Two new conjectures concerning positive Jacobi polynomials sums

DIMITAR K. DIMITROV* & CLINTON A. MERLO† Universidade Estadual Paulista, Brasil

ABSTRACT. A refinement of a conjecture of Gasper concerning the values of (α, β) , $-1/2 < \beta < 0$, $-1 < \alpha + \beta < 0$, for which the inequalities

$$\sum_{k=0}^{n} P_{k}^{(\alpha,\beta)}(x) / P_{k}^{(\beta,\alpha)}(1) \ge 0, \quad -1 \le x \le 1, \quad n = 1, 2, \dots$$

hold, is stated. An algorithm for checking the new conjecture using the package *Mathematica* is provided. Numerical results in support of the conjecture are given and a possible approach to its proof is sketched.

Keywords and phrases. Jacobi polynomials, positive sums, Bessel functions, discriminant of a polynomial.

1991 Mathematics Subject Classification. Primary 33C45.

1. Introduction

The Jacobi polynomials are defined in terms of the hypergeometric function ${}_{2}F_{1}$ by

$$P_{n}^{(\alpha,\beta)}(x) = \frac{(\alpha+1)_{n}}{n!} {}_{2}F_{1}(-n, n+\alpha+\beta+1; \alpha+1; (1-x)/2),$$

^{*}Research supported by Brazilian Science Fundation CNPq under Grant 300645/95-3.

[†]Research supported by a fellowship of the Brazilian Science Fundation CAPES.

where $(a)_k = \Gamma(a+k)/\Gamma(a)$ is the Pochhamer symbol and

$$_{2}F_{1}(a,b;c;z) = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!}.$$

Various special cases of the inequalities

$$S_n^{(\alpha,\beta)}(x) := \sum_{k=0}^n P_k^{(\alpha,\beta)}(x) / P^{(\beta,\alpha)}(1) \ge 0, \ -1 \le x \le 1, \ n = 1, 2, \dots$$
 (1)

have been proved. Fejér [11, 12] was the first to establish inequalities of this form for $\alpha=1/2$, $\beta=-1/2$ and for $\alpha=\beta=0$. Fejér conjectured that (1) also hold for $\alpha=\beta=1/2$ and this was proved independently by Jackson [16] and Gronwall [15]. Feldheim [13] proved (1) for $\alpha=\beta\geq 0$. Some special cases of these inequalities were considered by Askey [1, 2] and Askey and Gasper [4] proved (1) for $\beta\geq 0$, $\alpha+\beta\geq -2$. The importance of the latter result is justified by the fact that de Branges [7] used (1) for $\beta=0$, $\alpha=2,4,6,\ldots$, in the final step of his proof of the celebrated Bieberbach conjecture. Gasper [14] proved inequalities (1) for $\beta\geq -1/2$, $\alpha+\beta\geq 0$.

Note that Bateman's integral formula (Bateman [6])

$$\frac{P_n^{(\alpha-\mu,\beta+\mu)}(x)}{P_n^{(\beta+\mu,\alpha-\mu)}(1)} = \frac{\Gamma(\beta+\mu+1)}{\Gamma(\beta+1)\Gamma(\mu)} \int_{-1}^x \frac{P_n^{(\alpha,\beta)}(t)}{P_n^{(\beta,\alpha)}(1)} \frac{(1+t)^{\beta}}{(1+x)^{\beta+\mu}} (x-t)^{\mu-1} dt,$$
(2)

which holds for $\mu > 0$, and $\beta > -1$, implies the following result.

Lemma 1. If the inequalities (1) holds for (α, β) , they hold for $(\alpha - \mu, \beta + \mu)$, $\mu > 0$ as well. Hence, if (1) fail for some (α, β) they fail for $(\alpha + \mu, \beta - \mu)$, $\mu > 0$.

On the other hand $S_1^{(\alpha,\beta)}(x) = (\alpha + \beta + 2)(1+x)/(2(\beta+1))$. Having in mind these observations, the above mentioned results of Askey and Gasper [4] and of Gasper [14] yield: Inequalities (1) hold for $\alpha \leq 0$, $\beta \geq \max\{0, -\alpha - 2\}$ and $\alpha \geq 0$, $\beta \geq \max\{-1/2, -\alpha\}$, and fail for $\beta < \max\{-1/2, -\alpha - 2\}$.

In 1993 Askey [3] drew attention to (1) for the rest of the (α, β) -plane, namely, for (α, β) in the parallelogram $D_1 = \{-1/2 \le \beta < 0, -2 \le \alpha + \beta < 0\}$. It was proved in [10] that (1) fail for x = 1 and for sufficiently large n, if $|\alpha - 3/2| - 1/2 \le \beta < 0$. The latter and Bateman's integral (2) disprove inequalities (1) for the left hand half of D_1 and n large enough. Thus the only region in the (α, β) -plane for which inequalities (1) is still to be proved or disproved is the parallelogram

$$D = \{(\alpha, \beta) : -1/2 < \beta < 0, \ -1 \le \alpha + \beta < 0\}.$$

On the other hand, (1) hold for the upper boundary $\{\beta = 0, -1 \le \alpha < 0\}$ and fail for the lower boundary $\{\beta = -1/2, -1/2 \le \alpha < 1/2\}$ of D. Hence, by Bateman's integral, for any $\theta \in (-1,0)$ there exists an $(\alpha',\beta') \in D$ with $\alpha' + \beta' = \theta$ such that (1) hols for $\{\alpha + \beta = \theta, \beta \ge \beta'\}$ and fail for $\{\alpha + \beta = \theta, \beta < \beta'\}$. The curve formed by the points (α',β') with this property will be denoted by γ . Also, denote by $J_{\alpha}(x)$ the Bessel function of the first kind with parameter α and let $j_{\alpha,2}$ be the second positive zero of $J_{\alpha}(x)$. The following conjecture is due to Gasper [14, p. 444].

Conjecture 1. The subregion Δ of D for which the inequalities (1) holds is given by

$$\Delta = \left\{ (\alpha, \beta) \in D : \beta \ge \beta(\alpha), \text{ where } \int_0^{j_{\alpha, 2}} t^{-\beta(\alpha)} J_{\alpha}(t) dt = 0 \right\}.$$
 (3)

It may be pointed out that Gaspers's conjecture is equivalent to the statement that

$$\gamma = \left\{ (\alpha, \beta(\alpha)) \in D : \int_0^{j_{\alpha,2}} t^{-\beta(\alpha)} J_{\alpha}(t) dt = 0 \right\}.$$

The conjecture is based on the well-known formula (see (1.8) in [3])

$$\lim_{n \to \infty} \left(\frac{\theta}{n}\right)^{\alpha - \beta + 1} \sum_{k=0}^{n} \frac{P_k^{(\alpha, \beta)} \left(\cos\left(\frac{\theta}{n}\right)\right)}{P_k^{(\beta, \alpha)} \left(1\right)}$$
$$= 2^{\alpha} \Gamma\left(\beta + 1\right) \int_0^{\theta} t^{-\beta} J_{\alpha}\left(t\right) dt, \quad \beta < \alpha + 1,$$

and on the following theorem.

Theorem 1. Let $-1 < \alpha < 1/2$ and $\beta > -1/2$. Then the inequality

$$\int_{0}^{\theta} t^{-\beta} J_{\alpha}\left(t\right) dt \ge 0$$

holds for any nonnegative θ if and only if

$$\int_{0}^{j_{\alpha,2}} t^{-\beta} J_{\alpha}\left(t\right) dt \ge 0.$$

The proof of this theorem for $\alpha \in (-1, -1/2)$ is due to Askey and Steinig [5] and the case $\alpha \in (-1/2, 1/2)$ was proved by Makai [17].

Very recently Brown, Koumandos and Wang [8, 9] verified Gasper's conjecture for the case when (α, β) lies on the lines $\alpha = \beta$ or $\alpha = -1/2$.

The objective of the present paper is to state a slight refinement of Conjecture 1 and to give numerical evidence of its truth.

2. The new conjecture (1) hand saddo add a O

For any positive integer n, set

$$\Delta_n = \left\{ (\alpha, \beta) \in D : S_n^{(\alpha, \beta)}(x) \ge 0 \text{ for } x \in [-1, 1] \right\}.$$

Then Gasper's conjecture can be formulated in the equivalent form

$$\bigcup_{n=1}^{\infty} \Delta_n = \Delta,$$
 and become such as $\Delta_n = \Delta$, and become such as $\Delta_n = \Delta$.

where Δ is defined by (3).

We state

Conjecture 2. For any positive integer $n, \Delta_{n+1} \subset \Delta_n$.

Denote by γ_n the boundary of Δ_n which passes through D:

$$\gamma_n = \left\{ (\alpha, \beta) \in D : S_n^{(\alpha, \beta)}(x) \ge 0 \text{ for all } x \in [-1, 1] \text{ and every } (\alpha, \beta) \right.$$
with $\alpha + \beta = \alpha_n + \beta_n$, $\beta \ge \beta_n$, and for some $x \in [-1, 1]$, $S_n^{(\alpha, \beta)}(x) < 0$ for (α, β) with $\alpha + \beta = \alpha_n + \beta_n$, $\beta < \beta_n$.

The curve γ_n is well defined because of Lemma 1.

An equivalent formulation of Conjecture 2 is that γ_{n+1} lies above γ_n for any positive integer n. The latter conjecture implies that of Gasper, because of (4) and Theorem 1.

In the next section we give explicit expressions for Δ_2 and Δ_3 or, equivalently, for γ_2 and γ_3 . In Section 3 an algorithm to trace the curves γ_n is developed. Tables for the curves γ_n for n=4 and 5 are given and the graphs of γ_n for n=2,3,4,5 are drawn. In Section 4 we discuss an idea of how Conjecture 2 might be proved.

3. The cases n=2 and n=3

In what follows we suppose that $(\alpha, \beta) \in D$. First we consider the case n = 2. Straightforward calculations show that

$$4(\beta + 1)(\beta + 2)S_2^{(\alpha,\beta)}(x) = a_2x^2 + 2a_1x + a_0,$$

where

$$\begin{aligned} a_2 &= (\alpha + \beta + 3) (\alpha + \beta + 4) \,, \\ a_1 &= 2 (\alpha + 2) (\alpha + \beta + 3) + (\alpha + \beta + 2) (\beta + 2) - (\alpha + \beta + 3) (\alpha + \beta + 4) \\ &= (\alpha + 1) (\alpha + \beta + 4) \,, \\ a_0 &= 2 (\alpha + \beta + 2) (\beta + 2) + 4 (\alpha + 1) (\alpha + 2) + (\alpha + \beta + 3) (\alpha + \beta + 4) \\ &- 4 (\alpha + 2) (\alpha + \beta + 3) = \alpha^2 + 3\beta^2 + 3\alpha + 7\beta + 4. \end{aligned}$$

Obviously $S_2^{(\alpha,\beta)}(x)$ is convex and its minimum value is attained at $x_{\min} = -a_1/a_2 = -(\alpha+1)/(\alpha+\beta+3)$. Observe that $-1 < x_{\min} < 0$. Hence, $S_2^{(\alpha,\beta)}(x) \ge 0$ for $x \in [-1,1]$ if and only if it is non-negative for any real x. Since its leading coefficient is positive, then $S_2^{(\alpha,\beta)}(x)$ is non-negative if and only if its discriminant

$$(\alpha + 1)^{2} (\alpha + \beta + 4)^{2} - (\alpha + \beta + 3) (\alpha + \beta + 4) (\alpha^{2} + 3\beta^{2} + 3\alpha + 7\beta + 4)$$

is non-positive. Thus,

$$\Delta_2 = \left\{ (\alpha, \beta) \in D : \beta \ge \frac{-3\alpha - 10 + \sqrt{9\alpha^2 + 36\alpha + 52}}{6} \right\}.$$

The case n=3 may be treated similarly because $S_n^{(\alpha,\beta)}(-1)=0$ for any odd n. Set u=(x+1)/2. Staightforward calculations show in fact that

$$\overline{S}_{3}^{(\alpha,\beta)}(u) = \frac{S_{3}^{(\alpha,\beta)}(x)}{u} = b_{2}u^{2} - 2b_{1}u + b_{0}$$

where

$$b_2 = (\alpha + \beta + 4)(\alpha + \beta + 5)(\alpha + \beta + 6)/(\beta + 1)(\beta + 2)(\beta + 3),$$

$$b_1 = (\alpha + \beta + 4)(\alpha + \beta + 6)/(\beta + 1)(\beta + 2),$$

$$b_0 = 2(\alpha + \beta + 4)/(\beta + 1),$$

and we have to characterize the values of (α,β) in D for which $\overline{S}_3^{(\alpha,\beta)}(u) \geq 0$ for each $u \in [0,1]$. Since $\overline{S}_3^{(\alpha,\beta)}(u)$ attains its minimum at $u_{\min} = b_1/b_2 = (\beta+3)/(\alpha+\beta+5)$ and $u_{\min} \in [0,1]$, then $\overline{S}_3^{(\alpha,\beta)}(u) \geq 0$ for $u \in [0,1]$ and those (α,β) for which the discriminant

$$\left(\frac{(\alpha+\beta+4)(\alpha+\beta+6)}{(\beta+1)(\beta+2)}\right)^2 - 2\frac{(\alpha+\beta+4)^2(\alpha+\beta+5)(\alpha+\beta+6)}{(\beta+1)^2(\beta+2)(\beta+3)}$$

of $\overline{S}_{3}^{(\alpha,\beta)}\left(u\right)$ is non-negative. Therefore

$$\Delta_3 = \left\{ (\alpha, \beta) \in D : \beta \geq \frac{-\alpha - 5 + \sqrt{\alpha^2 + 6\alpha + 17}}{2} \right\}$$

4. An algorithm to find Δ_n

The algorithm for tracing the curves γ_n is based on the following simple fact.

Lemma 2. If $(\alpha_n, \beta_n) \in \gamma_n$, then there exists $\xi \in (-1, 1)$ for which

$$S_n^{(\alpha_n,\beta_n)}(\xi) = \frac{d}{dx} S_n^{(\alpha_n,\beta_n)}(\xi) = 0.$$

Proof. Assume that for some (α_n, β_n) the polynomial $S_n^{(\alpha_n, \beta_n)}(x)$ is positive at the points of local extrema in (-1,1). Then a continuity argument implies that there exists a neighborhood U of (α_n, β_n) such that for every (α, β) in U and for every $x \in (-1,1)$ the polynomial $S_n^{(\alpha,\beta)}(x)$ is positive. The latter contradicts the definition of γ_n .

A well known necessary condition for a polynomial

$$p(x) = \sum_{\nu=0}^{n} a_{\nu} x^{n-\nu}$$

to have a double root is stated in the following lemma. We recall that the discriminant D(p) of p is

$$D(p) = a_0^{2n-2} \prod_{1 \le i < j \le n} (x_i - x_j)^2,$$

where x_1, \ldots, x_n are the roots (zeros) of p.

Lemma 3. The discriminant D(p) of the polynomial p can be represented as a $(2n-1) \times (2n-1)$ determinant in the form

$$\frac{a_0D(p)}{(-1)^{n-1}} = \begin{vmatrix} a_0 & a_1 & \cdots & a_{n-1} & a_n \\ na_0 & (n-1)a_1 & \cdots & a_{n-1} \\ & \ddots & \ddots & \ddots & \ddots \\ & & a_0 & a_1 & \cdots & a_{n-1} & a_n \\ & & & na_0 & (n-1)a_1 & \cdots & a_{n-1} \\ & & & & na_0 & (n-1)a_1 & \cdots & a_{n-1} \end{vmatrix}$$

Moreover, D(p) = 0 if and only if p(x) has at least one root of multiplicity at least two.

We refer to [18, Section 1.3.3] and the references therein for the proof of this lemma and for additional information about discriminants.

Lemmas 2 and 3 immidiately yield the following result.

Theorem 2. Let $S_n^{(\alpha,\beta)}(x) = \sum_{k=0}^n a_k (\alpha_n,\beta_n) x^{n-k}$. If $(\alpha_n,\beta_n) \in \gamma_n$, then $D(\alpha_n,\beta_n) := D\left(S_n^{(\alpha_n,\beta_n)}\right) = 0.$

The basic steps of the algorithm to construct an approximation to the curve γ_n are:

- 1. Choose $k \in \mathbb{N}$.
- 2. Divide the interval [-2,1/2] into k subintervals by the mesh points $\alpha_n^{(i)}=$ -2+2.5i/k, i=0,k.
- 3. For any fixed $\alpha_n^{(i)}$ find all the solutions $\beta_{n,1}^{(i)}, \ldots, \beta_{n,p}^{(i)} \in (-1/2,0)$ of the equation $D\left(\alpha_n^{(i)}, \beta\right) = 0$. 4. Find that $s, 1 \leq s \leq p$, for which

$$S_n^{\left(\alpha_n^{(i)},\beta_{n,s}^{(i)}\right)}(x)\geq 0$$
 for $x\in [-1,1]$

and

$$S_n^{\left(\alpha_n^{(i)},\beta_{n,s}^{(i)}\right)}(\xi) = \frac{d}{dr} S_n^{\left(\alpha_n^{(i)},\beta_{n,s}^{(i)}\right)}(\xi) = 0 \text{ for some } \xi \in (-1,1).$$

- 5. Choose $\beta_n^{(i)} = \beta_{n,s}^{(i)}$.
- 6. Approximate the data $(\alpha_n^{(i)}, \beta_n^{(i)})$ by a smooth curve.

Table 1 in the next page contains the results of the algorithm for n=4and n = 5, for k = 50. The values of $\beta_4^{(i)}$ and $\beta_5^{(i)}$ which correspond to $\alpha_n^{(i)} = \alpha^{(i)} = -2 + 0.05i, i = 0, \dots, 50, \text{ are:}$

The graphs of the approximations to the curves γ_n for n=2,3,4 and 5 are drawn in Figure 1 at the end of the paper.

5. An idea for proving Conjecture 2

The graphs of the curves $\gamma_2, \gamma_3, \gamma_4$ and γ_5 show that Conjecture 2 holds for n=2,3 and 4. It is clear that Conjecture 2 would be proved if one proves that $S_n^{(\alpha,\beta)}$ is nonnegative on [-1,-1] for any (α,β) for which $S_{n+1}^{(\alpha,\beta)}$ is nonnegative there. Another possible idea to prove Conjecture 2 is to show that for any $(\alpha_n, \beta_n) \in \gamma_n$ the inequality $S_{n+1}^{(\alpha_n, \beta_n)}(x) \geq 0$ fails for some $x \in [-1, 1]$. It turns out that for n=2,3 and 4 such x exists. Based on the graphs of $S_n^{(\alpha_n,\beta_n)}(x)$ and $S_{n+1}^{(\alpha_n,\beta_n)}(x)$ for various $(\alpha_n,\beta_n)\in\gamma_n$ we may state an additional conjecture which implies the truth of Conjecture 2, and thus, of Conjecture 1.

Conjecture 3. Let $(\alpha_n, \beta_n) \in \gamma_n$. Then there exists a unique $\xi_n \in (-1, 1)$ such that

$$S_n^{(\alpha_n,\beta_n)}(\xi_n) = \frac{d}{dx} S_n^{(\alpha_n,\beta_n)}(\xi_n) = 0.$$

i	$\alpha^{(i)}$	$eta_4^{(i)}$	$eta_5^{(i)}$	i	$\alpha^{(i)}$	$eta_4^{(i)}$	$eta_5^{(i)}$
0	-2.00	0	0	10.3	bjed ou	the following	:918 P starple is
1	-1.95	-0.0124665	-0.0100482	26	-0.70	-0.29347	-0.271235
2	-1.90	-0.0248627	-0.020186	27	-0.65	-0.303304	-0.281463
3	-1.85	-0.0371837	-0.0304035	28	-0.60	-0.313026	-0.291642
4	-1.80	-0.0494251	-0.0406914	29	-0.55	-0.322637	-0.30177
5	-1.75	-0.0615829	-0.051041	30	-0.50	-0.332137	-0.311845
6	-1.70	-0.0736534	-0.0614439	31	-0.45	-0.341526	-0.321856
7	-1.65	-0.0856334	-0.0718924	32	-0.40	-0.350807	-0.331828
8	-1.60	-0.0975197	-0.0823791	33	-0.35	-0.359997	-0.341732
9	-1.55	-0.10931	-0.0928969	34	-0.30	-0.36904	-0.351576
10	-1.50	-0.121001	-0.103439	35	-0.25	-0.377995	-0.361359
11	-1.45	-0.132592	-0.1114	36	-0.20	-0.386843	-0.371079
12	-1.40	-0.144079	-0.124573	37	-0.15	-0.395585	-0.380734
13	-1.35	-0.155462	-0.135135	38	-0.10	-0.404222	-0.390324
14	-1.30	-0.166739	-0.145734	39	-0.05	-0.412754	-0.399847
15	-1.25	-0.177909	-0.156312	40	0.00	-0.421183	-0.409303
16	-1.20	-0.18897	-0.166881	41	0.05	-0.429509	-0.418691
17	-1.15	-0.199922	-0.177438	42	0.10	-0.437734	-0.428009
18	-1.10	-0.210763	-0.110763	43	0.15	-0.445858	-0.437258
19	-1.05	-0.221493	-0.198469	44	0.20	-0.453883	-0.446436
20	-1.00	-0.232112	-0.208989	45	0.25	-0.46181	-0.455544
21	-0.95	-0.242619	-0.219454	46	0.30	-0.469638	-0.464579
22	-0.90	-0.253014	-0.229886	47	0.35	-0.477371	-0.473543
23	-0.85	-0.263296	-0.240284	48	0.40	-0.485008	-0.482435
24	-0.80	-0.273467	-0.250643	49	0.45	-0.49225	-0.491254
25	-0.75	-0.283524	-0.260961	50	0.50	-0.5	-0.5

Table 1. The curves γ_4 and γ_5

Moreover, there exist η_n' and η_n'' with $-1 < \xi_n < \eta_n' < \eta_n'' < 1$ such that $S_{n+1}^{(\alpha_n,\beta_n)}(x) < 0 \quad \text{for } x \in (\eta_n',\eta_n'').$

Finally, we recall that Askey [3] conjectured that $\beta(\alpha)$ defined by (3) is a convex function, which is equivalent to assert that the curve γ is convex. It seems that every γ_n is a convex curve. If so, obviously γ would also be convex.

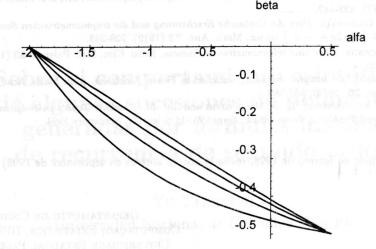


FIGURE 1. The curves γ_2 , γ_3 , γ_4 and γ_5 .

References

- [1] R. Askey, Jacobi polinomial sums, Tôhoku Math. J. 24 (1972), 109-119.
- [2] R. Askey, Orthogonal polynomials and special functions, Regional Conf. Lect Appl. Math. 48, SIAM, Philadelphia, 1975.
- [3] R. Askey, Problems which interest and/or annoy me, J. Comp. Appl. Math. 48 (1993), 3-15.
- [4] R. ASKEY AND G. GASPER, Positive Jacobi polynomial sums, II, Amer. J. Math. 98 (1976), 709-737.
- [5] R. Askey and Steinig, Some positive trigonometric sums, Trans. Amer. Math. Soc. 187 (1974), 295-307.
- [6] H. BATEMAN, The solution of linear differential equations by means of definite integrals, Trans. Camb. Phil. Soc. 21 (1909), 171-196.
- [7] L. DE BRANGES, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152.
- [8] G. BROWN, S. KOUMANDOS and K. Y. WANG, Positivity of more Jacobi polynomial sums, Math. Proc. Camb. Phil. Soc. 119 (1996), 681-694.
- [9] G. Brown, S. Koumandos and K. Y. Wang, Positivity of basic sums of ultraspherical polynomials, (submitted).
- [10] D. K. DIMITROV and G. M. PHILLIPS, A note on convergence of Newton interpolating polynomials, J. Comp. Appl. Math. 51 (1994), 127-130; Erratum 51 (1994), 411.
- [11] L. FEJER, Sur les functions bornée et integrables, C. R. Acad. Sci. Paris 131 (1900), 984-987.

- [12] L. Fejer, Sur le développement d'une function arbitraire suivant les functions de Laplace, C. R. Acad. Sci. Paris 146 (1908), 224-227.
- [13] E. FELDHEIM, On the positivity of certain sums of ultraspherical polynomials, J. Analyse Math. 11 (1963), 275-284.
- [14] G. GASPER, Positive sums of the classical orthogonal polynomials, SIAM J. Math. Anal. 8 (1977), 423-447.
- [15] T. H. GRONWALL, Über die Gibbssche Erscheinung und die trigonometrischen Summen $\sin x + \frac{1}{2}\sin 2x + \cdots + \frac{1}{n}\sin nx$, Math. Ann. **72** (1912), 228-243.
- [16] D. JACKSON, Über eine trigonometrische Summe, Rend. Circ. Mat. Palermo 32 (1911), 257-262.
- [17] E. Makai, An integral inequality satisfied by Bessel functions, Acta Math. Acad. Sci. Hungar. 25 (1974), 387-380.
- [18] G. V. MILOVANOVIĆ, D. S. MITRINOVIĆ and TH. M. RASSIAS, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore 1994.

(Recibido en febrero de 1998; revisado por los autores en septiembre de 1998)

DEPARTAMENTO DE CIÊNCIAS;
COMPUTAÇAO; ESTATÍSTICA, IBILCE
UNIVERSIDADE ESTADUAL PAULISTA
15054-000 SÃO JOSÉ DO RIO PRETO, SP, BRASIL
dimitrov@nimitz.dcce.ibilce.unesp.br
merlo@nimitz.dcce.ibilce.unesp.br