~ lp;O'O)(Xjq1',q"lq2)(I}J:)(x;qT,q"lq2)f dmCp)(x;qT,q"lq2),

with
C =oDO,1 (T, 0')( q2, q2+2p, _q2-2T, _q2+2p-2,,; q)m.

Product formulae for big q-Legendre polynomials at other points of the spec-
trum are obtained from (6.4.2).

Notes and references. There are much more applications of the interpre-
tation of Askey-Wilson polynomials on the quantum SU (2) group than just
addition formulas, see e.g. [50]. The addition formula for the Askey-Wilson
polynomials in (6.1.1) is due to Noumi and Mimachi [75], see also [45], [50],
The addition formula derived in this section is taken from [47], see also [51],
The motivation for choosing p. -+ 00 is that we still can obtain a polynomial
identity, In [51] a very general identity, i.e. coming from Corollary 6.1 ,2 for
general (I, l' and M, is derived, but for this a non-symmetric Poisson kernel
for AI-Salam and Chihara polynomials is needed, The result from [51] contains
Theorem 6,4,1 ali a limit case. Some applications of identitieli for q-lipecial func-
tionli in non-commuting vanables, of which Lemma 2,3.2 iii a simple example,
as well as further references can btl found in Kecrnwinder [62],

The case (I ;:;; r ~ u ;:;;0 of Corollary 6,1.2 hae been used in [45] to derive the
addition formula for the continuous q.Ltlgendre polynomial, which is a special
ease of the addition formula for the continuous q-ultraspherical polynomials
analytically proved by Rahman and Verma [84], From the case (I ;;;;;r ;;:;;M-;
of Corollary 6,1.2 Kecmwinder [58] has proved an addition formula for the little
q-Legendrtl polynomial, which can be cbtained from Theorem 6,4.1 ali the limit
case (I :;; r .",.00, Also the addition formula for big q=Ltlgcmdrepolynomials of
[48J is a special case of Theorem 6,4.1. The limit case q i 1 of Theorem 6.4.1 to
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the addition formula for Legendre polynomials, cf. Exerxise 6.1, is highly non-
trivial. It uses the asymptotic behaviour of a class of orthogonal polynomials
including the q-Laguerre polynomials, see Van Assche and Koornwinder [97]
for the general theorem and [47] for the explicit application to this case. In
[97] it is also shown how the weak convergence of orthogonality measures can
be used to show that the product formulas as the one in Corollary 6.4.3 tend
to the product formula for the Legendre polynomials, cf. [47] for the details
for this case.

Exercises.
1. Let R(o,f3) be the Jacobi polynomial normalised by R(o,f3)(I)

R(o,f3)(x) =
1, i.e.

~(-nh(n+0'+,8+1h (I_X)" = F (-n,n+0'+f3+1.1-X).
L...J k'(O'+I)" 2 2 1 0'+1 '2
k=O

The Legendre polynomial mO,O) satisfies the addition formula

RiO,O) (xy + tJ(1- x2)(1 - y2)) = RfO,O)(x)RiO,O)(y) +

2 j; (l ~l;)~~I)2 T2m ( J(1- x2)(1- y2)) mRir:.:;;.n)(x) «: (y)Tm(t),

where Tm(cose) = cosme is the Chebyshev polynomial of the first kind.
Prove that for q i 1 in (6.1.1) leads to the addition formula for Legendre
polynomials.

2. Derive an addition formula for the little q-Legendre polynomial. Do this
by redoing the proof of Theorem 6.4.1 using Corollary 5.3.1, or by taking
suitable limits in Theorem 6.4.1.

3. Given the q-integral

1c (qxje, -qxjd; q)oo d x _
-d (qO+lxje, -qf3+1xjd; q)oo q -

(1
(q, -dje, -qejd, qO+f3+2; q)oo- q) e -----'..::..:.-,----'.--'---"'---'--',-=---'---=----,--

(qo+l, qf3+1, -qf3+1ejd, -qo+ldje; q)oo'

prove the orthogonality relations for the big q-J acobi polynomials

1cp(o,f3)(. d') (a,f3)(. d') (qxje, -qxjd; q)oo d - {; !n x,e, ,qPm x,e, ,q (a+1 j f3+1 jd') qX-unm1n
-d . q x e, -q X ,q 00

Calculate b« and prove (6.4.1).
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7. Convolution theorem for
AI-Salam and Chihara polynomials

In this section we consider the *-operator on Uq (.5[(2, C)) leading to the
real form Uq(.5u(l, 1)), see Theorem 2.3.4. Then we show how we can inter-
pret AI-Salam and Chihara polynomials as overlap coefficients similarly as q-
Krawtchouk polynomials for the real form Uq(.5u(2)). This interpretation can
be used to find a very general convolution theorem for the AI-Salam and Chi-
hara polynomials.

§7.1. Positive discrete series representations of Uq(.5u(l, 1)). In Exer-
cise 2.6 the positive discrete series representations had to be calculated. We
recall the result. For every k > a the representation 7fk of Uq~u(l, 1)) acting
in £2(:l+) is given by

where {en}~=o is the standard orthonormal basis of £2(:l+). The action of B
follows from B = -C',

(B)
-1/2-k-n J(1 - q2n+2)(I_ q4k+2n)

7fk en=q -1 e ...+1·q - q

Note that 7fk(D) is an unbounded operator, but that 7fk(A),7fk(B),7fk(C) E
B(£2(:l+)). The operators that we consider will be bounded. Obviously, 7fk is
an irreducible unitary (i.e. *-)representation of Uq( 5U( 1, 1)).

Lemma 7.1.1.
00

7fk, @ 7fk2 == EB 7fkj +k2+j
j=O

Sketch of Proof. The left hand side is a unitary representation of Uq(.5u(l, 1)),
hence completely reducible. The decomposition follows by counting lowest
weight vectors, i.e. considering the kernel of C. See Exercise 7.1-2 for more
details. r!1

Although the basis of the representation space £2(:l+) of 7fk is independent of
k we use the notation e~ to stress the k-dependence. Then Lemma 7.1.1 implies
that there exists a unitary matrix mapping the orthogonal basis e~~ @ e~~ onto
e~1+k2+j intertwining the action of Uq(.5u(l, 1)) on both sides. The matrix
elements of this unitary mapping are the Clebsch-Gordan coefficients.

Lemma 7.1.2. The Clebsch-Gordan coefficients are defined by

00

ek = "'"" Ck"k2,k ek1 @ ek2
n L-t 1111112,11 nt 112)

111,112=0
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where k = k1 + k2 + j for j E !Z+. The sum is finite; nl + n2 = n + j. The
Clebsch-Gordan coefficients are normalised by (e~, e~' ® e;~) > O.

Proof. Let A act on both sides to get
00

""' Ck"k2,k qn+k ek, ® ek2 = qn+k ekZ:: nl,n2ln nl n2 n
"1,n)=0

00
, Ck, ,k2,k k, +n, +k+2+n2 ek, ® ek2
L..J nIl"2," q 111 n2'

nl,"2=0

so Cnk"nk2,kn is zero unless n + k = k1 + n1 + k2 + n2 or nl + n2 = n + j.
1, 2 I

Using the action of Band C we can derive recurrence relations for the
Clebsch-Gordan coefficients. Using Ll(C) = A ® C + C ® D we get

(7.1.1) ql/2-k-n )(1- q2n)(1 - q4k+2n-2) C~~:~~',~_l=
qk,+n,-1/2-k2-n2. 1(1- q2n2+2)(1 _ q4k~+2n~) Ck"k2,k =V "11"2+1,"

q-l/2- k, -n, -k2-n~. 1(1 _ q2n, +2)(1 _ q4k, +2n,) c: ,k~,k .V nl+l,"2,n

Using the action of B we get a similar recursion for C~::~~',~+l showing that
the Clebsch-Gordan coefficients are completely determined by Cnk"nk2,ko' Take

1, 2,

n = a in (7.1.1) to find a two-term recurrence which can be solved by iteration;

(q2j q4k~+2j-2. q-2) k k k
, '"1 C I, 2,
(q2, q4k,; q2)n, O,j,O

where nl + n2 = i, k = k1 + k2 + j. Since the transition matrix is unitary we
have

(
-2j 2-2j-4k~ )

1 = , ICk1,k2,kI2 = ICk,.'k~,kI2 il'> q .s 'q2 q4k,+4k~+4j-2L..J n"n~,O O,},O 2.,.1 q4k, "
nl+n2=j

(q4k,+4k~+2j -2. q2).
_ ICk, ,k~,k 12 ' }
- O,j,O (q4k, ; q2)j

by the Gauf summation formula of Exercise 3.6. This determines C;,.'~~,k up.i,

to a phase factor, and given the normalisation (e~,e~' ® e~~) > a we have

C~,j,,~~,k > a and its value as well as the value of C~: :~~',~ are completely

determined. f!1
Remark 7.1.3. The value obtained for C~,j',~2,k and hence for C:'::~~',~, together
with the three-term recurrence relation obtained from the action of B com-
pletely determine the Clebsch-Gordan coefficients. This can be used to find an
explicit expression in terms of q-hypergeometric series. We come back to the
explicit expression in §7.3.
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§7.2. Twisted primitive elements and eigenvectors. From Proposition
2.3.I(ii) we have a description of the twisted primitive elements in Uq(s[(2, e)).
We now choose

in the space of twisted primitive elements. Then YsA is a self-adjoint element
in Uq(su(I, 1)) for s E lR" {a}, or s E il, the unit circle. We study the bounded
self-adjoint operator 1Tk(YsA). In order to formulate the following result, we
recall the Al-Salam and Chihara polynomials defined in Exercise 3.4. By S«
we denote the orthonormal Al-Salarn and Chihara polynomials;

1
Sn(x;a,blq) = sn(x;a,blq)

v!(q,ab;q)n

and corresponding normalised orthogonality measure

dm(x; a, blq) = dm(x; a, b, a, Olq),

cf. Exercise 3.4 and (3.3.3). We also use the notation J.L(x) = (x + x-1)/2 =
J.L(x-1) for x:j:. a in this section.

Proposition 7.2.1. Define A: £2(Z+) _ L2(lR, dmC; q2k s, q2k / sjq2)) by

A: e~ 1-+ SnC; q2k S, q2k /slq2),

then A is a unitary mapping intertwining 1Tk(YsA) with 2(M - J.L(S))/(q-1 - q),
where M is the multiplication map on L2(lR, dm(·; q2k s, q2k /slq2)).

Remark 7.2.2. Proposition 7.2.1 says that formally

00

vk(x) = L Sn(J.L(x); q2k S, q2k /slq2) e~
n=O

is an eigenvector of the bounded self-adjoint operator 7l"k(YsA) for the eigenvalue

X+X-1_S-S-1 J.L(x)-J.L(s)
.Ax = = 2 1 .q-1 _ q q- _ q

The spectrum of 7l"k (Ys A) is {.Ax I J.L(x) E supp(dm(-;q2ks, q2k /slq2))}.

Proof. We have

((q-1 _ q)7l"k(YsA) + s + S-l) en = )(1- q2n+2)(1_ q4k+2n) en+1

+ q2k+2n (s + s-l) en + )(1- q2n )(1 - q4k+2n-2) en-1,
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and comparing with the three-term recurrence relation for the orthonormal
AI-Salam and Chihara polynomials Sn(x) = Sn(x; a, blq), cf. Exercise 3.4,

2x Sn(x) = an+l Sn+l(X) + qn(a + b) Sn(x) + an Sn-l(X),

an = J(1 - abqn-l )(1- qn).
(7.2.1)

leads to the result, cf. proof of Theorem 3.1.2. 1!1
Next we consider the action of Ys A in the tensor product representation ·1rkl I8i

1rk2 acting in £2 (;z.+) I8i £2 (;z.+). This can be done using orthogonal polynomials
in two variables

y = J-l(w),

by
1': e~~ I8i e~~ f-+ s-; (x; q2kl W, s": / Wlq2) Sn2 (y; q2k2 s, q2k2 / slq2)

then T is a unitary mapping intertwining 1rk, I8i 1rk2(~(YsA)) with 2(Mx -

J-l(s))/(q-l - q), where Mx is multiplication by x in L2(dm(x, y)).

Remark 7.2.4. (i) Put, y = J-l(w),

R1,m(x, y) = SI(X; q2klw, q2kl /Wlq2) Sm(y; q2k2s, q2k2 /slq2)

then RI,m are orthonormal polynomials in two variables of degree I in x and
1+ min y; 11 Rl,m(X,y)Rr,s(x,y)dm(x,y) = b1rbms,

as a straightforward consequence of the orthogonality relations of the Al-Salarn
and Chihara polynomials .

. (ii) Proposition 7.2.3 states that formally the vector w(x; y) =

~ S ( ( ). 2k, 2kl/ I 2) S ( () 2k2 2k2/ I 2) kl,o, k2L...J nlJ-lx,q y,q yq n2J-ly;q s,q sq en,'<Yen2

00

= L Sn,(J-l(x);q2kly,q2kl/ylq2)e~~ I8ivk2(y)
n,=O

is an eigenvector of 1rk, I8i 1rk2(~(YsA)) for the eigenvalue Ax. This last ob-
servation is essentially the way to obtain Proposition 7.2.3, since ~(YsA) =
A218i YsA + YsA I8i 1 acts as a three-term recurrence operator in e~~ I8i vk2(y).

Proof. We use ~(YsA) = A218i YsA + YsA I8i 1 and Proposition 7.2.1 to define
for fixed y the map A: £2(;z.+) I8i £2 (;z.+) ~ £2(;z.+) by
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to obtain the recurrence in nl

A((q-1 - q)(1l"k1 01l"k2(~(YsA)) + s + S-l) e~~ 0 e~~ =
Sn2(y;q2k2s,q2k2/slq2)(q2nl ((s + S-1)q2k1 + Ayq2kl(q-1 - q)) e~~

+ )(1 - q2n1 +2)(1 - q4k1 +2n) e~: +1 + )(1 - q2n1 )(1 - q4k1 +2n,-1) e~l'_l)
Use the explicit expression for Ay as in Remark 7.2.2 and the three-term recur-
rence relation (7.2.1) to obtain the result. ~

By Lemma 7.1.2 the representation space £2(Z+) 0 £2(Z+) has another or-
thonormal basis. We now calculate the action of 1e~.

Proposition 7.2.5. Let k = k1 + k2 + j for j E Z+, and x = J-t(z) then

(1 e~)(x, y) = Sn(x; q2k S, q2k /slq2) (1e~)(x, y),

(1e~)(x,y) = Cpj(y;q2klz,q2kl/Z,q2k2s,q2k2/slq2),

C-1 = ~4kl,q4k2,q4kl+4k2+2j-2;q2)j'

Proof. By Proposition 7.2.3 1 intertwines s», 0 1l"k2(~(YsA)) with 2(Mx -

f-l(s))/(q-1_q), and by Lemmas 7.1.1 and 7.1.2 the action of 1l"k, 01l"k2(~(YsA))
on e~ is 1l"k(Y.A), so

and we obtain the three-term recurrence relation as in Proposition 7.2.1, but
with initial conditions 1e~1 = 0 and 1e~(x, y) some polynomial in two vari-
ables x and y. Hence, the first statement follows.

Now 1e~(x, y) is a polynomial in two variables, and since 1 is unitary we
have the orthogonality relations bnmbkl = (Ye~, 1e~) =

by our first observation. Since the orthogonality measure for the AI-Salam and
Chihara polynomials is unique (i.e. the corresponding moment problem is de-
termined), we find that for k = I the inner integral must give the orthogonality
measure dm( x; s" s , q2k / slq2) as measures on lR with respect to x. Take k i I,
then the inner integral as function of x gives zero when integrated against an
arbitrary polynomial. Since the support of the measure is compact, the poly-
nomials are dense in the corresponding L2-space and the inner integral is zero
for k t- I. Since 1e~110 e~;(x, y) is a polynomial of degree n1 + n2 in y, see
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Remark 7.2.4, the Clebsch-Gordan decomposition of Lemma 7.1.2 implies that
le~(x, y) is a polynomial of degree j in y, where k = k1 + k2 + j for j E Z+,
say le~(x,y) = Pj(Y). Let 1 = k1 + k2 + i for i E Z+, then we obtain the
orthogonality relations

We now assume for ease of presentation that dm(x, y) is absolutely con-
tinuous, the general case being proved similarly. This is the case if we take
q2k2 < lsi < «:": since k1,k2 > O. Put x = cosO, y = cost/!, and use Theorem
3.3.2 and (3.3.3), to find

for almost all O. The ±-signs mean that we take all possible combinations
in the infinite q-shifted factorials. Cancelling the (e±2i8; q2)oo on both sides
and comparing the result with Theorem 3.3.2 we see that Pj is a multiple of
pj(-;q2klei8,q2kle-i8,q2k2s,q2k2/slq2). The (real) constant in front follows up
to a sign by comparing the squared norms. To determine the sign we recall the
normalisation of Lemma 7.1.2,

o < (e~,e~1 ® eJ2) = (le~, l'e~1 ® eJ2) =

C JJ Pj (y; s": z, s": / z, q2k2 s, q2k2 / slq2)5j (y; q2k2 s, q2k2 / slq2) dm(x, V)·

.The Askey-Wilson polynomials are orthogonal with respect to the integration
over y, and the Al-Salam and Chihara polynomial has positive leading coef-
ficient, so the inner integral is positive and the remaining measure over x is
positive as well. Hence the double integral is positive and we conclude that
C > O. 1!1
Remark 7.2.6. (i) The proof shows that the polynomials, x = j.l(z),

Pl,m(X, y) =
51(x; s": +2k2+2m s, s": +2k2+2m / slq2) Pm (y;s": Z, q2k1 / z , q2k2 S, q2k2 / S Iq2),

of degree m in y and 1 + m in x are orthogonal with respect-to the measure
dm(x, V);

JJ Pl,m(X, y)Pr,.(x, y) dm(x, y) = 81r8m.(q2,q4kl, q4k2, q4kIHk2+2m-2; q2)m.
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(ii) Ye~ can also be calculated explicitly using the Clebsch-Gordan coefficients,
so, y = J-L(w),

Ye~(x, y) = L c~~:~~',~s-; (x; q2k1 W, t": /wlq2) Sn,(y; q2k, S, q2k, / slq2)
n, +n,=j

by Lemma 7.1.2 and Proposition 7.2.3. This can be evaluated directly by
using the 3!P2-series representation for the Al-Salam and Chihara polynomials
and the explicit expression for C~"~"~ derived in the proof of Lemma 7.1.2,

1, ~,

interchanging summations and using summation formulas of §3. The sum can
also be evaluated by viewing it as a convolution, and using suitable generating
functions for the Al-Salarn and Chihara and Askey-Wilson polynomials.

§7.3. Convolution theorem for Al-Salam and Chihara polynomials.
The convolution formula for the Al-Salarn and Chihara polynomials is obtained
by applying Y to Lemma 7.1.2 using the results of Propositions 7.2.3 and
7.2.5. The results holds as an identity in a weighted L2-space, but since it is a
polynomial identity it holds for all x, y.

Lemma 7.3.1. For x = J-L(z), Y = J-L(w), and k = k1 + k2 + j we have

L C~: :~;',~ s; (x; s": W, s": /wlq2) Sn,(y; q2k,s, q2k, / slq2) =
n,+n,=n+j

Sn (Xi q2k s, q2k / slq2)pj (y; q2k1 Z, q2k1 / Z, q2k, s, q2k, / slq2)
V(q2,q4k1,q4k',q4k1+4k,+2j 2;q2)j

We have not yet calculated the Clebsch-Gordan coefficients explicitly, but we
can now use Lemma 7.3.1 to determine C~l'~"~ by specialising to a generating. 1, ~,

function for the Clebsch-Gordan coefficients. The result is phrased in terms of
q-Hahn polynomials, which are defined as follows:

Lemma 7.3.2. With nl + n2 = n + j we get

with the constant C given by

Proof. Observe that Ck"k"k is independent of s, x = J-L(z) and y = J-L(w).nl,n~,n
Specialise W = s":» and Z = q2k1/w = q'2k,-2k, / s, then the Al-Salam and
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Chihara polynomials in the summand on the left hand side of Lemma 7.3.1 can
be evaluated explicitly, since the 3'P2-series reduces to 1. For this choice the
Askey- Wilson polynomial on the right hand side can also be evaluated explic-
itly, and we obtain the generating function for the Clebsch-Gordan coefficients

q-2jk2-2n(k,+k2+j)sn-j (q4k1, q4k2, q4k2s2; q2)j (q4k1+4k2+4j; q2)n

J( q2, s">. s">. q4k1 +4k2+2j - 2; q2)j (q2; q2)n

(

q-2n,q4k2+2j,q4kl+2j/s2 2 2)
X 3'P2 q4k,+4k2+4j, 0 ; q , q .

This determines C~1 'nk2,kn, but it takes some work to find the expression in terms
I) 2,

of q-Hahn polynomials. First, take n1 as the summation parameter in the sum
and multiply both sides by sn+j to find that both sides are polynomials of
degree n + j in s2. Apply

( Ib )
(

-n -1 1-n I )-n e ; q n n q, e q , q z
2'P1(q , b; e; q, z) = (c; q)n (bzlq) 3'P2 bq1-n [c, 0 ; q, q ,

which is just Exercise 3.6 with a = c: and the series in the terminating
2'P2-series inverted, and the q-binomial theorem to (q4k2s2; q2)j to findc q4k2+2j q4k1+2jls2 )n+j 4k2 2. 2 . " . 2 2 _

S (q S, q )) 3'P2 q4k1 +4k2+4j, 0 ' q ,q -

(q2-2n-4k2-2j;q2)n (q-2j. 2 2 2j+4k2) (q-2n,q4k1+2j. 2 2 2-4kl-2j)
(q2 2n 41<, 4"2 41;q2)n l'PO _, q , S q 2'P1 q2-2n-4k2-2j, q , sq.

The product of the q-hypergeometric series is written as a polynomial in s2 by

n+j "

L (q-21.q2) (. k) ( -2n 4kl+2j -2n, ")s2n, ,nj qn1 2) +4 2 If) q ,q ",q" . q2 q2-4k,-4k2-2)
(q2;q2)nl 3r2 q2-2n-4k2-2Jlq2+2J-2nl l , •

nl=O
This gives an explicit expression for the Clebsch-Gordan coefficients in terms of
a terminating 3'P2-series. To put it into the required form in terms of q-Hahn
polynomials, we need to apply some transformations for 3'P2-series, namely
[27, (III.13), (III.ll)]. Then the 3'P2-series can be rewritten as
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by [27, (III. 13)]. And by [27, (III. 11)] this 3)02-series can be written as

(q-2j-2n.q2) (q-2n, q-2j q4k,+4k2+2j-2 )
-:-:::=::c:---:-;-----';,' :........:---:n~, _ 2(1-2k 2 ) n , " • 2 2
(q2-2j-4k2-2n; q2)n, q 3)02 q4k" q-2n-2j ,q ,q ,

which is of the desired form. The constant follows by a straightforward calcu-
lation. ~

Now all ingredients for the general convolution theorem for the AI-Salam
and Chihara polynomials are known. Applying Lemma 7.3.2 in Lemma 7.3.1,
and rewriting the result proves the following theorem.

Theorem 7.3.3. With x = p,(z) and y = p,(w) and n,j E Z+J k1, k2 > 0 we
have

Remark 7.3.4. (i) Theorem 7.3.3 is a connection coefficient formula for or-
thogonal polynomials in two variables, orthogonal for the same measure, d.
Remarks 7.2.4(i) and 7.2.6(i). The connection coefficients being given by the
q-Hahn polynomials. Since the Clebsch-Gordan coefficients form a unitary ma-
trix we also have ek, 1:9ek2 = '\' Ck"k2,k ek and from this we can obtain the

l nl n2 i-Jn,k nl,n2,n n'
inverse connection coefficient problem. This also follows from the orthogonality
relations for the dual q-Hahn polynomials, cf. Exercise 7.4.

(ii) The case j = 0 gives a simple convolution property for the AI-Salam
and Chihara polynomials, since the q-Hahn and the Askey-Wilson polynomial
reduce to 1. The case n = 0 is also of interest, since then the q-Hahn polynomial
can be evaluated and the AI-Salam and Chihara polynomial on the right hand
side reduces to 1. In both cases we have a free parameter in the sum.

(iii) Formally, in the representation space £2(Z+) 1:9£2(Z+) we have two bases
of (generalised) eigenvectors for the action of YsA, namely vk(x) as in Remark
7.2.2 and w(x; y) as in Remark 7.2.4(ii). They are connected by Clebsch-
Gordan coefficients, which are now expressible as Askey-Wilson polynomials;

00 ((). 2k, "r! 2k2 2k2/ I 2)w(x' y) = "" Pj P, y ,q x, q x, q S, q S q vk,+k2+j (x).
, LJJ(q2 q4k, q4k2 q4k,+4k2+2j 2.q2).

J=O ,,' , J
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This follows immediately from Lemma 7.3.1 and the orthogonality relations
for the Clebsch-Gordan coefficients, cf. Remark 7.3.4(i), using the explicit
expressions for vk(x) and w(x; y) as in Remarks 7.2.2 and 7.2.4(ii).

The orthogonality relations for the Askey-Wilson polynomials then imply

. 1 J p(J.L(y);q2klx,q2kl/x,q2k~s,q2k~/slq2)
V k 1 +k ~+] (x) = - w ( x; y ) ~]~~==;:;===;:~::::;,===i=::;:;=::;:i;;=~==,=;#=~

hj J( q2, q4k1, q4k~, q4k1 +4k~+2j 2; q2)j

X dm(J.L(Y); q2k1x, q2k1 [z , q2k~s, s": Islq2),

h. _ 1- q2j-2+4kl+4k2 (q2,q4kl,q4k~,q2kl+2k~x±ls±1;q2)j
] - 1_ q4j-2+4kl+4k~ (q4kl+4k~; q2)j ,

where we have to take all possible choices of signs at the ±. This can also be
proved using Lemma 7.3.1.

Notes and references. The results are obtained in joint work with Van der
Jeugt [53] elaborating an idea of Granovskii and Zhedanov [28]. For the case
of the Lie algebra 5u(I, 1) see [53] and Van der Jeugt [100]. A similar approach
can be used in the case Uq(5u(2)) to lead to a formula for q-Krawtchouk polyno-
mials, see [53] for details. The method can also be extended to three-fold tensor
products, and then we use the q-Racah coefficients, see [53]. Some related re-
sults on overlap coefficients for quantum algebras can be found in Klimyk and
Kachurik [41].

Lemma 7.1.1 is well-known, see e.g. Kalnins, Manocha and Miller [35],
where also the explicit expression for the Clebsch-Gordan coefficients is derived.
Exercises 7.1-2 are also taken from [35]. The generating function for the Askey-
Wilson polynomials, see Remark 7.2.6(ii), is given by Ismail and Wilson [30].
Taking c = d = 0 also gives a generating function for the Al-Salarn and Chihara
polynomials, the other generating function needed is
,

. ee qn(n-l)/2t" (a~,a/~ )2: ( b') 8"(/J(:r:); a, b I q) = (-t/a; q)oe2'Pl b j q, -t/a .
"",0 q, a ,q n a

The case j ~ 0 of Theorem 7.3.3 W&Sthe reasen for AI=S&I&mand Chih&r&
[3J to introduce the AI·S&lo.m and Chih&ra polynomials u the most general
aet of orthogonal pclyncmlals still s&tisfying a convolution property, see also
AI·Salam [2, §8J. AI-Salam and Ohihare obtained the three-term recurrence
relation, and later Askey and Ismail [6J determined the orthogonality measure.

The complete representation theory of the quantised universal enveloping &1-
gebra Uq(.u(l, 1)) can be found in Burban and Klimyk [I4J. The representation
theory is similar to th&t of ,u(1, 1), but there is an extra series of representa-
tions, the so-called strange series. The dual Hopf l!<-algebr&Aq(SU(1,1)) is
defined in Theorem 2.6.1, and Masuda et al, [69J give explicit expressions for
the matrix elements in terms of 2'Pl-seriell of argument =q-l{3i, which are q-
analogues of the Jacobi functions. There are no corresponding orthogonality
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relations for the spherical elements, but the result has to be stated in terms of
transform pairs. The transform pair is a q-analogue of the Mehler-Fock trans-
form, see Vaksman and Korogodskif [95] and Kakehi, Masuda and Ueno [34],
Kakehi [33] for analytic proofs.

Exercises.
1. An explicit model for the positive discrete series "Irk can be obtained as

follows. First prove that the operators A = qkTq"

acting on the formal power series give a representation of Uq (s!(2, C)). Here
M is the multiplication operator, M f(z) = zf(z), Ta, a i- 0, is the shift
operator, Taf(z) = f(az), and Dq is the q-derivative, Dq/(z) = (J(z) -
f(qz))/((l- q)z), see Exercise 3.5. Then show that taking fn(z) = z" as an
orthogonal basis gives a unitary representation of Uq(su(l, 1)). Prove that

So the representation space is the space of formal power series L::=o en z"
such that L::=o Icnl2 II L. 112< 00, which are the functions analytic on the
disc with radius ql/2-k.

2. By Exercise 7.1 fn"n,(z, w) = zn,wn, forms an orthogonal basis for the
representation space of the tensor product of the model for "Irk, (>9 "Irk,. Show
that all eigenvectors of ~(A) in the kernel of ~(C) are given by

Pj,O(z,w) = zj(q2-k,-k,-3'w/z;q2)j,

And ~(A)PJ,o = qk1H2+JpJ,O. Now define inductively

q ~ q-l
Pt» "" (q-2kl=2k~-2J-fl _ q2kd.2k~HHfl)~(B)PJ,fl-l

and prove that the span of PJ,fll n e &:.+, realises an lrredueible unitary
repr(Jsentation of Uq(IU( 1, 1)) equivalent to the discrete series representation
11'kl+k2+J' Finish the proof of Lemma 7.1.1 by proving that Pfl,J, n, j e &:.+
form an orthogonal basis.

3, Derive the recurrence relation mentioned in Remark 7,1.3 and use Lemma
7,3,2 to obtain a contiguous relation for 31"2·series,

4. Use the unitarity of the Clebsch-Gcrdan coefficients, i.e.

fl+J
~ Ckl,k2,kl+Al~+JCkl,k2,kl+k2+i - 0"L..J fll,n+J-nl,fl nl,n+J-nl,n+j-i - IJ

n\=O
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with Lemma 7.3.2 to derive the orthogonality relations for the q-Hahn poly-
nomials Qn(q-X) = Qn(q-X;a,b,N;q); for n,m E {O,l, ... ,N},

~ Q ( -X)Q ( -X) (aq, q)x(bq; q)N-x ( )-X = 8 h
L.-J m q n q () () aq nm n'x=o q;q X q;q N-x

What are the dual orthogonality relations?

8. More examples
In the last section we shortly discuss some more known examples between
quantum groups and q-special functions, which are similarly using the duality
of Hopf *-algebras. We also consider the quantum algebra approach, by consid-
ering it for a special case. Finally, we give some open problems. The references
are given separately fur each subsection, and there more details can be found.

§8.1. The quantum group of plane motions and q-Bessel functions. In
Exercise 2.4 the Hopf --algebre Uq( m(2)) is obtained by a contraction procedure
from Uq(.su(2)). We use the same letters A, B, C and D for the generators,
then the comultiplication, counit, antipode and *-operator are unchanged, i.e.
given by (2.1.2) and Theorem 2.3.4(ii). The relations among the generators
change;

AB = qBA, AC = q-1CA, AD = 1 = DA, BC = CB.,
We transpose the contraction procedure to the dual Hopf --algebra by de-
manding that the duality on the level of generators, cf. (2.4.1), is not changed.
Denoting the resulting generators of the Hopf *-algebra Aq(M(2)) by the same
letters 0:, 13, , and 8, we see that the action of the counit, antipode and *-
operator remains, cf. (2.4.4) and Theorem 2.6.1(ii). The commutation relations
and the action of the comultiplication change;

0:13= qj3o:, 0:, = Q/O:, 138 = q8j3, ,8 = q8" 13, = ,13, 0:8= 80:= 1.

Then Aq(M(2)) is Hopf algebra. The comultiplication ~, the counit E and the
antipode 5 given on the generators by

~(o:) = 0:0 0:, ~(j3) = 0:0 13 + 1308,
~(J)=,00:+80" ~(8)=808,
E(O:) = E(8) = 1, E(j3) = E(,) = 0,

5(0:) = 8, 5(13) = _q-lj3, 5(,) = -Q/, 5(8) = 0:.
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( 2. 2) (2. 2)8 8 (pl+l(m+n)+p(m-n»/2 -m(m-I)/2 -n(n-I)/2 q , q rn q , q n
rm snq q q (1 _ q2)rn+n

As a consequence, we see that the extension of Aq(SU(2)) C (Uq(m(2)))",
the linear dual of Uq(m(2)), given by

CXJL L Clmnal (3m..t"
IEZ n,m=O

with Ctm n non-zero for only finitely many I, is still well-defined.
Let us now consider a special unitary representation tR of Uq(m(2)) acting

in £2(Z) equipped with an orthonormal basis {en}~=_CXJby

tR(A) en = qnen, tR(B) en = Ren+l,

tR(C) en = Ren-I, tR(D) en = q-nen,

where R > O. Note that the operators for A and D are unbounded. Denote
the corresponding matrix elements by t;;m'
Theorem 8.1.2. The matrix elements t~ are contained in the extension of
Aq(M(2)). For i ~ j

R(l - q2) .. ai+j(3i-j ( 0 )tR - ()'-J . 2 (1 2)R2 -2j(3
ij -. i+1/2 (.2.2) .. l'PI 2(i-i+I),q,- -q q Iq q ,q '-J q

and for i ::;j

R(I-q2) .. ~i+j"Vj-i ( 0 . IR J-'UC I 2 22-2,
tij = ( i+1/2) (2. 2) .. I'PI 2(j-i+1); q , -(1 - q )R q (3/;.

q q,qJ-' q

Proof. Use Lemma 8.1.1 and the definition of the representation tR to see that
both sides agree on AP B" C·. ~

The I 'PI-series in Theorem 8.1.2 are known as Hahn-Exton q-Bessel func-
tions, which are defined by

We can now use this interpretation of the Hahn-Exton q-Besse! function as
matrix elements of irreducible unitary representations of Uq (m(2)) to obtain
identities for these q-analogues of the Bessel function.
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Theorem 8.1.3. The Hahn-Exton q-Bessel function satisfies the Hensen-Lo-
mmel type orthogonality relations;

00L qi h+i(Z; q) Jj+i(Z; q) = Okjq-k,
i=-oo

I I -1/2 k' 77
Z < q "J E tU,

the Hankel type orthogonality relations;

00L q2p In(qk+P; q2) In(ql+p; q2) = Cq-2kOk/,

p=-oo
k,IE2:,

for some non-zero constant C, and the Graf type addition formula; for n,Y,x,z
E 2:, R> 0

00L q2k i,(RqY+x; q2)Jk_n (RqY; q2)Jx( qz+k-y; q2),

k=-oo

for TR2 q2x+2y+21 < l.

Remark 8.1.4. The Hahn-Exton q-Bessel function of negative integer order is
defined by using

,
00

( I-n '" Cm
q ;q)oo L.J (I-n. )

rn cr O q , q 00

00L cm(qI+m-n; q)oo
m=n

for n E 2:+. This leads to Ln(z;q) = (_1)nqn/2Jn(zqn/2;q), which is valid for
n E 2:.

Sketch of Proof. The first relation is a consequence of the unitarity of the
representation tR. The second relation uses the fact that there exists a Haar
functional on Aq(M(2)) as well as on its extension, which is only defined on
a suitable subspace, and for which Schur type orthogonality relations can be
derived. The Hankel type orthogonality relations then follow from the Schur
orthogonality relations. The constant C is involved, since there is no proper
normalisation for the Haar functional. However, C = 1, see Exercise 8.3.
Finally, the addition formula follows by representing the identity Ll(t~n)
LkEIZ t~k Q9 t~n in Aq(M(2)) Q9 Aq(M(2)) using a suitable representation of
Aq(M(2)) in £2(2:) given by (}En = en-I, ,en = qnen. 1!1
Remark 8.1.5. Since the contraction procedure is a limit, we can show that
some of the results of Theorem 8.1.3 can be obtained from a suitable limit
in the corresponding result for the little q-Jacobi polynomials, which occur as
matrix elements on the quantum 8U(2) group, cf. Corollary 5.3.1.
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Notes and references. The interpretation of the Hahn-Exton q-Bessel functions
on the quantum group of plane motions is due to Vaksman and Korogodskil
[94]. The presentation is taken from [46]. For the C'-algebra approach to the
quantum group of plane motions, see Woronowicz [105], and Pal [82] for the
interpretation of the Hahn-Exton q-Bessel functions in this context. The addi-
tion formula in Theorem 8.1.3 is also derived by Kalnins, Miller and Mukherjee
[39] using only the quantum algebra. See Koornwinder and Swarttouw [63] for
more information on the Hahn-Exton q-Bessel function, as well as for the limit
transition from the little q-J acobi polynomials. For the quantum group ofplane
motions we can also speak of the analogue of generalised matrix elements, see
[49], and we can then obtain the analogue of the addition formula (6.1.1) for this
situation. Here the Jackson q-Bessel functions [29] play the role of transition
coefficients.

§8.2. The quantum algebra approach. Let us now briefly consider the
quantum algebra approach. The quantum algebra approach is based on the ob-
servation that for X in the Lie algebra 9 the exponential mapping exp tX gives
a function on the corresponding group G. The representation theory of Uqg
is usually similar to the representation theory of g. Classically we can obtain
elements of the corresponding group G by exponentiating Lie algebra elements.
In the quantum algebra approach the action of eXPq(aIXI) ... eXPq(anXn) is
calculated in a representation of Uqg. Here eXPq can be one of the q-analogues
of the exponential function, see e.g. Corollary 3.2.2, ai are scalars and Xi are
generators of Uqg. For a suitable basis {fm} of the representation space we get

eXPq(aIXI) ... eXPq(anXn) L« = L Um,k(al"" ,an) fk'
k

The matrix coefficients Um,k(al,'" ,an) can be calculated in terms of special
functions in al,' .. ,an' Let us discuss shortly the example of Uq(m(2)). Let
tR be the representation of Uq(m(2)) as in the previous section. Using the
notation of §8.1 and Corollary 3.2.2 we get e.g.

(8.2.1) tR(eq(bB)Eq(cC)) em = L Um,k(b, c) es:
k=-oo

Then it is straightforward to calculate the matrix elements in terms of q-
hypergeometric series;

which are the Hahn-Exton q-Bessel functions. For k < m we apply Remark
8.1.5. Having this interpretation, a number of properties like orthogonality
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relations and addition formulas can be derived. Explicit models for the rep-
resentation space in terms of function spaces are usually needed. As a very
simple example we derive the Hansen-Lommel orthogonality relations of The-
orem 8.1.3. Observe that eq(z)Eq( -z) = 1, and hence

ei = tR(eq(bB)Eq(cC)eq( -cC)Eq( -bB)) ei
00 00

= L (L T1,p(-b,-c)Up,k(b,c))ek,
k=-oo p=-oo

where the matrix coefficient Tl,p(b, c) is defined by

00

tR(Eq(bB)eq(cC)) em = L Tm,k(b, c) e«.
k=-oo

Since interchanging Band C and A and D is a symmetry, say J, of Uq(m(2))
for which t~m(J(X)) = t?:"m(X) we find that Tm,k(b, c) = Uk,m(C, b). Hence,

00

L Up,l( -c, -b) Up,k(b, c) = bkl
p=-oo

and this is equivalent to the Hansen-Lornmel orthogonality relations of Theorem
8.1.3.

Notes and references. The method sketched here is motivated by the classical
relation between Lie algebras and special functions as described in Miller's book
[71]. The example is taken from Kalnins, Miller and Mukherjee [39]. There
exists a huge amount of papers on this approach, in particular Kalnins, Miller
ef al. [35], [37], [38], [39] and Floreanini and Vinet [23], [24] and references
given there, see also the references in [51].

Using the model of tR in the space of Laurent series with the actions of A, B
and C given by Tq, the shift operator defined in Exercise 7.1, RMz and RM1/z,

where MJ is multiplication by f. Then the basis em corresponds to z?", mE Z.
In this model (8.2.1) is the generating function for the Hahn-Exton q-Bessel
function, and a large number of results can already be obtained by working only
with the generating function, see Koornwinder and Swarttouw [63] and Koelink
[44] for more general generating functions leading to q-Bessel functions. The
quantum algebra becomes important when dealing with different models, and
in particular when using the tensor product of representations, see Kalnins,
Miller and Mukherjee [39] for a derivation of the addition formula of Theorem
8.1.3 by using the Clebsch-Gordan decomposition of tR ® tS.
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§8.3. Quantum spheres and spherical functions. In sections 4 and 5 we
discussed the analogue of functions on J{" SU(2)/H for J{, Hone-parameter
subgroups, which are precisely the elements b~o(T, oJ We can also consider
the elements b~o( T, u) as the analogues of the functions on the sphere S2 =
SU(2)/ H. These q-analogues of the sphere are parametrised by a and were
first introduced by Podles [83], see Dijkhuizen and Koornwinder [18], Noumi
and Mimachi [79].

This can be generalised to give q-analogues of U(n)/U(n -1), the sphere in
C". There is a quantised universal enveloping algebra Uq(g[(n, C)), which is in
duality as Hopf algebras with Aq(GL(n, C)). These Hopf algebras can be made
into Hopf *-algebras, and we obtain a Hopf *-algebra Aq(U(n)), cf. [25], [43],
[81]. The algebra structure of Aq(U(n)) is as follows. We have n2 generators
tij satisfying the relations

tijti/ = qti/tij, j < I;
tijtkj = qtkjtij, i < k;
tijtkl = tk/tij, i> k, j < I;

tijtk/ - tkltij = (q - q-l)tiltkj, i < k , j < I.

Then the tij generate a bi-algebra, which is an analogue of the semigroup of
n X n-matrices. In order to obtain a Hopf algebra we have to localise along
the quantum determinant, which is a central element, see [25], [43], [81] for
detailed relations. The important thing to notice is that we have a surjective
(Hopf *-)algebra homomorphism 11': Aq(U(n)) --+ Aq(U(n - 1)), which is the
identity on tij, 1 ~ i,j < nand lr(tni) = 8ni = lr(tin). On the dual level we
have a natural inbedding

Uq(g[(n - 1, C)) EB Uq(g[(I, C)) '-+ Uq(g[(n, C)),

and we can talk of Uq(g[(n-l, C))EBUq(g[(I, C))-invariant vectors in irreducible
representations of Uq (g[(n, C)). The space of such invariant vectors is at most
one-dimensional, and the corresponding representations can be labeled by two
integers I and m. Let tP/,m be the matrix element with respect to the invariant
vector of the dual algebra Aq(U(n)), then this means precisely

So we can view tPl m as an element of the deformed algebra of U(n - 1)-
biinvariant function's on U(n). Using the Schur orthogonality for the Haar
functional it is possible to derive a very explicit expression for the zonal spher-
ical elements tPl,m;

{

tl-m (n-2,I-m)(1 _ t c: . q2)
«t, _ nn pm nn nn' ,
<plm -, (n-2,m-I)(1 _ t t* . q2)(t* )m-lPI nn nn' nn ,

if 12: m,

ifm2:/,
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where pfn-2,m-') are little q-Jacobi polynomials as in §5, see Noumi, Yamada
and Mimachi [81]. For n = 2 this corresponds to Corollary 5.3.1.

Floris [25] obtains an abstract addition formula, i.e. in non-commuting
variables, for the little q-J acobi polynomials pfn-2,m-')(-; q2) by calculating
!l( 'l/;/,m) explicitly modulo Uq(g[( n - 2, C))-invariance in each factor of the ten-
sor product. Using the representation theory of the Hopf *-algebra Aq(U(n)),
cf. [43], Floris and Koelink [26] derive an explicit addition and product formula
for the little q-Jacobi polynomials pf<>,m-I)(-; q2), which contains as a special
case the addition formula for the little q-Legendre polynomial pfO,O)c q2) dis-
cussed in §6.

From the n = 2 case discussed in §§4-5, we may suspect that we can also have
(7, a)-spherical elements in this case. This is indeed the case, as shown by Di-
jkhuizen and Noumi [19]; they obtain an interpretation of p}::-2,O)C; qT, q"lq2)
as spherical functions on the quantum analogue of U(n)jU(n - 1). See also
Dijkhuizen and Koornwinder [18] for a general discussion of quantum homoge-
neous spaces.

Instead of considering an analogue of the sphere in en, Sugitani [90] consid-
ers the analogue of the sphere SO( n) j SO( n - 1) in ~n. The zonal spherical
functions can be expressed using big q-J acobi polynomials and continuous q-
ultraspherical polynomials, i.e. p~a,a)(-; 1, llq) with the notation for the Askey-
Wilson polynomials in §5.

§8.4. Multi-variable orthogonal polynomials as spherical functions.
The multi-variable orthogonal polynomials of importance are the Macdonald
polynomials [65], [67], which are associated with root systems. The polynomials
depend on n variables and are invariant under the Weyl group, see Macdonald
[66, Ch. VI] for the case of symmetric functions, i.e. for the root system of
type A. Koornwinder [59] has obtained multivariable analogues of the Askey-
Wilson polynomials by considering the non-reduced root system Ben' The
orthogonality measures for these polynomials are absolutely continuous. For
the special case n = 1 we obtain the Askey-Wilson polynomials, whereas the
case n = 1, i.e. for root system AI, of the Macdonald polynomials gives the
continuous q-ultraspherical polynomials.

Noumi [73] shows that for appropriate analogues of GL(n)jSO(n) and
GL(2n)jSp(n), where Sp(n) is the symplectic group, the Macdonald polynomi-
als for root system An-l and a specific choice of the free parameter t arise as the
zonal spherical functions. Noumi, Dijkhuizen and Sugitani [74] have announced
that they can parametrise the quantum homogeneous spaces continuously, sim-
ilarly as for the quantum U(n)jU(n - 1) space, and the corresponding zonal
spherical functions are expressible in terms of Koornwinder's [59] multivariable
Askey- Wilson polynomials. It is expected that multivariable orthogonal poly-
nomials with (partly) discrete orthogonality measure introduced by Stokman
[87], [88] can be obtained as limit cases from the general setting, see Stokman
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and Koornwinder [89] for the analytic proof of this limit transition.

§8.5. Some open problems.

Problem 8.5.1. The quantum 5U(2) group and the quantum SU(1, 1) group
have been treated in some detail. The other real form, the quantum 5 L(2, lR)
group, cf. Theorems 2.3.4 and 2.6.1, presents us with some difficulties, although
its representation theory is known, cf. Schmiidgen [85], [86]. Is it possible to
associate special functions of q-hypergeometric type for Iql = 1 to this quantum
group? In particular, is there a relation with sieved orthogonal polynomials?

Problem 8.5.2. Is it possible to give a proof of Theorem 4.2.4 along the lines of
the proof of Lemma 4.2.1? Or, can we derive a simple recurrence relation for
h(Pn (Pr,(J)) for some suitable choosen polynomial P«, and next identify it with
the corresponding Askey-Wilson integral?

Problem 8.5.3. Derive an addition formula for Askey-Wilson polynomials by
first deriving an abstract addition formula using the interpretation as zonal
spherical function on the quantum analogue of U(n)/U(n - 1), cf. §8.3. Then
use the representation theory of Aq(U(n)) to derive an addition formula in
commuting variables. Classically, i.e. for q = 1 and working in the group case,
an addition formula for the Jacobi polynomials J6.er,O) (notation of Exercise 6.1)
is derived in this way and from this an addition formula for general Jacobi
polynomials J6.er,(j) can be obtained by differentiation, cf. [55]. For which cases
of a and T can we obtain a general addition formula, i.e. an addition formula for
p~er,,I3)(-, s, tJq) for all a, (3? The Rahman-Verma [84J addition formula suggests
that it might be possible for continuous q-J acobi polynomials, i.e. s = t ="1.

Exercises.
1. Prove Lemma 8.1.1. Use Exercise 2.5, or apply the contraction procedure

to Theorem 2.5.'2.
2. Use the q-gamma function as in Exercise 3.9 to see that Jv((1 - q)z; q)

tends to Jv(2z) as q i 1. The Bessel function is defined by Jv(z) =
L~=o(-1)kzv+2kl(k!r(v + k + 1)).

3. Prove (W;q)ool<t'l(O;w;q,z) = (Z;q)ool<t'l(O;z;q,w) and use this symmetry
to derive the Hankel type orthogonality relations of Theorem 8.1.3 from the
Hansen-Lommel type orthogonality relations. Show that C = 1.

4. Define matrix coefficients by

00

tR(Eq(bB)Eq(cC)) em = L Um,k(b, c) ek
k=-oo

and
00

tR(eq(bB)eq(cC)) em = L Tm,k(b, c) e».
k=-oo
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Calculate the matrix coefficients explicitly, and derive the corresponding
Hansen-Lornmel (bi- )orthogonality relations. The q-Bessel functions are
known as Jackson's q- Bessel functions, see Ismail [29].
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