A remark on exponential dichotomies

RAÚL NAULIN*
Universidad de Oriente, Cumaná, Venezuela

ABSTRACT. A proof of the existence of an exponential dichotomy for the linear system \(x'(t) = A(t)x(t) \) is given, based on the admissibility of the pair \((B(\infty), B_A(\infty))\), where \(B(\infty)\) is the space of continuous functions on the semi-axis \(J = [0, \infty)\), values in \(\mathbb{C}^n\) and having a limit as \(t \to \infty\), and \(B_A(\infty)\) is the space of bounded functions \(f\) on \(J\) such that \(A^{-1}f \in B(\infty)\).

Keywords and phrases. Exponential dichotomies, admissibility.

1991 Mathematics Subject Classification. Primary 34A30.

1. Introduction

In this paper we consider the system of differential equations

\[
x'(t) = A(t)x(t) + f(t), \quad t \in J := [0, \infty),
\]

where \(A(t)\) is a continuous matrix function with complex entries. The function \(f(t)\) belongs to a functional space we will define in the course of the paper.

Definition 1. Let \(\mathcal{C}\) and \(\mathcal{D}\) be function spaces. We say that the pair \((\mathcal{C}, \mathcal{D})\) is admissible for equation (1) if for each \(f\) in the space \(\mathcal{D}\) there exists a solution of (1) belonging to \(\mathcal{C}\).

*Supported by Proyecto CI-5-025-00730/95
Admissible pairs are important in the theory of differential equations (see [1], [2]), as they define the dichotomic behavior of the linear system

\[x'(t) = A(t)x(t). \]

(2)

Definition 2. We say that equation (2) has an exponential dichotomy on \(J \), if there exist a fundamental matrix \(\Phi \) of (2), a projection matrix \(P \) (i.e., \(PP = P \)) and positive constants \(K, \alpha \) such that

\[|\Phi(t)P\Phi^{-1}(s)| \leq Ke^{\alpha(s-t)}, \quad t \geq s \geq 0, \]

\[|\Phi(t)(I-P)\Phi^{-1}(s)| \leq Ke^{\alpha(t-s)}, \quad s \geq t \geq 0. \]

(3)

In this paper, we are concerned with the following classical result [1]:

Theorem A. Equation (2) has an exponential dichotomy on \(J \) if for any bounded and continuous function \(f(t) \) on \(J \), equation (1) has at least one bounded solution.

The aim of this paper is the characterization of exponential dichotomy by means of the admissibility of a pair of spaces of functions with limit at infinity.

2. Preliminaries

We will make use of the following spaces

\[B \ := \ \{ f : J \to \mathbb{C}^n : f \text{ is bounded and continuous} \}, \]

\[B(\infty) \ := \ \{ f \in B : \lim_{t \to \infty} f(t) \text{ exists} \}. \]

We call \(B(\infty) \) the space of functions with limit at infinity. These spaces, endowed with the norm \(|f|_\infty = \sup\{|f(t)| : t \in J\} \), become Banach spaces. Furthermore, if \(F : J \to \mathbb{C}^{n \times n} \) and \(F(t) \) is invertible for each \(t \in J \), we define

\[B_F(\infty) := \{ f \in B : F^{-1}f \in B(\infty) \}. \]

To this space we give the norm \(|f|_F = |F^{-1}f|_\infty \). Provided that \(F \) is bounded on \(J \), also \(B_F(\infty) \) is a Banach space. If equation (2) has an exponential dichotomy, then for any \(f \in B \), equation (1) has the following bounded solution:

\[x_f(t) = \int_0^t \Phi(t)P\Phi(s)f(s)\, ds - \int_t^{\infty} \Phi(t)(I-P)\Phi^{-1}(s)f(s)\, ds. \]

Let us introduce the following Green function:

\[G(t, s) = \begin{cases} \Phi(t)P\Phi(s), & t \geq s, \\ -\Phi(t)(I-P)\Phi^{-1}(s), & s > t. \end{cases} \]

(4)
By means of this function we can write the solution x_I in the form:

$$x_I(t) = \int G(t, s)f(s)ds.$$ \hfill (5)

If $A(t)$ is a bounded function, we will use the following identity:

$$\Phi(t)P\Phi^{-1}(0) - I = \int G(t, s)A(s)ds.$$ \hfill (6)

3. The main result

Theorem 1. If the function $A(t)$ is bounded on J and the matrix $A(t)$ is invertible for each $t \in J$, then the following assertions are equivalent:

(A) The pair (B, B) is admissible.

(B) The pair $(B(\infty), B_A(\infty))$ is admissible.

(C) Equation (2) has an exponential dichotomy on J.

Proof.

(A) \Leftrightarrow (C). This follows from Theorem A. We observe that this equivalence holds without the requirements of invertibility of the matrices $A(t)$ or the boundedness of the function $A(t)$.

(A) \Rightarrow (B). Let $f \in B_A(\infty)$. Since $f \in B_A$, formula (5) makes sense. Therefore x_I defines a solution of (1) belonging to $B(\infty)$. We have to prove that $\lim_{t \to \infty} x_I$ exists. Using (6) we may write

$$x_I(t) = -A^{-1}(t)f(t) + \Phi(t)P\Phi^{-1}(0)A^{-1}(t)f(t) + I_1(t) + I_2(t),$$ \hfill (7)

where

$$I_1(t) := \int_0^t G(t, s)A(s)\left[A^{-1}(s)f(s) - A^{-1}(t)f(t)\right]ds,$$

$$I_2(t) := \int_t^\infty G(t, s)A(s)\left[A^{-1}(s)f(s) - A^{-1}(t)f(t)\right]ds.$$

Taking into account (3), we can estimate $I_i, \ i = 1, 2$. We have

$$|I_1(t)| \leq \int_0^t |\Phi(t)P\Phi^{-1}(s)||A(s)||A^{-1}(s)f(s) - A^{-1}(t)f(t)|ds$$

$$\leq \int_0^{t/2} \ldots + \int_{t/2}^t \ldots$$

$$\leq 2K|A|_\infty \alpha^{-1}e^{-\alpha t/2}|A^{-1}f|_\infty$$

$$+ \alpha^{-1}K \sup_{s \in [t/2, t]} |A^{-1}(s)f(s) - A^{-1}(t)f(t)|$$ \hfill (8)
and
\[
|I_2(t)| \leq |A|_\infty \int_t^\infty e^{\alpha(t-s)}|A^{-1}(s)f(s) - A^{-1}(t)f(t)|\,ds
\]
\[
\leq 2\alpha^{-1}|A|_\infty K \sup_{s \in [t, \infty)} |A^{-1}(s)f(s) - A^{-1}(t)f(t)|.
\]
(9)

Since \(f \in B_A(\infty) \), it is clear from (8) and (9) that \(\lim_{t \to \infty} I_1(t) = 0 \). From (7) we obtain that \(\lim_{t \to \infty} x_f(t) = -(A^{-1}f)(\infty) \). Therefore, the function pair \((B(\infty), B_A(\infty))\) is admissible.

(B) \(\Rightarrow \) (A). Let \(S \) be the subspace of \(C^n \) of values of initial conditions of solutions of equation (2) belonging to \(B(\infty) \), and let \(U \) be a supplementary subspace of \(S \). We have the direct sum \(C^n = S \oplus U \). Then it is easy to prove that equation (1) has, for any \(f \in B_A(\infty) \), a unique solution, which we denote by \(T(f) \), that belongs to \(B(\infty) \) and is such that the initial condition satisfies \(T(f)(0) \in U \). It is also easy to verify that this correspondence is linear. Thus, we define this way a linear map \(T : B_A(\infty) \to B(\infty) \) such that \(T(f) \) satisfies (1) and \(T(f)(0) \in U \). This map has a closed graph (the proof of this assertion is exactly the same as that of Proposition 3.4 in [1]). Therefore, it is bounded, i.e., there exists a constant \(M \), such that
\[
|T(f)| \leq M|f|_A.
\]
(10)

Let \(f \in B \) and for each \(n = 1, 2, \ldots \), let \(\theta_n(t) \) be a continuous function such that \(|\theta_n|_\infty = 1 \), \(\theta_n(t) = 1 \) if \(t \in [0, n] \) and \(\theta_n(t) = 0 \) if \(t \geq n + 1 \). Let \(\{f_n\} \) be the sequence in \(B_A \) defined by
\[
f_n(t) = \theta_n(t)f(t).
\]
(11)

For each function \(f_n \), we consider the solution \(x_n = T(f_n) \) of the equation
\[
x'(t) = A(t)x(t) + f_n(t).
\]
(12)

According to (10), for any index \(n \) we have
\[
|x_n|_\infty \leq M|f_n|_A \leq M|f|_A.
\]
(13)

From (12) and (13) we obtain that the sequences \(\{x_n\} \) and \(\{x'_n\} \) are bounded on any compact subinterval of \(J \). From the Ascoli-Arzelà theorem, there exists then a subsequence \(\{x_{n_1}^k\} \) of \(\{x_n\} \) uniformly convergent on \([0, 1]\) to a continuous function \(u_1 \) on the interval \([0, 1]\). By the same argument, there exists a subsequence \(\{x_{n_2}^k\} \) of \(\{x_{n_1}^k\} \) converging uniformly on the interval \([0, 2]\) to a continuous function \(u_2 \) such that \(u_1 = u_2 \) on \([0, 1]\). Carrying out this process iteratively, we obtain, for any natural number \(N \), a subsequence \(\{x_{n_N}^k\} \) of \(\{x_{n_{N-1}}^k\} \), converging uniformly to a continuous function \(u_N \) on the interval \([0, N]\), and such that \(u_N = u_{N-1} \) on \([0, N-1]\). Defining \(u(t) = u_N(t) \) if \(t \in [0, N] \), we obtain that the diagonal sequence \(\{x_{n_N}^k\} \) converges uniformly to \(u \) on each compact subinterval.
of \(J \). From (13), we obtain that \(u \in \mathcal{B} \). From (11) and (12) it follows that \(u \) satisfies \(u' = A(t)u + f \). This means that \(u \) is a solution of (1) in the space \(\mathcal{B} \).

References

DEPARTAMENTO DE MATEMÁTICAS
UNIVERSIDAD DE ORIENTE
CUMANÁ 6101 A-285, VENEZUELA