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ABSTRACT. We discuss the question of when a given diffeomorphism on
a bounded domain can be embedded in the flowof a smooth autonomous
system of ordinary differential equations. This question is related to
the existence of classical solutions of some nonlinear boundary value
problems. We treat also the special case of difleomorphisms defined on
bounded intervals or on circles.
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1. Introduction

The autonomous differential equation x' = f(x) associated with the complete
vector field f on the bounded domain n c an defines a flow ~ f satisfying

• ~f(t,·) : n ....---.n is a diffeomorphism for each t E JR,
• ~ f (0, .) is the identity map of n,
• ~f(t'~f(s'·))=~f(t+s,.).

In this article we deal with the inverse problem, closely related to Jabotinsky
and Abel equations (see [4]). More precisely, given a diffeomorphism 9 : n +-t n,
find a complete vector field f on n such that its time one map equals g, i.e.

~f(l,x) = g(x),
13

x E n.
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If such a field 1 exists the composition operation can be simplified. Indeed,
~(l,·) = g(.), implies gk(.) = ~(k,.) for every integer k. Here gk denotes the
k-fold composition of 9 with itself. Additionally, on 0 C R.2 the existence of
the field 1prevents the diffeomorphism from being chaotic.

With 0 c R" seen as a universe, the field 1as its governing laws, and ~(t,·)
as its evolution on the time, then the problem we pose admits the following
interpretation:

Given the state 01 evolution of the universe 0 at time t = 1,
is it possible to determine its governing laws?

Our goal is to establish the equivalence between the existence of the field 1
and the solvability of certain nonlinear boundary value problems. Additionally,
we obtain an expression to recover the field 1 from g, on a neighborhood of
an attracting equilibrium x. For one dimensional domains we obtain stronger
results: For 0 a bounded interval we show the uniqueness of the field f up to
a scalar multiple (compare [4] and [8]) and relate the existence of 1 to the one
dimensinal wave equation; for circles (compare [10]) we relate the existence and
uniqueness of 1 to the rotation number of the diffeomorphism g.

2. General results

First notice that the flow determines the field, i.e. the map 1 -+ ~ f is one to
one. Also, not every diffeomorphism stems from a flow. To see this, suppose ~
is the flow associated with the vector field I. Then z(t) := :x ~(t, x) is a solution
of the linear (nonautonomous) system of ordinary differential equations

Z'(t) = DI (~(t, x)) z(t), (1)

where DI(x) is the derivative of 1at x. From well known results on the Wron-
skian we have

det (a:~(t, x)) = exp (it tr (DI (~(~, x))) d(,) . (2)

So, diffeomorphisms with negative Jacobian determinant are not allowed.
The Henon map

Ha,b(X,y):=(a-by-x2,x), b¥=O,

is a diffeomorphism on R2 with Jacobian determinant b. It is interesting to
note that numerical evidence indicates that the Henon map possesses a strange
attractor when a = 1.4, and b = -0.3. See [5] and [9] for more details.

In this paper we assume 0 is a domain with smooth boundary 80. Denote
the unit outer normal at x E 80 by vex). As it is well known the flow ~f leaves
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the domain 0 invariant iff f (X) . 1/(X) = 0 for all x in 80. In this case the flow
lPf(t,x) is defined for all t E R and all x EO, i.e. the flow lPI is complete on
o (see [ID.

The next lemma shows that to solve lP(l, .) = g(.) is equivalent to solve the
equation lP(s,') = g(.) for one s i- o.
Lemma 1. Let A i- 0 be scalar. For a complete flow we have lPI (t, x) =
lPA/(t,x).

Proof. It suffices to remark that t -+ lP>./(t, x) satisfies the initial value prob-
lem z' = f (z), z (0) = x. ~

Lemma 2. If f is a vector field such that its flow lP == lPI is complete on 0
then for all t in R. and all x in 0 we have

8lP 8lP
8x (t,x) f(x) = fit (t,x) = f (lP (t,x)).

Proof. Differentiating the equation lP(t, lP(~, x)) = lP/(~ + t, x) with respect to
~ gives

8lP 8lP 8lP
8x (t,lP(~,x)) 8~ (~,x) = 8~ (~+t,x).

Now the result follows setting ~ = 0 in the last equation and taking into account
that ~~ (~,x) = f (lP (~,x)). ~

We are now in a position to relate the flow to classical solutions of a specific
boundary value problem.

Theorem 1. The flow lP == lPf satisfies lP(l, .) = g(.) and leaves 0 invariant
if and only if lP is a classical solution of the boundary value problem

~((~:(t'X))-I:(t,X))=O' xEO, tER,

lP(O,x)=x, lP(l,x)=g(x), xEO,
8lPfit (t, x) . 1/ (x) = 0, x E 80, t E R.

Proof. The only if part follows from Lemma 2. To show if part suppose that
lP(t, x) satisfies the above boundary value problem. We define

(
8lP ) -1 8lP

f(x):= ax (t,x) fit (t,x).

Then
alP acp
ax (t,x) f(x) -fit (t,x) = O.
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This equation has as its unique solution satisfying the initial condition cI>(O, x) =
x, the flow cI>f (see [6]). ~

Next, we develop an expression to recover the field f from the time one map
9 : n ;-------.t n of the flow cI>f, under the assumptions that f and 9 are sufficiently
regular, and x is an attracting fixed point of 9 with basin of attraction n. In
this case we can write

g(x) = x + A (x - x) + Rg (x), where lim Rg (x) = 0
x-x Ix - xl ' (3)

f(x) = B (x - x) + Rf (x), where IRf (x)1 ~ const Ix - xll+P
, (4)

with p > O. (1) implies the matrices A and B are related by eB = A. We shall
denote by r (respectively l) the maximum (respectively the minimum) of the
module of the eigenvalues of A. It should be clear that 0 < l ~ r < 1.

Theorem 2. Let 9 be the time one map of a flow cI>f and suppose the estimates
(3) and (4) hold. If rP+1 < l then there exists a 8 > 0 such that

f(x) = lim (Dgn)-1 (x)B(gn(x) -x), Ixl < 8. (5)
n-oo

Proof. There is no loss of generality assuming x = O. From Lemma 2 we have
the expression Dg(x)f(x) = f(g(x)). It follows b)\ iteration that

f(x) = (Dgn)-1 (x)f(gn(x)), nEZ,

In view of (4) it remains to show that limn_oo (D gn)-1 (x)Rf (gn(x)) = O.To
do so observe that IRf (gn(x))1 ~ const Ign(x)IP+1. Now let e > O. It is easily
seen that there exists a 8 > 0 such that for any Ixl < 8 we have Ign(x)1 ~
(r + 2c) Ixln , and consequently IRf (gn (x)) IP+l~ const (r + ct(P+l) [z].

We may choose a scalar product norm on an, such that the associated norm
of A-I satisfies IA-11 ~ t + ~. From this follows that I(D 9 (x) )-11, for Ixl < 8
and 8 small enough. Now

(Dgn)-1 (x) = (Dg(X))-I ... (Dg(gn-l(x)))-I. (6)

So for Ixl < 8 we have

I(Dgn)-I(x)Rf(9n(x))1 ~const (~+c)n (r+c)n(P+l)

and the claim follows.
Note that f can be extended to the whole domain n employing the expression

Dg(x)f(x) = f(g(x)). I!f
Let us suppose 9 : n ;-------.t n is a given diffeomorphism with an attracting

fixed point x satisfying rp+l < l, assume B is a matrix satisfying eB = Dg (x)
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and that (5) defines a smooth field. It is not at all clear whether 9 is the time
one map of ~ f. Nevertheless there are some useful facts.

First observe that a smooth field defined by (5) satisfies

I (g (x)) = lim (Dgn)-l (g (x)) B (gn+1(x) - x)
n--+oo

= lim (Dg (x)) (Dgn+l)-l (x) B (gn+1(x) - x),
n--+oo

thus

Dg (x) I(x) = I(g(x )). (7)

Next, we see that

8:' (D gn)-l (x) B (gn(x) - x) =
J

(Dgn(x))-l 8~' (Dgn(x))(Dgn(x))-l B (gn(x)-x)
J

+ (D gn (x))-1 B 8~ gn (x),
J

replacing x = x we obtain

!!- (D gn)-1 (x) B (gn(x) - x) Ix=x = (D gn (x))-1 B !!-gn (x)
&j 8~

= B (D gn (x))-1 ~8 gn (x) = B ej,
uXj

where {ej} is the standard basis of IRk. From this we have

DI (x) = B. (8)

Equation (7) has another important consequence: g(x(t)) and g-1 (x(t)) are
solutions of the differential equation x' = I(x) provided x(t) is solution as well.
Hence we obtain

g-1 (~f (t,g (x))) = 4>f(t, x), or 4>f (t,g (x)) = 9 (4)f (t,x)). (9)

The last equation means that G = {gn In E Z} is a group of symmetries for
the flow 4>1'

3. The one-dimensional case

We will now discuss the cases in which 0 is a semi bounded interval or a circle.
AB the methods are rather different, we treat them separately.
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3.1. Intervals

In this section we suppose that 9 :n..--n is a C2 diffeomorphismdefined on
a closed interval O.
Theorem 3. If x E 0 is an hyperbolic fixed point of g, then there exists at
most one smooth field f on 0 such that 9 is the time one map of <P t-

Proof. Using a similar reasoning as in Theorem 2 one concludes that f has to
be given by

. gn(x) -x _
j(x) = lim D () lnDg(x), XEO, (10)

n->oo gn X

provided D g(x) < 1. The case D g(x) > 1 yields essentially the same formula
for t,however the limit has to be taken with n :-+ -00.

Suppose now that 9 is a C3 diffeomorphism with a fixed point x, and 0 <
D g(x) < 1. Our goal is to show that expression (10) defines a smooth field f
with time one map g. Let us write for x E n and x > x

g(x) = x + (x - x) h(x),
Note that h is C3 and satisfies 0 < h(x) < 1.

From (6) we know that ID gn(x)1 :::;(r + e)" , provided Ix - xl < 8 and 8
sufficiently small. Set

gn(x) - X
en (x):= Dgn(x) ,

A standard calculation shows

r = Dg(x).

~ 1
en (x) := en (x)'

thus
IGn+1 (x) - c; (x)1 :::;const (r +et, for Ix - xl < 8.

In a similar way, we obtain

D2gn+1(x) = Dg (gn(x)) D2gn(x) + (Dgn(x))2 D2 9 (gn(x)).
So

ID2gn+1(x)1 :::; const (r +et, for Ix- xl < 8.
Some additional computations supply

I d~ (Gn+1 (x) - c; (x)) I :::;const (r +et-1
, for [z - xl < 8.

According to the above equations the sequence (Gn (x))n converges uniformly
on an interval (x, x + 8) to a smooth function 1defined on (x, x + 8). G1 (x)
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is singular at x = x (in fact every c; (x) is singular as well) hence 1(x) is
singular at x = x.

Now, from

Gn (x) - Gn+! (x) = Gn+1 (x) Gn (x) h (g~(x)) D h (gn(x)) D gn(x),

we conclude that for a sufficiently small 6 the sequence (Gn (x))n converges
uniformly on an interval [x, x + 6) to a smooth function f defined on [x, x + 6)
which vanishes at x = x. As in Theorem (2) f can be extended to the whole
domain n with Dg(x)f(x) = f(g(x)).

At this point we consider the smooth field on n defined by (10). As usual,
we suppose that 9 is a given diffeomorphism, and x is a fixed point of 9 with
D g(x) < 1. We claim that 9 is the time one map of the flow <PI' Recall that,
t ---. g-1 (<PI (t,x)) is a solution of Xl = f(x). Observe that any solution of
Xl = f(x) has rank n or is an equilibrium. Thus for Xo En given, there exists
to E R such that g-1 (<PI (to,xo)) = Xo, or g(xo) = <PI (to,xo). Note that
to i:- O. Now, let x E n. Obviously, there exists s E R such that <PI (s,xo) = x.
Then, in virtue of (9) and well known properties of the flows, we obtain

g(x) = 9 (<PI (s, xo)) = <PI (s,g (xo)) = <PI (s, <Pt (to, xo))
= <PI (to, <PI (s,xo)) = <PI (to,x).

The above equation and Lemma 1 imply that 9 is the time one map of the flow
<Pto I , so D (to J) (x) = In D 9 (x). On the other side, from (8) we know that
D f (x) = InD 9 (x) , hence to = 1 and 9 is the time one map of <PI' 1!1
Example 1.. Let a and b be positive.

g(x):= (a+b)x
ax+b

defines a diffeomorphism on [0,1]. See that Dg(O) = a~b and Dg(l) = atb'

An easy computation shows that

n (a+btx
9 (x) = ((a + bt -bn) x + bn '

Then
lim gn(x) -11nDg(1)

n-->oo Dgn(x)

= (x -l)ln (~b) lim ((1- (_b )n) x + (_b )n)
a + n-->oo a + b a. + b

= In (a: b) x (1 - x) .
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Hence, the field f(x) := In (a~b) X (1- x) defines the flow whose time one map
is g.

An interesting case occurs when the diffeomorphism 9 : [a, b] +----> [a, b] has
as only fixed points a and b and both are hyperbolic. We obtain a symmetry
properly that relates the iterations gn(x) and g-n(x). Indeed, for any x E (a, b)
we have:

lnDg(a) lim gn(x)-a=lnDg(b) lim g-n(x)-b if g'(a) < 1,
n-+oo Dgn(x) n-+oo Dg-n(x)

lnD 9 (a) lim g-n(x) - a = InD 9 (b) lim gn(x) - b if g'(a) > l.
n-+oo Dg-n(x) n-+oo Dgn(x)

We come back to the boundary value problems of Section 1and state a sharper
version of them. To do this, we denote with C2 ([0,1] x [a, b]) the set of
functions with partial derivatives up to order 2 and uniformly continuous on
(0,1) x (a, b).

Theorem 4. Let 9 : [a, b] +----> [a, b] be a diffeomorphism. <I> is a flow and
satisfies <1>(1,.) = g(.) iff <I> is a classical solution of the boundary value problem

{

M ff2 <I> _ ael> ff2eI>_ 0
ax {)t2 {)t {)tax - ,
<I>(O,x)=x, eI>(l,x)=g(x), for xE(a,b), (11)
eI>(t,a) = a, <I>(t,b) = b, for t E (0,1)

Proof. Suppose <I> E C2 ([0,1] x [a, b]) is a classical solution ofthe above bound-
ary value problem. As tx eI>(O,x) = 1 for all x E [a, b], we can choose an e > 0
such that txel>(t,x) = 1 for all t E (0, e). For t E (O,e) we have

a (8ff» 8<f> o2ff> off> 82ff>
_ at = ax 7Ji'r - 7ft 8tlfX - 0
at off> ( off> ) 2 -.

ax 8x

For fixed t E (0,e), let us define

(
ael»-lael>

f(x):= ax 7it(t, x), x E [a,b].

f E CI[a, b] and f(a) = f(b) = O.Let W == el>f be the only solution of the initial
value problem

aw OW
ax (t,x)f(x)-7jt(t,x) =0, w(O,x)=x.

Since W is solution of this initial value problem as well, w(t, x) = eI>(t,x) =
<l>f(t, x) for each (t, x) E [0,1] x [a,b]. This way we have shown that any solution
<I> of the boundary value problem (11) is a flow el>f (for some field f).
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On the other hand, if ~ is a flow stemming from a field! and ~(1,·) = g(.),
then we conclude from Theorem 1 that ~ is a classical solution of (11). 1!1

ABa consequence of our discussion we have the following result.

Theorem 5. If 9 : [a, b] .---t [a, b] is a C3 diffeomorphism with hyperbolic fixed
point at x = a and x = b and no additional fixed points, then there exists a
unique solution of the boundary value problem (11).

Before finishing this section, we point out that flows ~ f (t, x) are somehow
related with the wave equation and the Goursat problem. To see this, we
remark that anyone-dimensional invariant flow stemming from a smooth vector
field can be expressed in the form

~(t,:t) =0-1 (0 (x) +t),

where 0: 0 .---t IRis a diffeomorphism (see [2] and [4]). Now, define

T: 0 x 0 --+ R, T(X,y) = t iff ~(t,x) = y.

If x> y then T (x, y) can be interpret as the required time to go from x to y
following the solution ~ (t, x). Obviously the flow can be recovered from T. For
T(X, y) = o(y) - o(x), T is a smooth solution of the boundary value problem

{

a:yT(X,y) =0, for (x,y)EOXO, x<y<g(x),

T(X,X) =0, forxEO,
T (x,g (x)) = 1, for x E O.

Nevertheless, solutions of the above boundary value problem do not necessarily
determine a smooth vector field! such that ~f(1,·) = g(.). The reason is that
there are infinitely many smooth solutions 0 of the Jabotisnsky equation (see
[4]) (0 (x) + 1) = 0 (g(x)).

3.2. Circles

In this section our attention is focussed on the unite circle s». We partially
answer the question of when a given diffeomorphism 9 : Sl ~ Sl is the time
one map of a flow ~ f associated with an autonomous system

()'= !(()), (12)

We only consider diffeomorphisms having no fixed points. Such diffeomor-
phisms are orientation preserving. Our approach is constructive and does not
rest on the existence of solutions of the Abel equation. To solve a related
question, Zdun [10] establishes conditions to guarantee that 9 can be embed-
ded in a continuous flow; but such flows do not necessary stem from a smooth
autonomous system.
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We remark that if a field f on 81 has no equilibriums, then each solutions of
its associated autonomous system (12) is periodic. Moreover, any two solutions
have the same period which is called the period of the flow.

It is convenient to define the covering map
11" : R -t 81, 1I"(x) = exp (211"ix).

It can be shown that for every diffeomorphism 9 (having no fixed points), there
exists a unique smooth lift G : R -t R, satisfying (see [5]for more details)

11" (G(s)) = 9 (1I"(s)), 0 < G(O) < 1.

Let us suppose that 9 is the time one map of a flow ~ and that ~(1,·) = g(.).
We can assume that the period p of the flow is greater than 1.

Next, for a given diffeomorphism 9 we can define a strictly increasing se-
quence of positive integers (nk) with no = 1 and such that

Gnk(O) ~ k, Gj(O) < k, for j = nk-l,'" ,nk-1.

nk can be interpreted as the minimum number of iterations to complete k turns
around 81.

Lenuna 3. Let 9 be a diffeomorphism on 81 without fixed points and (nk)
be the sequence defined above. The sequence (:k) converges to the rotation
number of g. Moreover, if 9 is the time one map of a flow ~ with period p > 1,
i.e. g(.) = ~(1, '), then the period and the rotation number are reciprocal.

Proof. Let G the lift of 9 as defined previously. Since the rotation number
p of a diffeomorphism f with lift F is defined to be the fractional part of
limn_oo r~ (it can be shown that this limit does not depend upon the choice
of x nor upon the choice of the lift F, see [5]), we have p = limn_oo G:<O).

Next, notice that the sequence (nk) satisfies
c» (0) ~ k, and c: (0) < k for n < nk'

Ai> a' consequence we obtain

thus
nk nk nk -1 1

o» (0) < k < Gnk-1 (0) + k'
Letting k go to 00 we get the first claim.

Suppose now that 9 is the time one map of a flowwith period p. In this case

nk - 1 < kp < nk.

Hence the sequence converges toward p.
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In what follows we present some results related to flows on 81. Particularly
we shall show how to recover a flow from a certain function 7 : [0,1) -+ [O,p).
Again 7 (x) can be interpreted as the minimum time required by a moving point
obeying (12) to go from 1r (0) to 1r (x). Indeed, given a positively oriented flow
~ with period p, we can define a function 7 having such traits as follows

7(X)=t iff ~(t,1r(O))=1r(x), O~t<p. (13)

It is worth to note that:
PI. 7 is a smooth function satisfying 7 (0) = 0 and 7' (x) > 0 for all x E [0,1).
P2. The rule 7(X) = 7 (x - 1) +p smoothly extends 7 to the whole real axis

JR.
P3. Let 7 be defined on JR according to P2. Ifp > 1 and 9 (0) = ~ (1,0), then

7 (G (x)) = 7 (x) + 1 for all x E [0,1).
The problem we solve is how to obtain the flow from a function 7 satisfying PI
and P2. The case of a negatively oriented flow can be handled in an analogous
way.

Lemma 4. If T satisfies PI and P2, then

~(t,1r(X))=1r(7-1(7(X)+t)), O~t<p, O~x<1

defines by periodic extension a (positively oriented) flow on 81
•

Proof. It is checked by a straightforward computation.
We are now in position to tackle the main problem in this section: to deter-

mine the flow from a given diffeomorphism.

Lemma 5. If 9 is the time one map of a flow then any orbit of 9 is either
finite or dense in 81.

Proof. If there exists a 00 such that its orbit is finite it can be seen that the
orbit of any 0 is also finite and has the same cardinality. Suppose {gn(OoH
infinite for 00 E 81. This means the period p is an irrational number. Let 0
be another point in 81 and t, 0 < t < p such that ~ (t, (0) = O. Applying the
Jacobi Theorem we have that for a given 8 > 0 there exist k, n E N which
satisfy In - (t + kp)1 < 8. Therefore we can find n such that gn (00) is as close
to () as we wish. We discuss the case of finite orbits.

Theorem 6. If the rotation number of 9 is rational, 9 is the time one map of
a flow iff there exists a positive integer m such that grn = I, where I is the
identity map on 81.

Proof. Let us assume that the rotation number of 9 is rational. In this case
it is known that 9 has periodic points. So there are a 00 in 81 and a positive
integer m which satisfy grn(oo) = 00• If 9 is the time one map of a flow we have
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cP (m, Bo) = gm(Bo) = Bo, therefore m is a multiple of the flow period. It follows
that gm (B) = B for any B E 81.

Suppose now that gm = I, m the smallest positive integer which satisfies
such condition. Consider the orbit of 0 = 1T (0) : {o, 9 (0) , ... ,gm-l (o)} . We
haw a reordering k; of the set {O,1, ... ,m - I}, determined by the condition
o < 0.0 < al < ... < am-l < am = 1 if 1T (ai) = gk; (0) . On the other hand,
h = gk; is a diffeomorphism on 81 (with a lift H) which satisfies

h (1T (ai)) = 1T (aHl), i = 0, 1, ... ,m - 2, h (1T (am-I)) = 1T (0.0).

Let T : lao, al] +-+ [0,1] be a function satisfying

T' (x) > 0, T' (0) = H' (0) T' (ad.

Then the recursive rule

T(x)=T(H-l(x)) +1, ak<x::;ak+l, l::;k::;m-l

defines a function T : [0, 1] +-+ [0,m] which satisfies PI, P2, and P3 (changing
9 by h in P3). Then we have a flow cP, which stems from a field I, that
satisfies h (B) = cP (1, B). Now if 9 (0) = 1T (ai), it follows that 9 = hi and
cP (i, B) = 9 (B). The condition T' (0) = H' (0) T' (al) guarantees that the given
extension of T has a (continuous) derivatiw at the points t = ak·
Remark 1. From the proof of the last theorem it is clear that the flow cP is
determined by T. As there are infinitely many functions T which satisfy the
conditions required in the theorem, the flow is not uniquely determined by g.

Remark 2. If 9 is the time one map for a flow with no equilibrium points
then the iterations s" haw lifts Gn n E N, 0::; Gn (0) < 1, whose graphics are
equivalence classes in {(x, y) E R2 : x ::; y < x + I}. Moreover they are level
curves for

(x,y) ~ T(Y) - T(X).
Example 2. (See [5], p. 109). The diffeomorphism on 81 given by g(B) =
B + '1T + ~sin B is not the time one map of any flow (we wrote 1T to mean
1T( ~) = ei1l"). In fact, g2 (1T) = 1T and g2 (-) it is not the identity on 81

.

Theorem 7. Let (xn) be the sequence in [0,1) defined by 1T (xn) = o" (1T (0)).
If the rotation number p of 9 is an irrational number, then 9 is the time one
map of a positively oriented flow if and only il the orbit associated to 1T (0) is
dense in 81 and the function

1
Xn ~ Tn , Tn = n mod p, p = -,

p

can be extended to [0,1] as a smooth junction T which satisfies T'(O) = T '(1)
and T'(X) > 0 for any x in [0,1].
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Proof. If 9 is the time one map of a flow and its rotation number is irrational
then the function T defined in (13) gives the required extension.

Suppose now that the extension T does exist. In this case it is easily seen
that T satisfies the P2 condition. Let cf? be the flow determined by T according
to Lemma 4. It remains only to show that cf? (1, gn (1r (0))) = 9 (gn (1r (0))) for
anyn.

Now,

1 {
Tn+l, if Tn + 1< p,

Tn+ = Tn+! + p, if Tn + 1> p.

In the case Tn + 1 = Tn+l we have

cf? (1, gn1r (0)) = 1r (T-1 (Tn+l)) = 1r (xn+d = gn+! (1r (0)).

In the other case we get the same conclusion by using P2.
Example 3. For r > 1 let y = G; (x), G; : R ---t R the function implicitly
defined by

1 . 2 1 1 . 2ry + 21r S10 1rY = + r x + 21r S10 1rX.

Now we define the diffeomorphism gr : 81 ---t 81 by gr (1r (x)) = 1r (Gr (x)).
Note that G; is a lift of gr'

It can be seen that there exists an integer m such that g~ = 1 (1 the identity
on 81), if and only if r is rational. In fact Xm = G~ (XQ) is the only number
that satisfies:

1'2 1 1'2r Xm + 21r S10 1rXm = + r Xm-l + 21r S10 1rXm-l

(14)

1 . 2= m + r XQ+ 21r S10 1rXQ.

As g~ (1r (x)) = 1r (~(x)) we have g~ = 1. It means that G~ (x) = x + k, k
an integer number and therefore Xm = XQ+ k. From this and using (14) we get
r k = m. Conversely, if r is a rational number, r = If, we get G~ (xQ) = XQ+k,
for XQ E R, whence g~ = 1. So, in view of Theorem 6, if r is rational we can
conclude that gr is the time one map of a flow. Indeed it is easy to check that
for any r > 1, gr (0) = cf?r (1,0), where cf?r is the flow on 81 associated to the
field

t- (0) = 1 0 (- sinO, cosO).
r+cos
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On the other hand, in view of Theorem 7, we have that if r is an irrational
number greater than 1 the orbits of 9r are dense sets in 81. Figure 1 shows the
graphs of the lifts Gr•m for r = ~ and m = 1, ... ,9.

4
t

3

2

2 3

FIGURE1. Gr,m for r = ~.

1.5

0.5

FIGURE2. Xn ---. Tn, Tn = n mod~, n = 0, ... ,300
associated to 9r for r = ~.
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Finally, in Figure 2 we present the graph of the function Xn -> Tn' Tn = n
mod ~, n = 0,... ,300 associated to 9r for r = ~. Note that this function
admits an extension as the one described in Theorem 7.
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