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The problem of assigning a sum, finite or infinite, to a divergent series was
already studied by Euler. Several approaches have been made towards the
solution, but none has been fully satisfactory. The problem rests on the con-
struction of a generalized limit Lim,, that is, a functional f on the space of
real sequences = = () such that:

1. f(z) € R[~00, 0c] for any sequence .

2. f(z) = lim, z,, for any convergent sequence = = ().

3. flaz + by) = af(z) + bf (y) for each couple of real numbers a,b and for
each couple of sequences x,y, except in the case of indetermination.

4. f(z) > 0 for each z > 0, i. e., z,, > 0 for all n € N.

A solution to the problem is given (due to the compactness of R) by the limit

lim, 4 over a non trivial ultrafilter & in N consisting of unbounded subsets of

N. This limit can be approximated by limits over filters F with countable basis

in N which are finer than the Fréchet filter, coarser than the given ultrafilter 4.

Then the inferior limit li_mn’fa:n and the superior limit Ti_r_n_,,,]:a:n give a lower
77
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and upper bound for lim, 3 z,. Moreover, for each sequence (z,), there exists
one such filter F C U such that lim, r z, = lim, ; z,.

Conversely, if Lim,, is a multiplicative generalized limit over all bounded real
sequences, that is,

Lim(zpyn) = (Lim xn) (Limyn) ,
n n n
then there is an ultrafilter ¢ in N such that Lim,z, = lim,y z, for any

bounded sequence (z,).

For any generalized limit f € €% (= (fx)*) there exists a finitely additive
measure p = 5 > 0, defined over the subsets of N, such that

£@) = [ wudur) (= (o) N,

w(N) =1 and u({n}) = 0 for all n € N. Conversely, if x > 0 is a finitely additive
measure defined over the subsets of N, such that u(N) =1 and p({n}) =0 for
any n € N, then the integral

f(z) = /N Zadp(n)

defined for all z = (z,) € o, gives a generalized limit f = Lim, over £,
i.e., over all bounded sequences of real numbers. Hence, f (xa) = p(A) for any
subset A of N and || f|| = 1.

If (Ai);cr is a net of elements A; = (Ain)pen € £ satistying All;, < M
(i € N) for a given constant M > 0, lim; A\j, = 0 for any n € N and
lim; 3°°7 ; Ain = 1, then we have
lim Z AinZTn = limz,
1 ne1 n

for all convergent sequences ().

Hence,
f(.’L‘) = hm Z AinTn
n=1

defines a linear extension of the usual limit Limz, (€ R) over the sequences
(z,,) for which the limit lim; 30> ; A\in&, exists. This linear algorithm of con-
vergence for I = N is due to Toeplitz (see [K]).

From the latter it turns out that if I/ is an ultrafilter of subsets of an infinite
directed set I, and finer than the corresponding Fréchet filter, i. e., the filter of
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the sets {j : j > i}, we have that
f(z) = lim nz_:l Mg

is a functional defined not only for bounded sequences, but also for those se-
quences (z,,) for which the series Y_o° | A\inzn (i € I) are convergent.

This functional satisfies the above conditions 1-3, but it is not necessarily a
generalized limit since it does not satisfy 4. Indeed, if A; 2x—1 > 0, Aj 21 < O for
all k € N, Y72 | Aigk—1 = 2 and > o1 digk = —1 (i € N), for the sequences
z, =1+ (—1)" > 0 we have

(o o}
11?12,\,-nzn =-2<0.

n=1

On the contrary, if A\;, > 0 for any ¢ € I, n € N, then under the previous
conditions we have that

f(z) = lil,rblll ; AinTn

is a generalized limit over all sequences (z,) for which "7 | A\;,z, is convergent
for all ¢ € I. This holds in any case if each A; has finite support, i. e., if for
each 1 € I there is an n; € N such that A;;, =0 for n > n,.

Now, we are going to prove the converse property.

Theorem 1. Let
S={a=(ar)ren €l :llall; =1, ax >0 for all k € N}

and let (’\n)neN be a sequence of elements \, = (’\nk)keN € S weakly dense in
S. The, for any generalized limit f over {,, there exists an ultrafilter U in N
such that

f(2) =limdnlz) = Ui D Iz (2= (3duen € bo)
and
u(A) = lim D Ak (ACN)
keA

for the measure p = piy associated with f.

Proof. Since £, is separable and || f|[¢;+ = 1, by Goldstine’s theorem, according
to which the unit ball of a Banach space is weak*-dense in the unit ball of




80 BALTASAR RODRIGUEZ-SALINAS

the bidual, there exists a new sequence (An),.y in €1 With [[A,]|; = 1 and an
ultrafilter in &/ in N such that

lim An(2) = f(2)

forall z € £.
Let
+ T + + _
pHA) =lim > AL (AT =sup{},0})
keA
and
p(A) =limy A (AT =sup{-A,0})
keA
for each subset A of N. Then

and

pH(N) = p~(N) = p(N) = f (z0) =1
where zop = (1,1,...). It follows that u=(A) = p~(N) = 0 for any subset A of
N. Hence

w(A) = p*(A) = lim > An =lim > Pkl (ACN)

)

" keA keA
and
f(z) = 1,}?}2 Anklzie (2 = (zx) € £eo)
keN
from which it turns out that, for any generalized limit f over ¢, there exists
a sequence (A}), oy C S and an ultrafilter & in N such that
f(@) = lim X, ()

for all z € ¢.,. Then the result follows immediately.
It is well known that for every x € £, there exists a real continuous function
z' € C(BN) (space of continuous functions on the Cech-Stone compactification

BN of N) defined by

z'(u) = lirlr} Zn (=2 el.)
for each ultrafilter & in N and u = lim,z n € BN. We denote by z” the
restriction z’ [o, where Q = SN \ N. Hence,

z"(u) = lrzrll} T (o= (zn) € fs)
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for every non-trivial ultrafilter /{ in N and v = lim, 3y n € Q.
The mapping z — &’ from £, into C'(AN) is an isometric isomorphism, as
well as the mapping x + z” from £, /co into C(§2). Therefore

ol = T 2] = el /co
where = = (2,) € loo.

Definition 2. A Toeplitz sequence is a sequence (A,), .y Whose terms A, =
(Ank)ken lie in

S={a=(an) €t :|ali =1,a, >0 forall n € N}
and such that lim, A,k = 0 for any k € N. A Toeplitz matriz is a matrix (Ank)
with real entries such that

1. A\pp >0 forallm, k € N.
2. Y Mk =1forallneN.
3. limy, A =0 for all k € N.

Then the rows of a Toeplitz matrix form a Toeplitz sequence.

We denote by F the set of all generalized limits over £, and by Fy the set
of the functionals f € €%, for which there exists a Toeplitz sequence (An),cn
and a non-trivial ultrafilter &/ in N such that

f(z) = limAn()

for all z € £y, i. €., f = lim,y A in £ for the weak*-topology. Then Fy C F
and we say that the elements of Fy are Toeplitz generalized limits.

From the isometry between the spaces £ /co and C() it follows that
F C (fxo/co)”, furnished with the weak*-topology, is isomorphic to the set
of probability measures on Q endowed with the weak*-topology. Therefore, F
is a weak*-compact set and the extremal points of F' are the limits lim,, i z,
over the non-trivial ultrafilters &/ in N, corresponding to the é of Dirac of C'(£2)*.

Theorem 3. For any countable subset A of Fy, the w*-closure A", rests in Fy.
Hence, Fy is countably weak*-compact.

Proof. Let A = {fi:i€ N} C F,. Since f; € Fp, there exists a Toeplitz
sequence (X},), .y such that f; € A; where A; = {\, :n € N}. It is clear that

we can take A, < 1 fork=1,2,...,1 ()\; = (’\‘ftk)keN) Let A=J2, A =
{)\il 1i,n € N}, then A is a Toeplitz sequence and A C A Therefore, A C
AN F.

Corollary 4. Fj is a norm-closed set in €% (or in (foo/co)").
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Theorem 5. Fy = F.

Proof. We are going to prove first that F; contains the convex hull of Fp, from
which it follows that F is a convex set.

Let A = {)\, : n € N} be a Toeplitz sequence, then, for each f € A NF
there is an ultrafilter &/ in N such that
(z) = lim An(z)

for all z € ¢o,. Conversely, for any non-trivial ultrafilter &/ in N we have that
the functional

z — lim A\, (z)

n)

belongs to A" N Fy. From this follows the existence of a continuous map u
f(u,.) from 2 = SN\ N into £ such that

f(u, ) = lim An(z)

where u = lim, yn € Q and = € £, in such a way that u — f(u,.) is a contin-
uous mapping from 2 into A" N Fy when the weak*-topology is considered. For
the Toeplitz sequence A* = {\} : n € N}, let u — f*(u,.) be the corresponding
mapping.

Let uq,ug,...,un, be distinct elements of Q and Uy, Us, ..., U, be distinct
open-closed neighborhoods of wuy,us,...,un, respectively, in 2. Then there
exist homeomorphisms ¢1, @2, ..., @m from BN onto SN, corresponding to

permutations of N, such that ¢; (U;) = U;. Let u} = ¢ (u;) fori =1,2,...,m.
Then, for a; >0 (i =1,2,...,m) and Z:’;l a; = 1 we have that the mapping

T Z a; fi(ul,z) = fIlan Zai/\;‘(n)(:c) (z € )
i=1 =1

ifuy = limn,ul ne i e,

> aifi(u],.) € Fy.

=1
Since this holds for any system of open-closed neighborhoods distinct from €2,
namely Uy, Us,..., U, and u) € U;, and the maps f* are continuous, we have

that
> aifi(wi,.) € Fy,
i=1

from which it follows immediately that ?; contains the convex hull of Fp.
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To conclude the proof we just have to apply the Krein-Milman theorem
taking into consideration that F contains the extremal points of F7, since they
are the limits lim,y z, over the non-trivial ultrafilters & in N, and F is a
convex weak*-compact set.

Proposition 6. Let aj,as,...,am be positive real numbers with Z 10 =
1 (a; > 0) and let Uy,Us, . .. ,L{ be non-trivial ultrafilters in N for which there

exists a Toeplitz sequence A = (\n), oy such that

<m-—)2a, hmxn) N (z = (zn) € lo),

i=1
the for every sequence of real numbers () satisfying o} > 0 and 3 .-, of =1
there exists a Toeplitz sequence A" = (X}, cn such that

(z - Zag liILI(l zn) eN” (z=(2,) € Lloo).
i=1 o

Proof. We may assume that the ultrafilters U;,Us, ... ,Un are different and,
therefore, there exist disjoint subsets My, Ma, ..., M, of N such that M; € U;
fori=1,2,...,m. Since

(a:—) z:oz1 hmxn) N

there exists an ultrafilter &/ in N such that

Za, hmzn —hm)\ (z)

nus

for every = = (z5) € £oo- Then

a; limz, = luz(l)\ (zxar)

n,U;
for i =1,2,...,m, and hence
m m m
o $XM
E aj hm z, =lim Y =\, (zxM;) = 11m Z
£ YU nU al -1 n (XM;)

1
for all z = (2,,) € £oo, which proves our claim since (A, (-xar,) /An (XMi))neN
(i=1,2,...,m) are essentially Toeplitz sequences. Indeed, if

) ' o U
Mi—{TLEN./\n(XMg)>2} (€u)
and we put

M(z) = An(@X01:) for n € M/, A (x) = An(z) for n ¢ M,
’\n(XM.')
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then (A% )i nen is a Toeplitz sequence which, equivalently, can replace

Given two non-trivial ultrafilters #; and Us in N, we will write U; ~ U,
meaning that there is a Toeplitz sequence Ay = (An)nen such that

arlllg1 T+ (1 — ) 111151 Ty = lrirzr} An ()
for every ¢ = (z,) € fs and some non-trivial ultrafilter &/ in N and some
0 < a <1, that is,
<m — alimz, + (1 — a) lim zn> €.
n,Uz

n,“
Then from Proposition 6 it follows that the same holds for every 0 < o < 1.

Given two non-trivial ultrafilters U4, and U in N, we will write U; < Us

meaning that there exists a Toeplitz sequence (Ap)nen such that

A o = R A )
for every z = (z,) € fw. Since the product of two Toeplitz matrices is a
Toeplitz matrix, U; < Uy < Uz implies U; < Us.

Let ¢ be a permutation of N and U be a non-trivial ultrafilter in N. Then
o(U) denote the ultrafilter consisting of all the sets p(M) with M € U. It
is easily seen that U < @(U) < U for every permutation ¢ of N and every
ultrafilter .

Proposition 7. U; ~ U, if and only if there exists an ultrafilter U such that
ul SUandUz SL{
Proof. Assume that Uy ~ Uy, rejecting the trivial case U; = Uy. From the proof
of Proposition 6 it follows that there exists an ultrafilter & such that U; < U
and Uy < U.

Now suppose U; < U and Uy < U. Then there exist two Toeplitz sequences
(A, )nen and (A),en such that

!
1111511 Ty = lual)\ (z)

and

lim z,, = lim \/(z)
n,Us n,U

for every z = (z,,) € £o. Then, since

. _ : — ki I _ n
a}llgl Ty + (1 a)}l{gxzzn 3:21[a/\n (1—=a)\)](z)
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for every £ = (z,,) € loo and 0 < a < 1, and (@A}, + (1 — )] )nen is a Toeplitz
sequence, it follows that U; ~ Us.

Theorem 8. Fj is a convex set if and only if Uy ~ Uy for every pair of non-
trivial ultrafilters U, and Uy in N.

Proof. Of course, if Fy is a convex set, Uy =~ Uy for every pair of ultrafilters U
and Uy in N.
Suppose U; ~ U, for every pair of ultrafilters Uy and Uy in N. Let f1, fo € Fp,
then there exist two Toeplitz sequences (A,).en and (A),en such that
fi(z) = lim Al (z)
n,U;
and

falz) = lim X (z)

for every = € £, and some ultrafilters ¢4; and Up. Then, since Uy ~ Uy, there
exist two Toeplitz sequences (u,)nen and (4, )nen, and an ultrafilter & such
that

lim z,, = lim /. (z lim z,, = lim p” (z
n,Uy " n,uu"( )’ n,Uz " n,uu"( )

for every & = (z,) € lo. Now, since the product of the Toeplitz matrices corre-
sponding to the pairs (17, )nen, (An)nen) and (47 )nen, (An)nen) is a Toeplitz
matrix, we may assume U; = Uy = U. Therefore,

afi(z) + (1 - a)fa(z) = lim [ad; + (1 - @)Ay] (2)
for every z € £ and 0 < a < 1. This proves that afi + (1 —a)fy € Fy for
every 0 < a < 1, and hence, that Fy is a convex (under the above hypothesis).

Problem. Is Fy a convex set?

If Fy is not a convex set, then Fy # F and Fy is not weakly* compact.
Therefore, for every Toeplitz sequence A there exists a generalized Toeplitz
limit f ¢ A™ (f € Fy).

Proposition 9. For every non-trivial ultrafilter Uy in N, the cardinal number
of the set

P(UQ) = {u :Ll S U()}
is ¢, and the cardinal number of the set
QUo) ={U:U>Up}

is 2¢. If A is a set of ultrafilters in N with cardinal number less than 2¢, then
there exists an ultrafilter Uy such that AN Q(U;) = @.
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Proof. Indeed, the cardinal number of P(Up) is less than or equal to the cardinal
number of the set of Toeplitz sequences, and therefore card P(Up) < c. On the
other hand, since P(ly) contains all the ultrafilters ¢(Uy) corresponding to
the permutations ¢ of N, we have card P(Up) > c. In the same way, card

QUp) > c.
Now we are going to see that card Q(Up) = 2°. Let \,(z) = zi for

()<= ("2) (@)=

Then (An)nen is a Toeplitz sequence. For each ultrafilter Uy let us put

e () enen

for every M € Uy. Then the sets M; define ultrafilters U;. Since

MiﬂMjﬂ{neN:n><§)}=®

for 1 < i < j < k, it follows that the ultrafilters U; are different. As in
Theorem 5, let us consider the continuous map u — f(u,.) from @ = SN\ N
into £3, such that

f(u,z) =lim A\, ()
for every z € £, and u = lim, yy n € @ = BN\ N, so that we can identify u
with 4. Then

{U =ue: fluz)= li{ln z, for all z = (z,) € foo}
n,Uo

is an infinite closed set (because it contains the ultrafilters ;). From this it

follows (according to [E-S, pag. 132]) that the cardinal number of this set is 2¢,

and hence that Q(Up) = 2¢ (since card @ = 2°¢ according to [E-S, pag. 132]).

Finally, if card A < 2¢, then

card U{P(U) :U € A} <c-cardA <2° (= card)

and therefore there exists a non-trivial ultrafilter U; ¢ |J{P(U) : U € A}, which
implies AN Q(U1) = @.

Proposition 10. Let us assume that Fy is a convex set. Then, if (Up)nen is a
sequence of non-trivial ultrafilters in N, there exists an ultrafilter U such that
U, < U for every n € N.
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Proof. Let (My)nen be a sequence of disjoint infinite subsets of N. Then there
exists a sequence (¢, )nen Of permutations of N such that M, € ¢, (Uy) for
every n € N. If Fp is a convex set, Corollary 4 implies that

(1‘—) 22 " lim )zk> € Fy (= (xn)nen).

e kypn(Un

Therefore, there exists a Toeplitz sequence (Ax)ken and an ultrafilter & in N
such that

(oo}
22 " lim 1z —hm/\k( )

n=1 kypn (Un) ke
for every z = () € {o, and therefore

27"  lim zk-——]ki,r&u\k(z)(Mn)

ky‘Pn(un)
and
. . Me(TX M, )
lim =1lim2"\x(z = lim —~—"~
Evon(Un) kU k(@xp) = ku Ae(xn,)

for every ¢ = (zn) € foo. Since (Ae(-XM.)/Me(XM,)),cy i essentially a
Toeplitz sequence for all n € N (as in Proposition 6), it follows that U, <
en(Un) <U and U, < U for every n € N.

Theorem 11. For any Toeplitz sequence (\i)nen, there exists some x € £o
for which lim, \,,(z) does not exist. That is to say, there exist two non-trivial
ultrafilters U;,Us in N and an element x € ¢, such that

lim An(Z) # lim An(2).

Proof. Indeed, if the ordinary limit
lim An (x ) = 1(4)

existed for every set A C N, then, according to the Hahn-Vitali-Saks-Nikodym
theorem [D-U, I. 4.8], u would turn out to be countably additive (as a limit of
the countably additive measures

Hn : pn(A) = An(xa) (ACN)),
which would lead us to a contradiction: 1 — u(N) = 3°>7  u({n}) = 0. The
result also follows from Schur property of ¢;.

Definition 12. Given a non-trivial ultrafilter iy in N and a Toeplitz sequence
A = (An)nen we define the primitive set relative to Uy as the set P = P(Up, A)
consisting of all the ultrafilters U such that

lim z,, = lim A\, (z)
n,Up n,



88 BALTASAR RODRIGUEZ-SALINAS

for all z = (z,) € loo.

Given a second Toeplitz sequence A’ = (A],)nen we define the reflezive set
relative to Up as the set R = R(Up, A, A’) consisting of the ultrafilters U’ such

that

lim z,, = lim A}, (z)
n,Uu’ n,U
for every z = (z,,) € £o and some U € P(Uy, A).

Proposition 13. Identifying, as in the proof of Proposition 9, every non-
trivial ultrafilter U in N with v = lim,yn € Q@ = N\ N, we have that
every primitive set P = P(Up, A) is closed and has empty interior, and every
refelexive set R = R(Uy, A, A”) is closed.

Proof. Let u — f(z,.) be a continuous map from N into £%_ such that f(n,z) =
A(z). Then

{u eN: f(u,x) = 7111%30,1}

is a closed set and, hence, so is P.
On the other hand, if P had an interior point, there would exist an open-
closed U in 2 such that

rlllgé Ty = lnulr} An(z) (z=(zn) € L)

for every U € U. Let M be a subset of N such that M < M = U, then that
equality would hold for every non-trivial ultrafilter # > M and the limit of
the sequence (A, (z))nem should exist for every x € f., which contradicts
Theorem 11.

Since P = P(Up, A) is a compact set, the set of all the generalized limits f
on ¢, such that

L) == Td /
fia) = lim X, (@)

for some U € P is a weakly* closed set and, hence, the set R = R(Up, A, A’) is
closed as well.

Now, using the Continuum Hypothesis (CH) we are going to prove the fol-
lowing theorem.

Theorem 14. Given a non-trivial ultrafilter Uy in N, Uy ~ U; holds for every
non-trivial ultrafilter Uy in N if and only if some reflexive set R = R(Uy, A, A’)
has an interior point.
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Proof. Suppose that R = R(Up, A, A’) has an interior point. Then there exists
an open-closed non-empty set U C R. Let M be an infinite subset of N such
that M ~ M = U and let ¢ be a bijection from N onto M. If A” = (A]])nen is
a Toeplitz sequence such that /\g(n),n =1 and /\g(n)’k = 0 for every k # n, we
have that for each U; € Q there exists U’ € R such that

7111% Tn = ’11"12 Xo(n) (T) = }35‘, An(2)

for every z = (zn,) € . Therefore,

(e o]
lim z, = lim E AL Az = im A ()
n,U; nUu 4 1 nU

1=

for every z = (z,) € £ if we choose U € P so that
li = lim \/
ap En = DA )

Then, by Proposition 7, we have Uy ~ U; for every U; € L.

Now, assume that every reflexive set R = R(Up, A, A’) lacks interior points.
It will suffice to prove that | J R(Up, A, A’) does not have interior points either.
With this aim, it is enough to prove that the union  J,. 4 Ra of non-dense closed
sets does not contain a non-empty open-closed set Uy if card A < c¢. In order
to do this, we proceed as in Baire’s category theorem, using (CH) and Cantor’s
separability property: for every decreasing sequence of non-empty open-closed
sets there exists a non-empty open-closed set which is contained in all sets of
the sequence. Indeed, if A is the set of all ordinal numbers less than ¢ = wy,
supposing that a decreasing family (Ua)a<a, of non-empty open-closed sets
satisfying R, NU, = @ for every a < ap has been constructed and U is a non-
empty open-closed set contained in (), <ap Uas since Rqq 2 U we deduce that
there exists a non-empty open-closed set Uy, C U such that Ro, N Uy, = 9.
To conclude the proof it is enough to note that every z € (..U, does not
belong to |J .. Ra and belongs to Uy if we take U; C Up.

a<c

a<c

Corollary 15 (CH). Given a non-trivial ultrafilter Uy in N, we have Uy ~ U,
for every non-trivial ultrafilter U; in N if and only if some reflexive set R =
R(Ug,A,A') =Q (=8N~ N).
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