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ABSTRACT. Reduction relations are means to express congruences on rings. In
the special case of congruences induced by ideals in commutative polynomial
rings, the powerful tool of Grabner bases can be characterized by properties of
reduction relations associated with ideal bases. Hence, reduction rings can be
seen as rings with reduction relations associated to subsets of the ring such that
every finitely generated ideal has a finite Grabner basis. This paper gives an
axiomatic framework for studying reduction rings including non-commutative
rings and explores when and how the property of being a reduction ring is pre-
served by standard ring constructions such as quotients and sums of reduction
rings, as well as extensions to polynomial and monoid rings over reduction rings.
Moreover, it is outlined when such reduction rings are effective.
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1. Introduction

Reasoning and computing in finitely presented algebraic structures is wide-
spread in many fields of mathematics, physics and computer science. Many
of the resulting problems can be formulated in terms of congruences on the

lThis author was supported by the Deutsche Forschungsgemeinschaft (DFG).
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respective structures. Reduction in the sense of simplification combined with
appropriate completion methods is one general technique which is often suc-
cessfully applied in this context, e.g. to solve the word problem and hence to
compute effectively in the structure.

One fundamental application of this technique to polynomial rings was pro-
vided by B. Buchberger [2] in his uniform effective solution of the ideal mem-
bership problem establishing the theory of Grabner bases. Polynomials can
be used as rules by giving an adrnissible/ ordering on the terms and using the
largest monomial according to this ordering as a left hand side of a rule. "Re-
duction" as defined by Buchberger then can be compared to division of one
polynomial by a set of finitely many polynomials. A Grabner basis G is a set
of polynomials such that every polynomial in the polynomial ring has a unique
normal form with respect to reduction using the polynomials in G as rules (the
polynomials in the ideal generated by G reduce to zero using G). Buchberger
developed a terminating procedure to transform a finite generating set of a
polynomial ideal into a finite Grabner basis of the same ideal. Grabner bases
can be characterized in various other manners, e.g. by properties of their head
monomials or by special representations for the ideal elements with respect to
a Grabner basis (called standard representations). Since Grabner bases can
be applied to solve many problems related to ideals and varieties in polyno-
mial rings, generalizations to other structures followed (for an overview see
e.g. Becker and Weispfenning [I] or Madlener and Reinert [10]). In this con-
text, it is interesting to find sufficient conditions allowing to define a reduction
relation for a ring in such a way that every finitely generated ideal in the ring
has a finite Grabner basis with respect to that reduction relation. Such rings
will be called reduction rings. Often additional conditions can be given to
ensure effectivity for the ring operations, the reduction relation, and the com-
putation of the Grabner bases -the ring is then called an effective reduction
ring. Naturally the question arises as to when and how the property of being
a reduction ring is preserved under various ring constructions. This can be
studied from an existential as well as from a constructive point of view. One
main goal of studying abstract reduction rings is to provide universal methods
for constructing new reduction rings without having to generalize the whole
setting individually for each new structure: e.g. knowing that the integers Z
form a reduction ring and that the property lifts to polynomials in one variable,
we find that Z[XJ is again a reduction ring and we can immediately conclude
that also Z[X1, ... ,XnJ is a reduction ring. Similarly, as sums of reduction

2 A term ordering t is called admissible if for every term s, t, U, S t 1 holds, and s t t
implies sou t to u. An ordering fulfilling the latter condition is also said to be compatible
with the respective multiplication o.
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rings are again reduction rings, we can directly conclude that Zk[X1, ... ,Xn]

or even (Z[YI, ... ,ym])k[XI, ... ,Xn] are reduction rings. Moreover, since Z
is an effective reduction ring it can be shown that these new reduction rings
again are effective. Commutative effective reduction rings have been studied
by Buchberger [3], Madlener [8] and Stifter [19]).

On the other hand, many rings of interest are non-commutative, e.g. rings
of matrices, the ring of quaternions, Bezout rings and various monoid rings,
and since in many cases they can be regarded as reduction rings, they are
again candidates for applying ring constructions. More interesting examples of
non-commutative reduction rings have been studied by Pesch [17J.

A general framework for reduction rings and ring constructions including
the non-commutative case was presented at the Linz conference "33 years of
Grabner Bases" in Madlener and Reinert [13]. Here we want to give an ex-
tended version of this paper including more details and proofs. Since, in a
first step, we are not interested in effectivity, in Section 2 reduction rings are
characterized by specifying three simple and natural axioms for the reduction
relation and requiring the existence of finite Grabner bases. In the remaining
sections for different ring constructions we define natural reduction relations
fulfilling the axioms and we additionally determine when the property of being
a reduction ring is preserved. Moreover, in case the reduction ring is effective
the resulting constructions as quotients and sums again are effective reduction
rings. For the special case of monoid rings (including polynomial rings) we
provide characterizations which enable to test the property of being a Grabner
basis by checking certain test sets which are finite provided the effective re-
duction ring fulfills additional properties. Such test sets are essential and have
been used in critical-pair completion procedures as introduced by D. Knuth
and P. Bendix or B. Buchberger for computing equivalent confluent reduction
relations. However, while we determine when Grabner bases exist and outline
when they are additionally computable, we do not give procedures to compute
them since this would go beyond the scope of this paper.

Let us close this section by summarizing some important notations and de-
finitions of reduction relations which will be used throughout the paper (more
details can be found in the book of Book and Otto [4]). Let E be a set of
elements and --t a binary relation on E called reduction. For a, bEE we will
write a --t b in case (a, b) E --t. A pair (E, --t) will be called a reduction
system. Obviously the reflexive symmetric transitive closure H is an equiv-
alence relation on E. The word problem for (E, --t) is to decide for a, bEE,
whether aH b holds. An element a E E is said to be reducible (with respect
to --t, also denoted by a --t) if there exists an element bEE such that
a --t b. If there is no such b, a is called irreducible denoted by a -f+ . In
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case a ~ band b is irreducible, b is called a normal form of a. (£, ---+) is said
to be Noetherian (or terminating) in case there are no infinitely descending-
reduction chains ao ---+ al ---+ ... , with a; E £, i E N. It is called confluent, if
for all a, aI, a2 E E; a ~ al and a ~ a2 implies the existence of a3 E £ such
that al ~ a3 and a2 ~ a3. We can combine these two properties to give
sufficient conditions for the existence of unique normal forms: (£, ---+) is said
to be complete or convergent in case it is both, Noetherian and confluent. In
case (£, ---+) is Noetherian, confluence is equivalent to local confluence, i.e. for
all a, aI, a2 E £, a ---+ al and a ---+ a2 implies the existence of a3 E £ such that
al ~ a3 and a2 ~ a3: The latter property called Newman's Lemma is often
the basis of completion methods for specialized reduction systems as e.g. string
rewriting systems or polynomials as rules.

2. Reduction rings

Let R be a ring with unit I and a (not necessarily effective) reduction relation
==? B associated with subsets B ~ R, satisfying the following axioms:

(AI) ==?B = U,13EB ==?,13,
==? B is terminating for all finite subsets B ~ R.

(A2) a ==?,13 1 implies a -I EideaIR(,B).
(A3) a ==?Q 0 for all a E R" {O}.

Part one of Axiom (AI) states how reduction using sets is defined and is hence
applicable to arbitrary sets B. However, Axiom (AI) does not imply termi-
nation of reduction with respect to arbitrary sets. Consider for example the
ring R = Q[{Xi liE N}], i.e. the polynomial ring with infinitely many in-
determinates, and the reduction relation based on divisibility of head terms
with respect to the length-lexicographical ordering induced by Xl >- X2 >- ....
Then although reduction using a finite set of polynomials is terminating, this
is no longer true for infinite sets, as e.g. the set {Xi - Xi+l liE N} gives rise
to an infinite reduction sequence Xl ==?X1-X2 X2 ==?X2-X3 X3····

It is possible to give a more restricted form of Axiom (AI):

(AI') ==?B = U,13EB ==?,13,
==? B is terminating for all subsets B ~ R.

Then, of course, reduction is always terminating, and many additional restric-
tions which we must add in later parts of the paper are no longer necessary. In
this paper we prefer the more general formulation of the axiom.
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Axiom (A2) states how reduction steps are related to the ideal congruence,
namely, one reduction step using an element (3 E R is captured by the con-
gruence generated by ideaIR((3). We will later on see that this extends to the
reflexive transitive symmetric closure ~ B of any reduction relation ===}B for
arbitrary sets B <;;; R.

Notice that in case R is commutative, (A2) implies, = a - (3 . p for some
pER. In the non-commutative case, using a single element (3 for reduction
a - , E ideaIR((3) only implies, = a - 2:7=1 Pil . (3 . Pi2 for some an, Pi2 E R,
1 :::;i :::;k, involving (3 more than once with different multipliers. This provides
a large range of possibilities for defining reduction steps, e.g. by subtracting
one or more appropriate multiples of (3 from a. Notice further that Axiom (A2)
does not provide any information on how a, , E R with a - , E ideaIR((3) are
related with respect to the reduction relation ===}{13}'

We can define one-sided right or left reduction in rings by refining Axiom
(A2) as follows:

(A2r) a ===}13' implies a -, E ideal~((3).
(A21) a ===}13' implies a -, E idealf((3)·

In these special cases again we always get, = a- (3. p, respectively, = a- p- (3,
for some pER.

Remember that Axiom (A2) while not specific on the exact form of the re-
duction step ensures that reduction steps "stay" within the ideal congruence.
Let us now study the situation for arbitrary sets B <;;; R and let =i denote the
congruence generated by the ideal i = ideal(B). Then (A1)3 and (A2) imme-
diately imply ~B <;;; =i. Hence, in case the reduction relation is effective
one method for deciding the membership problem for a finitely generated ideal
i is to transform a finite generating set B into a finite set B' such that B' still
generates i and ===}B' is confluent on i. Notice that 0 has to be irreducible for
all ===}a, a E R4. Therefore, 0 can be chosen as the normal form of the ideal
elements. Hence the goal is to achieve a E i if and only if a ~ B' O. In partic-
ular, i is one equivalence class of ~B' . The different definitions of reduction
relations for rings existing in literature show that for deciding the membership
problem of an ideal i it is not necessary to enforce ~B' = =i. For example
the D-reduction notion given by Pan [16] does not have this property but still
is sufficient to decide =i-equivalence of two elements because a =i (3 if and

3We only need the first part of Axiom (AI), namely how o==;,B is defined, and hence we
do not have to restrict ourselves to finite sets.

40 cannot be reducible by itself since this would contradict the termination property in
(AI). Similarly, 0 o==;,{3 0 and 0 o==;,{3 'Y, both f3 and 'Y not equal 0, give rise to infinite
reduction sequences again contradicting (AI).
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only if a - fJ E i. It may even happen that D-reduction is not only confluent
on i but confluent everywhere and still a =i fJ does not imply that the normal
forms with respect to D-reduction are the same.

Example 2.1. Let us illustrate different ways of introducing reduction for the
ring of integers Z. For a, fJ, I E Z we define:

• a ===}b I if and only if a = K, . IfJl + I where 0 ~ I < IfJl and K, E Z,
• a ===}~0 if and only if a = K, • fJ, i.e. fJ is a proper divisor of a.

Then for example we have 5 ===}~1 but 5 =#- ~.
It is easy to show that both reductions satisfy (Al)-(A3). Moreover, the

elements in Z have unique normal forms. An element belongs to ideal(4) if and
only if it is reducible to zero using 4. For ===}l-reduction the normal forms are
unique representatives of the quotient Zjideal(4). This is no longer true for
===}2-reduction, e.g. 3 =ideal(4) 7 since 7 = 3 + 4, but both are ===}2-irreducible.

However, if we want unique normal forms for all elements in R so that each
congruence has one representative, we need special ideal bases.

Definition 2.2. A subset B of R is called a Grabner basis of the ideal
ideaIR(B), if ~B = =i and ===}B is convergent".

Rings where finitely generated ideals have finite Grabner bases are of par-
ticular interest.

Definition 2.3. A ring (R, ===})satisfying (Al)-(A3) is called a reduction ring
if every finitely generated ideal in R has a finite Grabner basis.

To simplify the notation, sometimes we will identify (R, ===})with R in case
===}is known or irrelevant. The notion of one-sided reduction rings is straight-
forward.

Effective or computable reduction rings can be defined similarly to Buch-
berger's commutative reduction rings (see Buchberger [3] or Stifter [19]), in
our case by demanding that the ring operations are computable, reduction is
effective, and Grabner bases can be computed. Procedures to compute Grabner
bases are normally completion procedures, based on effective tests (e.g. testing
special polynomials for reducibility to zero) to decide whether a finite set is a

5Notice that in the literature the definition of Grabner bases normally require that "~B

is confluent". This is due to the fact that in these cases ~B is terminating. In our context,
however, for arbitrary sets B <;;: R we have seen that ~ B need not be Noetherian. Hence
we have to incorporate this additional requirement into our definition, which is done by
demanding convergence. In rings where reduction using an arbitrary set of elements is always
Noetherian, the weaker demand for (local) confluence is of course sufficient.
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Grabner basis and to alter that set if not. Of course, other procedures are also
possible, e.g. using the Euclidean algorithm for computing Grabner bases in Z.

Notice that Definition 2.3 does not imply that Noetherian rings satisfying
Axioms (AI), (A2) and (A3) are reduction rings. This is due to the fact that
the property of being a reduction ring is, of course, strongly dependent on the
reduction relation chosen for the ring. For example given a Noetherian ring R
we can associate a (very simple) reduction relation to elements of R by defining
0: ===*!3if and only if 0: = {3. Additionally we define 0: ===*aO. Then the Axioms
(AI), (A2) and (A3) are fulfilled but, although every ideal in the Noetherian
ring R has a finite basis (in the sense of a generating set), infinite ideals will
not have finite Grabner bases".

Another interesting question concerns changes to ideal bases which preserve
the property of being a Grabner basis. Extensions of Grabner bases by ideal
elements are not critical.

Remark 2.4. If B is a finite Gri::ibner basis of i and 0: E i, then B' = B u {o} is
again a Grabner basis of i. First of all we find ~ B ~ ~ B' ~ =i = ~ B .
Moreover, since B' is again a finite set ===*B' is terminating. Finally, ===*B'

inherits its confluence from ===*B since {3 ===*a, implies {3 =i , and so {3 and
"t have the same normal form with respect to ===*B·

Hence, if B is a Gri::ibner basis of an ideal i and {3 E B is reducible by B" {{3}
to 0:, then B U {o:} is again a Grabner basis of i, In order to remove {3 from
B U {a} without losing the Grabner basis property it is important for ===*to
satisfy an additional axiom:

(A4) a ===*!3and {3 ===*, 6 imply a ===*, or a ===*0'

Lemma 2.5. Let (R, ===*) be a reduction ring satisfying (A4). Further let
B ~ R be a Grabner basis and B' ~ B such that for all (3 E B) (3 ~ B' 0 holds.
Then B' is a Grabner basis ofideaIR(B). In particular, for all a E R, a ~B 0
implies a~B' O.

Proof. In this proof let aJJ-B denote a normal form of a with respect to ===*B
and let IRR(===*B) denote the ===*B-irreducible elements in R. Notice that by
the Axioms (AI) and (A4) and our assumptions on B', all elements reducible
by B are also reducible by B': We show a more general claim by induction on
n: If a, {3 E R such that a ===*!3and {3 ~ B' 0, then a ===*B'. The base case
n = I is a direct consequence of (A4), as a ===*!3and {3===*{3'EB' 0 immediately

imply 0: ===*!3'EB'. In the induction step we find {3 ===*!3'EB' 6 ~B' 0 and
either 0: ===*!3'EB' or a ===*0 and our induction hypothesis yields 0: ===*B'·

6For any ideal i <;;: R, in this setting, the set i >, {O}is the only possible Grabner basis.
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Hence we can conclude IRR(=?B') ~ IRR(=?B)' We want to show that B'
is a Grabner basis of ideaIR(B): assuming a ~B aJJ.B but a ~B' aJJ.B4 aJJ.B,
we find a~BaJJ.B' and aJJ.B'E IRR(=?B') ~ IRR(=?B), contradicting the
confluence of =?B. Hence, aJJ.B'= aJJ.B, implying that =?B' is also confluent,
as aJJ.B is unique. Now it remains to show that ~B ~ ~BI holds. This
follows immediately, as for a ~B (3 we have aJJ.B'= aJJ.B= (3JJ.B=(3JJ.B'which
implies a ~ B' (3. ~

Remark 2.4 and Lemma 2.5 are closely related to interreduction and reduced
Grabner bases. We calla Grabner basis B ~ R reduced if no element (3 E B is
reducible by =?B,{j3}'

In the remaining sections of the paper we study the question of which ring
constructions, as e.g. extensions, products, sums or quotients, preserve the
property of being a reduction ring.

3. Quotients of reduction rings

Let (R, =?) be a reduction ring and i a finitely generated ideal in R with a
(finite) Grabner basis B. Then every element a E R has a unique normal form
aJJ.B with respect to =?B. We choose the set of =?wirreducible elements of
R as representatives for the elements in the quotient R/i. Addition is defined
by a + (3 := (a + (3)JJ.Band multiplication by a· (3 := (a· (3)JJ.B. Then a natural
reduction can be defined on the quotient R/i as follows:

Definition 3.1. Let a, (3" E R/i. We say that (3 reduces a to , in one step,
denoted by a --+13 " if there exists " E R such that a =}j3 " and (r')JJ.B= "t-

First we ensure that the Axioms (A1)-(A3) hold for reduction in R/i as
defined in Definition 3.1: --+s = UsES --+s is terminating for all finite S ~ R/i
since otherwise =? BuS would not be terminating in R, although BuS is
finite. Hence, (AI) is satisfied. If a --+13 , for some a, (3" E R/i, we know
a =?j3 " ~B "t i.e. a -, E idealR( {(3} U B), and hence a -, E ideaIR/i((3).
Therefore, (A2) is also fulfilled. Finally, Axiom (A3) holds since a =}n 0 for
all a E R" {O} implies a --+n O.

Moreover, in case (A4) holds in R this is also true for R/i: for a,(3",J E R/i
we have that a --+13 and (3 --+, J imply a =}j3 and (3 =?, J' ~B J, and
since a is =?wirreducible this implies a =?b,6} , so a --+b,8}'

Theorem 3.2. If (R, =?) is a reduction ring with (A4), then for every finitely
generated ideal i the quotient (R/i, --+) again is a reduction ring with (A4).
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Proof. Since reduction in R/i as defined above inherits (Al)-(A4) from R, it
remains to show that every finitely generated ideal j s;:; R/i has a finite Grabner
basis. Let jR = {a E R I a.ij.BE j} be an ideal in R corresponding to j. Since
jR is a finitely generated ideal in R, it has a finite Grabner basis, say GR.
Then G = {a.ij.BI a E GR} <, {O} is a finite Grabner basis of j: If a E j we
have a ~e 0 and ideaIR/i(G) = j, as every element which is reducible with an
element f3 E GR is also reducible with an element of G U B because (A4) holds.
Since GuB is also a Grabner basis of jR and ----+e s;:; ~euB' when restricted
to elements in R/i we have IRR( ----+e) = IRR(==>euB) and ----+e is confluent.
Furthermore, because =j = =jR when restricted to R/i, we get He = =j on
R/i, implying that R/i is a reduction ring. ~

In Example 2.1 we have seen how to associate the integers with a reduction
relation ----+1 and in fact (Z, ----+1) is a reduction ring. Theorem 3.2 then states
that for every m E Z the quotient Z/ideal(m) again is a reduction ring. In
particular reduction rings with zero divisors can be constructed in this way.

Now if (R, ==» is an effective reduction ring, then B can be computed and
addition and multiplication in R/i, as well as the reduction of Definition 3.1
are computable operations. Moreover, Theorem 3.2 can be generalized:

Corollary 3.3. If (R, ==» is an effective reduction ring satisfying (A4), then
for every finitely generated ideal i the quotient (R/i, ----+) again is an effective
reduction ring with (A4).

Proof. Given R, B and a finite generating set F for an ideal j in R/i we can
compute a Grabner basis for j using the method for computing Grabner bases
in R: compute a Grabner basis GR of the ideal generated by B U F in R. Then
the set G =_{normal.form(g'==>B) I 9 E GR}, where normal.form(g,==>B) is
the normal form of 9 with respect to B in R and so an element of R/i, is a
Grabner basis of j in R/i. ~

Theorem 3.2 and Corollary 3.3 extend to the case of one-sided reduction
rings with (A4) provided that the two-sided ideal has a finite right respectively
left Grabner basis.

4. Sums of reduction rings

Let (R1, ==>1), (R2, ==>2) be reduction rings. Then R = R1 X R2 = {(al,a2) I
0/1 E Rr, a2 E R2} is called the direct sum of RI and R2. Addition and multipli-
cation are defined componentwise, the unit is (11,12) where I, is the respective
unit in Ri. A natural reduction can be defined on R as follows:
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Definition 4.1. Let a = (aI, (2), (3 = ((31,(32), / = (,1,/2) E R. We say that
(3 reduces a to / in one step, denoted by a ----t{3 "t, if either (a1 ==>b1/1 and
a2 = /2) or (a1 = /1 and a2 ==>~2/2) or (a1 ==>b1/1 and a2 ==>~2/2)'

Again we have to prove that the Axioms (Al)-(A3) hold for reduction in
R: ----t B = U{3EB ----t (3 is terminating for finite B <:;; R since this property is
inherited from the termination of the respective reductions in Ri. Hence, (AI)
holds. (A2) is satisfied because a ----t{3 / implies a - / E ideaIR((3). (A3) is
true as a ----ta (01,02) holds for all a E R" {(01,02)}. Moreover, it is easy to
see that if condition (A4) holds for ==>1 and ==>2 then it is inherited by ----t.

Theorem 4.2. If (R1, ==>1 ), (R2, ==>2) are reduction rings, then (R = R1 x
R2, ----t) is again a reduction ring.

Proof. Since reduction in R as defined above inherits (Al)-(A3), respec-
tively (A4), from the reductions in the Ri, it remains to show that every
finitely generated ideal i <:;; R has a finite Grabner basis. To see this no-
tice that the restrictions ii = {a1 I (a1,a2) E i for some a2 E R2} and
i2 = {a2 I (a1,a2) E i for some a1 E Rt} are finitely generated ideals in
R1, respectively R2, and hence have finite Grabner bases B1, respectively B2·

We claim that B = {((31,02),(01,(32) 1(31 E B1,{32 E B2} is a finite Grabner
basis of i. Notice that i = ii X i2 and the elements of iI, i2 are "included"
in i via multiplication with (11,02), respectively (01,12). Then ideal(B) = i

and a E i implies a~B (01,02) due to the fact that for a = (a1,a2) we have
a1 E ii and a2 E i2 implying a1 ~11 01 and a2 ~12 O2. Similarly----tB
is confluent because ==>11 and ==>12 are confluent. Finally HB = =i
since (aI, (2) =i ((31,(32) implies a1 =i1 (31, respectively a2 =i2 (32, and hence
a1 ~11 (31, respectively a2 ~12 (32. 0"

Special regular rings as introduced by Weispfenning [20] provide examples
of suchsums of reduction rings.

Now if (R1, ==>1 ), (R2, ==>2) are effective reduction rings, then addition and
multiplication in R, as well as the reduction in Definition 4.1, are computable
operations. Moreover, Theorem 4.2 can be generalized:

Corollary 4.3. If (R1, ==>1), (R2, ==>2) are effective reduction rings, then
(R = R1 x R2, ----t) is again an effective reduction ring.

Proof. Given a finite generating set F = {(j;, gi) [I ~ i ~k, Ii E R1, gi E R2} a
Grabner basis of the ideal generated by F can be computed using the respective
methods for Grabner basis computation in R1 and R2. Compute a Grabner
basis B1 of the ideal generated by {h, ... ,fd in R1 and a Grabner basis B2 of
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the ideal generated by {g1, ... , gd in R2· Then B = {(,81, 02), (01, ,82) I ,81 E
B1,,82 E Bd is a finite Grabner basis of the ideal generated by F in R. ~

Due to the "simple" multiplication used when defining the structure, Theo-
rem 4.2 and Corollary 4.3 extend directly to one-sided reduction rings. More
complicated multiplications are possible and have to be treated individually.

5. Polynomial rings over reduction rings

For a reduction ring (R, ==» we adopt the usual notations in R[X], the polyno-
mial ring in one variable X, where multiplication is denoted by *. Notice that
for scalar multiplication by Q E R we assume Q . X = X . Q (see Pesch [17] for
other possibilities). We specify an ordering on the set of terms {Xi liE N} in
one variable by defining that if Xi divides xi, i.e. 0 :::;i :::;i, the Xi ~ x>.
Using this ordering, the head term HT(p), the head monomial HM(p), and
the head coefficient HC(p) of a polynomial p E R[X] are defined as usual, and
RED(p) = p - HM(p). We extend the function HT to sets of polynomials
F ~ R[X] by HT(F) = {HT(f) I f E F}.

Let' i ~ R[X] be a finitely generated ideal in R[X]. It is easy to see that
given a term t the set C(t, i) = {HC(f) I f E i, HT(f) = t} U {O} is an ideal
in R. In order to guarantee that these ideals are also finitely generated we will
assume that R is a Noetherian ring. Note that for any two terms t and s such
that t divides s we have C(t, i) ~ C(s, i).

We additionally define a (not necessarily Noetherian) partial ordering on R
by setting for 0,,8 E R, Q >R ,8 if and only if there exists a finite set B ~ R
such that o=b.B,8. Then we can define an ordering on R[X] as follows: For
i.9 E R[X], f > 9 if and only if either HT(f) >- HT(g) or (HT(f) = HT(g) and
HC(f) >R HC(g)) or (HM(f) = HM(g) and RED(f) > RED(g)). Notice that,
in general, this ordering is neither total nor Noetherian on R[X].

Definition 5.1. Let p,f be two non-zero polynomials -in R[X]. We say f
reduces p to q at a monomial Q . Xi in p in one step, denoted by p -+f q, if

(a) HT(f) divides Xi, i.e. HT(f)Xj = Xi for some term xs,
(b) Q ==>HC(f) ,8, with Q = ,8 + ~:=1 /i . HC(f) . Oi for some ,8, Ii, Oi E R,

1:::; i < k, and
(c) q=p-~:=1bi·f·Oi)*Xj.

Notice that if f reduces p to q at a monomial 0 . t the term t can still occur
in the resulting polynomial q. But when using a finite set of polynomials for
the reduction we know by (AI) that reducing 0: in R with respect to the finite
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set of head coefficients of the applicable polynomials must terminate and then
either the monomial containing the term t disappears or is irreducible. Hence,
reduction as defined in Definition 5.1 is Noetherian when using finite sets of
polynomials and Axiom (AI) holds. It is easy to see that (A2) and (A3) are
also true, and if the reduction ring satisfies (A4) this is inherited by R[X].

Theorem 5.2. If (R, ==}) is a Noetherian reduction ring, then (R[X]' ----+) is
a Noetherian reduction ring.

Proof. By Hilbert's basis theorem R[X] is Noetherian if R is Noetherian. We
only have to prove that every (finitely generated) ideal i -=I- {O} in R[X] has a
finite Grabner basis.

A finite basis G of i will be defined in stages according to the degree of the
terms occurring as head terms among the polynomials in i and then we will
show that G is in fact a Grabner basis.

Let Go be a finite Grabner basis of the ideal C(>., i) in R, which must, exist
since R is supposed to be Noetherian. Further, at stage i > 0, if for each xj
with j < iwe have cix», i) ~ C(Xi, i), include in G, for each a in GB(C(Xi, i))
(a finite Grabner basis of C(Xi, i)) a polynomial Po.from i such that HM(p) =
a . Xi. Notice that in this construction we use the axiom of choice, when
choosing Pet from the infinite set i, and so it is non-constructive. At each stage
only a finite number of polynomials can be added since the respective Grabner
bases GB(C(Xi, i)) are always finite, and at most one polynomial from i is
included for each element in GB(C(Xi, i)).

If a polynomial with head term Xi is included, then cix«. i) ~ C(Xi
, i) for

every j < i. So, if Xi E HT(i) is not included as a head term of a polynomial
in Gi, then there is a term xj occurring as a head term in some set Gj,

j < i, C(Xi, i) = cix«, i), and cix«, Gj) is a Grabner basis for the ideal
C(Xj,.i) = C(Xi, i) in R.

We elairn that the set G = Ui20 G, is a finite Grabner basis of i.

To show that G is finite it suffices to prove that the set HT(G) is finite,
since in every stage only finitely many polynomials, all having new head terms,
are added. Assuming that HT(G) is infinite, there is a sequence Xni, i E N
of different terms such that n; < ni+l. But then by construction there is an
ascending sequence of ideals in R, namely c(xno, i) ~ c(xn" i) ~ ... which
contradicts the fact that R is supposed to be Noetherian.

So after some step m no more polynomials p from i can be found such that
for HT(p) = Xi the set C(Xi, i) is different from all CpO, i), j < i.

Notice that for all p E i we have p ~G 0 and G generates i. This follows
immediately from the construction of G.
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To see that ---+e is confluent, let P be a polynomial which has two distinct
normal forms with respect to G, say PI and P2. Let t be the largest term on
which PI and P2 differ and let O!I and 0!2 be the respective coefficients of t in
PI and P2. Since PI - P2 E i, this polynomial reduces to 0 using G and without
loss of generality we can assume that these reductions always take place at
the respective head terms of the polynomials in the reduction sequence. Let
s E HT (G) be the head term of the polynomial in G which red uces HT (PI - P2),
i.e. s divides t, O!I - 0!2 E C(s, i), and hence O!I =i 0!2. Therefore, not both O!I

and 0!2 can be in normal form with respect to any Grabner basis of C(s, i) and
so with respect to the set of head coefficients of polynomials in G with head
term s. So both, O!I . t and 0!2 . t cannot be in normal form with respect to
G, which is a contradiction to the fact that PI and P2 are supposed to be in
normal form with respect to G.

Finally, we have to prove =i = He' Let P =i q both be in normal form
with respect to G. Then, as before, P - q ~e 0 implies P = q. Hence, we have
shown that G is in fact a finite Grabner basis of i. ~

Of course, this theorem can be applied to R[X] and a new variable X2 and
by iteration we immediately get the following:

Corollary 5.3. If (R, ==}) is a Noetherian reduction ring, then R[X I, ... , Xnl
is a Noetherian reduction ring with the respective lifted reduction.

Notice that other definitions of reduction in R[XI, ... ,Xn] are known in
the literature. These are usually based on divisibility of terms and admissible
term orderings on the set of terms to distinguish the head terms. The proof of
Theorem 5.2 can be generalized to these cases.

Now, if (R, ==}) is an effective reduction ring, then addition and multiplica-
tion in R[X] as well as reduction as defined in Definition 5.1 are computable
operations. Unlike in the previous sections, the proof of Theorem 5.2 does not
specify how Grabner bases for finitely generated ideals in R[X] can be con-"
structed using Grabner basis methods for R. So we cannot conclude that for
effective reduction rings the polynomial ring again will be effective. A more
suitable characterization of Grabner bases requiring R to fulfill additional con-
ditions will be provided for the more general case of monoid rings in the next
section. The basic idea of that characterization will be to define Grabner bases
in terms of completion and to localize the completion test to special sets of
polynomials. In order to provide effective completion procedures for comput-
ing Grabner bases, various characterizations of Grabner bases by finite test
sets of special polynomials in certain commutative reduction rings (e.g. the in-
tegers and Euclidean domains) can be found in the literature (see e.g. Kapur
and Narendran [6], Kandri-Rody and Kapur [5] and Maller [14]). A general
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approach to the characterization commutative reduction rings, allowing the
computation of Grabner bases via Buchberger's approach was presented by
Stifter [19].

We close this section by providing similar characterizations for polynomial
rings over non-commutative reduction rings and outlining the arising problems.
For simplicity we restrict ourselves to the case of R[X], but this is no general
restriction. Given a generating set F ~ R[X] the key idea is to distinguish
special elements of ideal (F) which have representations 2:7=1 gi * Ii * hi, gi, hi E
R[X], i, E F, such that the head terms HT(gi * I, * hi) are all the same within
the representation. Then, on one hand the respective HC(gi * Ii * hi) can
add up to zero, which means that the sum of the head coefficients is in an
appropriate module generated by the HC(Ii); m-polynomials" are related to
these situations. If the result is not zero the sum of the HC(gi * Ii * hi) can be
described in terms of a Grabner basis of the HC(fi); g-polynomials are related to
these situations. Zero divisors in the reduction ring occur as a special instance
of m-polynomials where F = {f} and a * I * /3, a, /3 E R are considered.

In case R is a commutative or one-sided reduction ring the first problem is
related to solving linear homogeneous equations in R and to the existence of
finite bases of the respective modules. In case we want effectiveness, we have
to require that these bases are computable. This becomes more complicated
for non-commutative two-sided reduction rings, as the equations are no longer
linear and we have to distinguish right and left multipliers simultaneously. In
some cases the problem for two-sided ideals can be translated into the one-
sided case and hence solved via one-sided reduction techniques (Kandri-Rody
and Weispfenning [7]).

The g-polynomials can be finitely described whenever finite Grabner bases
exist. Here, if we want effectiveness, we have to require that a Grabner basis
as well as representations for its elements in terms of the generating set are
computable.

Then using m- and g-polynomials, Grabner bases can be characterized sim-
ilarly to the characterizations in terms of syzygies (a direct generalization of
the approaches by Kapur and Narendran [6] respectively Moller [14]). In case
the respective terms HT(gi * Ii * hi) give rise only to finitely many m- and g-
polynomials, these situations can be localized to finitely many terms -to the
least common multiples of the HT(fi), i.e. the maximal term when Ii E R[X]-
and we can provide a completion procedure based on this characterization which
will indeed compute a finite Grabner basis if R is Noetherian. In principal ideal

7Explicit definitions of m- and g-polynomials will be provided in the next section.
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rings, where the function gcd (greatest common divisor) is defined, it is suffi-
cient to consider sets F of size 2.

We will give the details of this approach for right reduction rings and the
more general case of monoid rings in the next section.

6. Monoid rings over reduction rings

While polynomial rings over Noetherian reduction rings are again reduction
rings, this cannot be achieved for the more general case of monoid rings. Al-
ready "non-commutative polynomial rings" over fields as presented by Mora
[15], which are in fact free monoid rings, give us negative results concerning the
existence of finite Grabner bases for finitely generated two-sided ideals due to
the fact that they are closely related to the word problem for monoids (Kandri-
Rody and Weispfenning [7], Reinert [18] and Madlener and Reinert [11]). How-
ever, when restricting the focus to one-sided ideals in this special setting, the
existence of finite one-sided Grabner bases can be shown (Mora [15]).

Hence, we will restrict our attention to monoid rings over a right reduction
ring (R, ==}) satisfying (A4) and provide a characterization of right Grabner
bases for finitely generated right ideals in this setting -the case of left ideals
in monoid rings over left reduction rings with (A4) being similar.

Given a cancellative" monoid M with multiplication 0, we call R[M] the
monoid ring over R with elements presented as "polynomials" j = 2.:tEM at . t
where only finitely many coefficients are non-zero. The elements at' t are called
monomials, consisting of a coefficient at E R and a term t EM. Addition and
multiplication for two polynomials I = 2.:tEM at . t and h = 2.:tEM f3t . t is
defined as j + h == 2.:tEM(at + f3t) . t and I * h = 2.:tEM It . t with It =
2.:xoy=t ax . f3y. Assuming a total well-founded ordering >- on M, the usual
notions as HT(p), HC(p), and HM(p) are defined for p E R[M] ,,{O}. For a
subset F of R[M] we call the set idealr(F) = {2.:~=1Ii * (ai . Wi) In EN, ai E
R, Ii E F, Wi EM} the right ideal generated by F in R[M].

As before, we define a partial ordering on R by setting for a, f3 E R, a >R f3
if and only if there exists a finite set B s;:: R such that a =bB f3. This ordering
can be extended to an ordering on R[M] as follows. For j, 9 E R[M], I > 9 if
and only if either HT(f) >- HT(g) or (HT(f) = HT(g) and HC(f) >R HC(g)) or
(HM(f) = HM(g) and RED(f) > RED(g)). Notice that the ordering in general
is neither total nor Noetherian on R[M].

BIn case we allow arbitrary monoids we have to be more careful in defining right reduction
and critical situations corresponding to it.
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Definition 6.1. Let p.] be two non-zero polynomials in R[M]. We say that
! right reduces P to q at a monomial a .t in P in one step, denoted by P ~f q,
if

(a) HT(j * w) = HT(j) 0 w = t for some w E M,
(b) a ==}HC(f) (3, i.e. a = (3 + HC(j) . " I E Rand
(c) q=p-!*(/·w).

While reduction needs no longer eliminate the occurrence of a term, it is Noe-
therian when using a fixed finite set of polynomials due to Axiom (AI) for ==}

(compare Section 5). It is easy to see that (A2)-(A4) also hold and we can
define Grabner bases as before:

Definition 6.2. A set G ~ R[M] is called a right Grabner basis of i =

idealr(G), if He = =i, and ~e is convergent.

Notice that, contrary to the polynomial ring cases, p * (a . w) ~~ a will not
hold in general since the ordering on M will not be necessarily compatible with
the multiplication in M, i.e., in general HT(p * w) f=- HT(p) 0 w. In fact, for
groups it cannot be admissible and well-founded at the same time unless the
group is trivial. To repair this phenomenon which leads to He f=- =idealrCG)

in general we introduce the concept of saturation.

Definition 6.3. A set of polynomials F ~ {p * (a . w) I a E R*, w EM} is
called a (right) saturating set for a polynomial p E R[M], if for all a E R,
w E M, p* (a ·w) ~F a holds in case p» (a ·w) f=- O. A set F of polynomials in
R[M] is call d (right) saturated, if! * (a· w) ~F a holds for all ! E F, a E R,
w E M in case! * (a . w) f=- O.

We do not go into the details of when finite saturated sets exist and how they
can be computed (see e.g. in Reinert [18] or Madlener and Reinert [10]). In
order to characterize right Grabner bases we now introduce special polynomials.

Definition 6.4. Let P = {P1,'" ,pd be a set of polynomials in R[M] and
t an element in M such that there are W1, ... ,Wk E M with HT (Pi * Wi) =
HT(Pi) 0 Wi = t, for aliI::::; i ::::;k. Further, let Ii = HC(Pi) for 1 ::::;i ::::;kg. Let
{a1,' .. ,an} be a right Grabner basis of {'1,' .. "d and

ai = 11 . f3i,l + ... + Ik . (3i,k

for (3i,j E R, 1 ::::;i < n, and 1 ::::;j ::::;k. Notice that the ai respectively the f3i,j
do not depend on t. Then we define the g-polynomials (Grabner polynomials)

9Note that this definition has to be modified for non-cancellative monoids, as then HT(p*
w) = HT(p) 0 w no longer implies HC(p * w) = HC(p).
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corresponding to P and t by setting
k

gi = 2.:>j * ((3i,j . Wj) for each 1 :::::i :::::k.
j=1

Notice that HM(gi) = (}i . t.

For the right module M = {(b'l,'" ,15k) I 2::7=1 "te : b'i = O}, let the set
{Ai liE I ~ N} be a basis with Ai = (ai,I, ... , ai,k) for ai,j E R, i E I,
and 1 :::::j :::::k. Notice that the Ai do not depend on t. Then we define the
m-polynomials (module polynomials) corresponding to P and t by setting

k

mi = LPj * (ai,j . Wj) for each i E I.
j=1

Notice that HT(mi) -« t.

Since R is a right reduction ring the number of g-polynomials related to P
and t is finite. If in R every right module of solutions to linear homogeneous
equations is finitely generated, the number of m-polynomials related to P and
t is finite.

Definition 6.5. Given F ~ R[M], the set of g- and m-polynomials corre-
sponding to F contains for each finite subset P ~ F and each term t E M the
g- and m-polynomials as specified in Definition 6.4.

For a set consisting of one polynomial the corresponding m- polynomials
reflect the multiplication of the polynomial with zero-divisors of the head co-
efficient, i.e., by a basis of the annihilator of the head coefficient.

We can use g- and m-polynomials to characterize special bases in monoid
rings over a reduction ring in case they are additionally saturated.

Theorem 6.6. For a finite saturated subset F of R[M] the following state-
ments are equivalent:

1. For all polynomials 9 E idealr(F) we have 9 ~p O.
2. F is a right Grobner basis ofidealr(F).
3. All g-polynomials and all m-polynomials corresponding to F right reduce

to zero using F.

Proof.

1 ===} 2: The inclusion Hp ~ =idealr(F) is obvious. Hence, let us assume

f =idealr(F) g, i.e., f - 9 E idealr(F) and, therefore, f - 9 ~p O. We show that
this implies f Hp g. In case f - 9 = 0 we are immediately done. Hence, let us
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assume 1- g of 0 and, as any polynomial in idealr(F) is right reducible to zero
using F, without loss of generality we can assume that the reduction sequence
f - g ~p 0 uses top-reduction, i.e., all reductions take place at the respective
head monomial. Further, let t = HT(f - g) and let /1, respectively /2, be the
coefficients of t in I, respectively g. We will now show that I Hpg holds by
induction on the term t = HT(f-g). In case t = A we find I-g = /1-/2 ~p 0
and by lemma 2.5 the finite set Cp(A) = {HC(f) I I E F, A = HT(f * z) =
HT(f) 0 z for some z E M} ~ R is a Grabner basis of ideal~(Cp(A)). Hence, as
/1 -/2 E ideal~(Cp(A)), /1 =ideal~(CF(>')) /2 implies /1 ~CF(>') /2· Using the

respective polynomials belonging to the elements in Cp(A), we get IHp g.

Now let us assume t »- A and 1- g ~p h where k E f::l+ is minimal such that
HT(h) of t. Further, let h, ... .I» be the polynomials used in the respective
reduction steps, i.e., /1 -/2 ~{HCU;)ll:Si:Sk} O. Again, since

Cp(t) =
{HC(f) I I E F, t = HT(f) 0 z for some z E M, HT(f * z) = HT(f) 0 z}

is a finite right Grabner basis of ideal~(Cp(t)) and {HC(fi) I 1 ~ i ~k} ~
Cp(t), we find /1 ~CF(t) /2. Now applying the polynomial multiples belong-
ing to the elements of Cp(t) used in this last sequence to the monomial with
term t in I, we find an element j E R[M] such that I Hp j, HM(j) = /2' t,
j - g E idealr(F), and t »- HT(j - g). Hence, our induction hypothesis yields
g Hp j Hp I and we are done.

It remains to show that right reduction using F is confluent. Suppose there is
a polynomial g having two distinct normal forms with respect to F, say PI and
P2. Let t be the largest term on which PI and P2 differ and let CYI respectively CY2

be the coefficients of t in PI respectively P2· Since PI - P2 E idealr(F) we know
PI - PJ. ~p 0 and CYI - CY2E ideal~(Cp(t)), and Cp(t) is a right Grabner basis.
Hence, CYI~CF(t) 0:2, and either 0:1 or CY2must be reducible using Cp(t), i.e.,
not both PI and P2 can be in normal form with respect to F, contradicting our
assumption.

2 ==} 3: This follows from the fact that all g- and m-polynomials belong to
the right ideal generated by F.

3 ==} 1: We have to show that every element g E idealr(F) <, {O} is right
reducible to zero using F. Remember that for n « idealr(F), h --tp h' implies
h' E idealr(F). Thus, as --tp is Noetherian since F is finite, it suffices to show
that every g E idealr(F) -, {O} is right reducible using F. This will be done by
assuming the contrary. Let g = 2::;':1 Ij * (/j' Wj) with /j E R*, Ii E F, Wj E M
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be a representation of a polynomial 9 E idealr(F) ,,{O}. As F is saturated,
we can always assume HT(Ji * hi . Wi)) = HT(Ji) 0 uu, Depending on this
representation of 9 and the well-founded total ordering t on M we define the
critical term of 9 to be t = max{HT(iJ) 0 Wj I j E {I, ... m}}. We call another
representation of 9 "smaller" if for the corresponding critical term i we have
i -< t. Let us assume that our polynomial 9 is not right reducible by F and
that our representation of 9 is a minimal one with respect to t. We have to
distinguish two cases. In case t =1= HT(g), without loss of generality assume
that t occurs in the first k products of our representation. Hence, we have
HT(Ji) 0 Wi = t for each 1 ::; i ::;k and 2:7=1 HC(!i) . Ii = 0, i.e., the vector
hI, ... ,'k) is in the right module M = {(al,'" ,ak) I 2:7=1 HC(Ji) . ai = O}.
By our assumption this module has been considered when generating the m-
polynomials for {iI, ... ,/k} and t. Let the set B = {Ai = (ai,l,'" ,ai,k) I
i E I} be a basis of M. Without loss of generality, we assume that there are
AI,'" ,An E B such that for 1 ::; i ::;k we have Ii = 2:7=1 aj,i ·6j for some
6j E R. Thus, we get

k k n

LJi * hi' Wi) = L Ii * ((L aj,i' 6j)· Wi)
i=l i=l j=l

n k

= L(L!i * (aj,i . Wi)) ·8j
j=l i=l

(1)

Taking a closer look at the last sum of these transformations in (1), we see that
we can express the sum of the first k elements of our representation of 9 by a sum
of m-polynomials. Since these m-polynomials belonging to {iI, ... ,!d and t
all have head terms smaller than t and are right reducible to zero using F, we
get a new representation of 9 with a critical term smaller than t, contradicting
our assumption that our chosen representation was minimal.

In case t = HT(g), we know that there exists a finite subset P <;;; F such
that HC(g) E idealR( {HC(p) I pEP}), and as this ideal is finitely generated
it has a right Grabner basis, say Gp. Then HC(g) is reducible by an element
a E Gp. By our assumption, now a . t is head monomial of a g-polynomial
corresponding to P and t and since this g-polynomial is right reducible to zero
using F, in particular there exist polynomials [i, ... .I» E F involved in the
reduction of a . t such that a =>HC(j,) al =>HC(h) ... =>Hc(h) O. We will
now show that this implies that HM(g) is right reducible using F, by induction
on k. For k = 1we find HC(g) =>0 and a =>t-ic(h) 0, and hence Axiom (A4)
implies HC(g) =>HC(j,), i.e., 9 is right reducible at HM(g) using iI E F. Now
let k > 1. Then by Axiom (A4), HC(g) is either reducible by Hc(iI) or by
al. This again gives us a contradiction, as either 9 is right reducible at HM(g)
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using fr E F or the induction hypothesis can be applied to al and 12, ... , ik·
~

We have already determined when for a finite set of polynomials P and a
term t the respective sets of g- and m-polynomia:ls described in Definition 6.4
are finite. However, these conditions do not imply that the set of polynomials
to be tested in Theorem 6.6 (3) will be finite due to the fact that in general
infinitely many terms t have to be considered (compare Definition 6.5). Hence
it is important to find a localization to crucial term overlaps, similar to the
case of s-polynomials in. commutative polynomial rings where only the least
common multiple of the head terms has to be considered. In our setting, the
key idea are suitable weakenings of the reduction relation: recall that for two
reductions --+1<:::,:--+2 with HI = H2 the confluence of --+1 will imply
the confluence of --+2. To identify such weaker reduction relations we have to
take a closer look at the representations of the monoid elements. Remember
that monoids can be presented by string rewriting systems (see the book of
Book and Otto [4] for more details on string rewriting systems). Henceforth, w.e
will assume that M is presented by a finite convergent string rewriting system
such that the ordering on M is compatible with the completion ordering of
the string rewriting system. This implies that the monoid elements are the
irreducible words, the ordering on M is compatible with concatenation, and
multiplication can be done by normal form computation. We can give the
following syntactical weakening of right reduction.

Definition 6.7. Let v.! be two non-zero polynomials in R[M]. We say!
prefix reduces p to q at a monomial a . t of p in one step, denoted by p --+! q,
if

(a) HT(f)w == t for some wE M, i.e., HT(f) is a prefix of t as a word in the
generators,

(b) a =?HC(f) 13, i.e. a = 13 + HC(f) ." , E R, and
(c)" q=p-!*(/·w).

Then term overlaps correspond to common prefixes of words and in defining
g- and m-polynomials we can restrict the attention to minimal such situations
giving rise only to finitely many such candidates for a set F. This localization
is possible because for prefixes and concatenation our ordering on M behaves
admissible, i.e. t > u and tow == tw implies tw )- uow for t, u, wE M. For more
details see Reinert [18] and Madlener and Reinert [9, 12]. In substituting prefix
saturation for saturation and prefix reduction for right reduction, Theorem 6.6
can be specialized to characterize prefix Grabner bases, which are of course
right Grabner bases of the same right ideal.
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Now, if (R, ==}) is an effective reduction ring then addition and multiplica-
tion in R[M] as well as reduction as defined in Definition 6.7 are computable
operations.

The existence of finite prefix Grabner bases can be shown for the classes of fi-
nite, respectively free, monoids and the classes of finite, free, plain, respectively
context-free, groups. Using different syntactical weakenings of right reduction
also finitary results are gained for the class of polycyclic groups (which in-
cludes the Abelian and nilpotent groups). The details on these approaches are
presented in Reinert [18] and Madlener and Reinert [9, 12]. Hence, all these
monoid rings are indeed reduction rings.

It remains to determine when in fact these monoid and group rings are
effective right reduction rings: We need that right Grabner bases and repre-
sentations of their elements in terms of the elements of the generating set are
computable, and that it is possible to compute finite bases for right modules
of solutions to linear homogeneous equations over R. With these assumptions
the bases are computable in the special cases of monoids and groups mentioned
above. In fact they can be computed using completion procedures based on
resolving non-trivial g- and m-polynomials.

7. Conclusions

The aim of this paper was to show how, starting with a reduction ring, new
reduction rings can be constructed using standard ring constructions such as
quotients and sums and extensions to polynomial and monoid rings. This en-
ables us to present many results known from the literature in a uniform setting.
Other ring constructions such as skew-polynomial rings, solvable polynomial
rings or are extensions could be studied in a similar fashion.

On the other hand, reduction relations in arbitrary rings fulfilling the Ax-
ioms (Al)-(A3) and (A4) will inherit similar properties resulting directly from
the axioms. E.g., when applying the ring constructions of this paper they will
yield similar natural reduction relations for the resulting rings. A well-known
example is the free monoid ring (also called the non-commutative polynomial
ring) where many properties of the reduction relation for commutative poly-
nomial rings carryover, although of course finite Grabner bases in general will
no longer exist.
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