Revista Colombiana de Matemáticas Volumen 33 (1999), páginas 77–90

On generalized limits and Toeplitz's algorithm

BALTASAR RODRÍGUEZ-SALINAS Universidad Complutense, Madrid, España (SPAIN)

ABSTRACT. We study generalized limits in connection with the Toeplitz linear algorithm of convergence.

Keywords and phrases. Ultrafilters, generalized limits, Toeplitz sequences and matrices.

1991 Mathematics Subject Classification. Primary 40C05. Secondary 40H05.

The problem of assigning a sum, finite or infinite, to a divergent series was already studied by Euler. Several approaches have been made towards the solution, but none has been fully satisfactory. The problem rests on the construction of a generalized limit \lim_{n} , that is, a functional f on the space of real sequences $x = (x_n)$ such that:

- 1. $f(x) \in \mathbb{R}[-\infty, \infty]$ for any sequence x.
- 2. $f(x) = \lim_{n \to \infty} x_n$ for any convergent sequence $x = (x_n)$.
- 3. f(ax + by) = af(x) + bf(y) for each couple of real numbers a, b and for each couple of sequences x, y, except in the case of indetermination.
- 4. $f(x) \ge 0$ for each $x \ge 0$, i. e., $x_n \ge 0$ for all $n \in \mathbb{N}$.

A solution to the problem is given (due to the compactness of \mathbb{R}) by the limit $\lim_{n,\mathcal{U}}$ over a non trivial ultrafilter \mathcal{U} in \mathbb{N} consisting of unbounded subsets of \mathbb{N} . This limit can be approximated by limits over filters \mathcal{F} with countable basis in \mathbb{N} which are finer than the Fréchet filter, coarser than the given ultrafilter \mathcal{U} . Then the inferior limit $\underline{\lim}_{n,\mathcal{F}} x_n$ and the superior limit $\overline{\lim}_{n,\mathcal{F}} x_n$ give a lower

and upper bound for $\lim_{n,\mathcal{U}} x_n$. Moreover, for each sequence (x_n) , there exists one such filter $\mathcal{F} \subseteq \mathcal{U}$ such that $\lim_{n,\mathcal{F}} x_n = \lim_{n,\mathcal{U}} x_n$.

Conversely, if \lim_{n} is a multiplicative generalized limit over all bounded real sequences, that is,

$$\lim_{n} (x_n y_n) = \left(\lim_{n} x_n\right) \left(\lim_{n} y_n\right),$$

then there is an ultrafilter \mathcal{U} in \mathbb{N} such that $\lim_{n \to \infty} x_n = \lim_{n \to \mathcal{U}} x_n$ for any bounded sequence (x_n) .

For any generalized limit $f \in \ell_{\infty}^*$ $(= (\ell_{\infty})^*)$ there exists a finitely additive measure $\mu = \mu_f \geq 0$, defined over the subsets of \mathbb{N} , such that

$$f(x) = \int_{\mathbb{N}} x_n d\mu(n) \quad (x = (x_n) \in \ell_{\infty}),$$

 $\mu(\mathbb{N}) = 1$ and $\mu(\{n\}) = 0$ for all $n \in \mathbb{N}$. Conversely, if $\mu \ge 0$ is a finitely additive measure defined over the subsets of \mathbb{N} , such that $\mu(\mathbb{N}) = 1$ and $\mu(\{n\}) = 0$ for any $n \in \mathbb{N}$, then the integral

$$f(x) = \int_{\mathbb{N}} x_n d\mu(n)$$

defined for all $x = (x_n) \in \ell_{\infty}$, gives a generalized limit $f = \text{Lim}_n$ over ℓ_{∞} , i.e., over all bounded sequences of real numbers. Hence, $f(\chi_A) = \mu(A)$ for any subset A of \mathbb{N} and ||f|| = 1.

If $(\lambda_i)_{i \in I}$ is a net of elements $\lambda_i = (\lambda_{in})_{n \in \mathbb{N}} \in \ell_1$ satisfying $\|\lambda_i\|_1 \leq M$ $(i \in \mathbb{N})$ for a given constant M > 0, $\lim_i \lambda_{in} = 0$ for any $n \in \mathbb{N}$ and $\lim_i \sum_{n=1}^{\infty} \lambda_{in} = 1$, then we have

$$\lim_{i} \sum_{n=1}^{\infty} \lambda_{in} x_n = \lim_{n} x_n$$

for all convergent sequences (x_n) .

Hence,

$$f(x) = \lim_{i} \sum_{n=1}^{\infty} \lambda_{in} x_n$$

defines a linear extension of the usual limit $\lim x_n \ (\in \mathbb{R})$ over the sequences (x_n) for which the limit $\lim_i \sum_{n=1}^{\infty} \lambda_{in} x_n$ exists. This linear algorithm of convergence for $I = \mathbb{N}$ is due to Toeplitz (see [K]).

From the latter it turns out that if \mathcal{U} is an ultrafilter of subsets of an infinite directed set I, and finer than the corresponding Fréchet filter, i. e., the filter of

the sets $\{j : j > i\}$, we have that

$$f(x) = \lim_{i,\mathcal{U}} \sum_{n=1}^{\infty} \lambda_{in} x_n$$

is a functional defined not only for bounded sequences, but also for those sequences (x_n) for which the series $\sum_{n=1}^{\infty} \lambda_{in} x_n$ $(i \in I)$ are convergent.

This functional satisfies the above conditions 1-3, but it is not necessarily a generalized limit since it does not satisfy 4. Indeed, if $\lambda_{i,2k-1} \ge 0$, $\lambda_{i,2k} \le 0$ for all $k \in \mathbb{N}$, $\sum_{k=1}^{\infty} \lambda_{i,2k-1} = 2$ and $\sum_{k=1}^{\infty} \lambda_{i,2k} = -1$ $(i \in \mathbb{N})$, for the sequences $x_n = 1 + (-1)^n \ge 0$ we have

$$\lim_{i} \sum_{n=1}^{\infty} \lambda_{in} x_n = -2 < 0.$$

On the contrary, if $\lambda_{in} \geq 0$ for any $i \in I$, $n \in \mathbb{N}$, then under the previous conditions we have that

$$f(x) = \lim_{i,\mathcal{U}} \sum_{n=1}^{\infty} \lambda_{in} x_n$$

is a generalized limit over all sequences (x_n) for which $\sum_{n=1}^{\infty} \lambda_{in} x_n$ is convergent for all $i \in I$. This holds in any case if each λ_i has finite support, i. e., if for each $i \in I$ there is an $n_i \in \mathbb{N}$ such that $\lambda_{in} = 0$ for $n \geq n_i$.

Now, we are going to prove the converse property.

Theorem 1. Let

$$S = \left\{ a = (\alpha_k)_{k \in \mathbb{N}} \in \ell_1 : \|\alpha\|_1 = 1, \ \alpha_k \ge 0 \text{ for all } k \in \mathbb{N} \right\}$$

and let $(\lambda_n)_{n \in \mathbb{N}}$ be a sequence of elements $\lambda_n = (\lambda_{nk})_{k \in \mathbb{N}} \in S$ weakly dense in S. The, for any generalized limit f over ℓ_{∞} , there exists an ultrafilter \mathcal{U} in \mathbb{N} such that

$$f(x) = \lim_{n,\mathcal{U}} \lambda_n(x) = \lim_{n,\mathcal{U}} \sum_{k=1}^{\infty} \lambda_{nk} x_k \quad \left(x = (x_k)_{k \in \mathbb{N}} \in \ell_{\infty}\right)$$

and

$$\mu(A) = \lim_{n,\mathcal{U}} \sum_{k \in A} \lambda_{nk} \quad (A \subseteq \mathbb{N})$$

for the measure $\mu = \mu_f$ associated with f.

Proof. Since ℓ_1 is separable and $||f||_{\ell_1^{**}} = 1$, by Goldstine's theorem, according to which the unit ball of a Banach space is weak*-dense in the unit ball of

the bidual, there exists a new sequence $(\lambda_n)_{n \in \mathbb{N}}$ in ℓ_1 with $\|\lambda_n\|_1 = 1$ and an ultrafilter in \mathcal{U} in \mathbb{N} such that

$$\lim_{n,\mathcal{U}}\lambda_n(x)=f(x)$$

for all $x \in \ell_{\infty}$.

Let

$$\mu^+(A) = \lim_{n,\mathcal{U}} \sum_{k \in A} \lambda_{nk}^+ \quad \left(\lambda^+ = \sup\{\lambda, 0\}\right)$$

and

$$\mu^{-}(A) = \lim_{n,\mathcal{U}} \sum_{k \in A} \lambda_{nk}^{-} \quad (\lambda^{-} = \sup\{-\lambda, 0\})$$

for each subset A of \mathbb{N} . Then

$$\mu^+(\mathbb{N}) + \mu^-(\mathbb{N}) = \lim_{n,\mathcal{U}} \sum_{k=1}^{\infty} |\lambda_{nk}| = 1$$

and

$$\mu^{+}(\mathbb{N}) - \mu^{-}(\mathbb{N}) = \mu(\mathbb{N}) = f(x_0) = 1$$

where $x_0 = (1, 1, ...)$. It follows that $\mu^-(A) = \mu^-(\mathbb{N}) = 0$ for any subset A of \mathbb{N} . Hence

$$\mu(A) = \mu^+(A) = \lim_{n,\mathcal{U}} \sum_{k \in A} \lambda_{nk}^+ = \lim_{n,\mathcal{U}} \sum_{k \in A} |\lambda_{nk}| \quad (A \subseteq \mathbb{N})$$

and

$$f(x) = \lim_{n,\mathcal{U}} \sum_{k \in \mathbb{N}} |\lambda_{nk}| x_k \quad (x = (x_k) \in \ell_{\infty}),$$

from which it turns out that, for any generalized limit f over ℓ_{∞} , there exists a sequence $(\lambda'_n)_{n \in \mathbb{N}} \subset S$ and an ultrafilter \mathcal{U} in \mathbb{N} such that

$$f(x) = \lim_{n,\mathcal{U}} \lambda'_n(x)$$

for all $x \in \ell_{\infty}$. Then the result follows immediately.

It is well known that for every $x \in \ell_{\infty}$ there exists a real continuous function $x' \in C(\beta \mathbb{N})$ (space of continuous functions on the Cech-Stone compactification $\beta \mathbb{N}$ of \mathbb{N}) defined by

$$x'(u) = \lim_{n,\mathcal{U}} x_n \quad (x = (x_n) \in \ell_\infty)$$

for each ultrafilter \mathcal{U} in \mathbb{N} and $u = \lim_{n,\mathcal{U}} n \in \beta \mathbb{N}$. We denote by x'' the restriction $x' \mid_{\Omega'}$, where $\Omega = \beta \mathbb{N} \setminus \mathbb{N}$. Hence,

$$x''(u) = \lim_{n,\mathcal{U}} x_n \quad (x = (x_n) \in \ell_\infty)$$

for every non-trivial ultrafilter \mathcal{U} in \mathbb{N} and $u = \lim_{n,\mathcal{U}} n \in \Omega$.

The mapping $x \mapsto x'$ from ℓ_{∞} into $C(\beta \mathbb{N})$ is an isometric isomorphism, as well as the mapping $x \mapsto x''$ from ℓ_{∞}/c_0 into $C(\Omega)$. Therefore

$$||x''|| = \overline{\lim_{n}} |x_n| = ||x||_{\ell_{\infty}/c_0}$$

where $x = (x_n) \in \ell_{\infty}$.

Definition 2. A Toeplitz sequence is a sequence $(\lambda_n)_{n \in \mathbb{N}}$ whose terms $\lambda_n = (\lambda_{nk})_{k \in \mathbb{N}}$ lie in

$$S = \{ \alpha = (\alpha_n) \in \ell_1 : \|\alpha\|_1 = 1, \alpha_n \ge 0 \text{ for all } n \in \mathbb{N} \}$$

and such that $\lim_{n \to \infty} \lambda_{nk} = 0$ for any $k \in \mathbb{N}$. A Toeplitz matrix is a matrix (λ_{nk}) with real entries such that

- 1. $\lambda_{nk} \geq 0$ for all $n, k \in \mathbb{N}$.
- 2. $\sum_{k=1}^{\infty} \lambda_{nk} = 1$ for all $n \in \mathbb{N}$.
- 3. $\lim_{n \to \infty} \lambda_{nk} = 0$ for all $k \in \mathbb{N}$.

Then the rows of a Toeplitz matrix form a Toeplitz sequence.

We denote by F the set of all generalized limits over ℓ_{∞} and by F_0 the set of the functionals $f \in \ell_{\infty}^*$ for which there exists a Toeplitz sequence $(\lambda_n)_{n \in \mathbb{N}}$ and a non-trivial ultrafilter \mathcal{U} in \mathbb{N} such that

$$f(x) = \lim_{n,\mathcal{U}} \lambda_n(x)$$

for all $x \in \ell_{\infty}$, i. e., $f = \lim_{n,\mathcal{U}} \lambda_n$ in ℓ_{∞}^* for the weak*-topology. Then $F_0 \subseteq F$ and we say that the elements of F_0 are *Toeplitz generalized limits*.

From the isometry between the spaces ℓ_{∞}/c_0 and $C(\Omega)$ it follows that $F \subseteq (\ell_{\infty}/c_0)^*$, furnished with the weak*-topology, is isomorphic to the set of probability measures on Ω endowed with the weak*-topology. Therefore, F is a weak*-compact set and the extremal points of F are the limits $\lim_{n \to \mathcal{U}} x_n$ over the non-trivial ultrafilters \mathcal{U} in \mathbb{N} , corresponding to the δ of Dirac of $C(\Omega)^*$.

Theorem 3. For any countable subset A of F_0 , the w*-closure \overline{A}^* , rests in F_0 . Hence, F_0 is countably weak*-compact.

Proof. Let $A = \{f_i : i \in \mathbb{N}\} \subseteq F_0$. Since $f_i \in F_0$, there exists a Toeplitz sequence $(\lambda_n^i)_{n \in \mathbb{N}}$ such that $f_i \in \overline{\Lambda}_i^*$ where $\Lambda_i = \{\lambda_n^i : n \in \mathbb{N}\}$. It is clear that we can take $\lambda_{nk}^i < \frac{1}{i}$ for k = 1, 2, ..., i $(\lambda_n^i = (\lambda_{nk}^i)_{k \in \mathbb{N}})$. Let $\Lambda = \bigcup_{i=1}^{\infty} \Lambda_i = \{\lambda_n^i : i, n \in \mathbb{N}\}$, then Λ is a Toeplitz sequence and $A \subseteq \overline{\Lambda}^*$. Therefore, $\overline{A}^* \subseteq \overline{\Lambda}^* \cap F_0$.

Corollary 4. F_0 is a norm-closed set in ℓ_{∞}^* (or in $(\ell_{\infty}/c_0)^*$).

Theorem 5. $\overline{F}_0^* = F$.

Proof. We are going to prove first that \overline{F}_0^* contains the convex hull of F_0 , from which it follows that \overline{F}_0^* is a convex set.

Let $\Lambda = \{\lambda_n : n \in \mathbb{N}\}$ be a Toeplitz sequence, then, for each $f \in \overline{\Lambda}^* \cap F_0$ there is an ultrafilter \mathcal{U} in \mathbb{N} such that

$$f(x) = \lim_{n,\mathcal{U}} \lambda_n(x)$$

for all $x \in \ell_{\infty}$. Conversely, for any non-trivial ultrafilter \mathcal{U} in \mathbb{N} we have that the functional

$$x\mapsto \lim_{n,\mathcal{U}}\lambda_n(x)$$

belongs to $\overline{\Lambda}^* \cap F_0$. From this follows the existence of a continuous map $u \mapsto f(u, .)$ from $\Omega = \beta \mathbb{N} \smallsetminus \mathbb{N}$ into ℓ_{∞}^* such that

$$f(u,x) = \lim_{n,\mathcal{U}} \lambda_n(x)$$

where $u = \lim_{n,\mathcal{U}} n \in \Omega$ and $x \in \ell_{\infty}$, in such a way that $u \mapsto f(u, .)$ is a continuous mapping from Ω into $\overline{\Lambda}^* \cap F_0$ when the weak*-topology is considered. For the Toeplitz sequence $\Lambda^i = \{\lambda_n^i : n \in \mathbb{N}\}$, let $u \mapsto f^i(u, .)$ be the corresponding mapping.

Let u_1, u_2, \ldots, u_m be distinct elements of Ω and U_1, U_2, \ldots, U_m be distinct open-closed neighborhoods of u_1, u_2, \ldots, u_m , respectively, in Ω . Then there exist homeomorphisms $\varphi_1, \varphi_2, \ldots, \varphi_m$ from $\beta \mathbb{N}$ onto $\beta \mathbb{N}$, corresponding to permutations of \mathbb{N} , such that $\varphi_i(U_i) = U_i$. Let $u'_i = \varphi(u_i)$ for $i = 1, 2, \ldots, m$. Then, for $\alpha_i \geq 0$ $(i = 1, 2, \ldots, m)$ and $\sum_{i=1}^m \alpha_i = 1$ we have that the mapping

$$x \mapsto \sum_{i=1}^{m} \alpha_i f^i(u'_i, x) = \lim_{n, \mathcal{U}_1} \sum_{i=1}^{m} \alpha_i \lambda^i_{\varphi_i(n)}(x) \quad (x \in \ell_\infty)$$

if $u_1 = \lim_{n,\mathcal{U}_1} n \in \Omega$, i. e.,

$$\sum_{i=1}^m \alpha_i f^i(u'_i, .) \in \overline{F}_0^*.$$

Since this holds for any system of open-closed neighborhoods distinct from Ω , namely U_1, U_2, \ldots, U_m and $u'_i \in U_i$, and the maps f^i are continuous, we have that

$$\sum_{i=1}^m \alpha_i f^i(u_i, .) \in \overline{F}_0^*,$$

from which it follows immediately that \overline{F}_0^* contains the convex hull of F_0 .

To conclude the proof we just have to apply the Krein-Milman theorem taking into consideration that F_0 contains the extremal points of F, since they are the limits $\lim_{n,\mathcal{U}} x_n$ over the non-trivial ultrafilters \mathcal{U} in \mathbb{N} , and F is a convex weak*-compact set.

Proposition 6. Let $\alpha_1, \alpha_2, \ldots, \alpha_m$ be positive real numbers with $\sum_{i=1}^m \alpha_i = 1$ ($\alpha_i > 0$) and let $\mathcal{U}_1, \mathcal{U}_2, \ldots, \mathcal{U}_m$ be non-trivial ultrafilters in \mathbb{N} for which there exists a Toeplitz sequence $\Lambda = (\lambda_n)_{n \in \mathbb{N}}$ such that

$$\left(x \to \sum_{i=1}^{m} \alpha_i \lim_{n, \mathcal{U}_i} x_n\right) \in \overline{\Lambda}^* \quad (x = (x_n) \in \ell_{\infty}),$$

the for every sequence of real numbers (α'_i) satisfying $\alpha'_i \ge 0$ and $\sum_{i=1}^m \alpha'_i = 1$ there exists a Toeplitz sequence $\Lambda' = (\lambda'_n)_{n \in \mathbb{N}}$ such that

$$\left(x \to \sum_{i=1}^{m} \alpha'_{i} \lim_{n, \mathcal{U}_{i}} x_{n}\right) \in \overline{\Lambda'}^{*} \quad (x = (x_{n}) \in \ell_{\infty}).$$

Proof. We may assume that the ultrafilters U_1, U_2, \ldots, U_m are different and, therefore, there exist disjoint subsets M_1, M_2, \ldots, M_m of \mathbb{N} such that $M_i \in U_i$ for $i = 1, 2, \ldots, m$. Since

$$\left(x \to \sum_{i=1}^{m} \alpha_i \lim_{n, \mathcal{U}_i} x_n\right) \in \overline{\Lambda}^*$$

there exists an ultrafilter \mathcal{U} in \mathbb{N} such that

$$\sum_{i=1}^{m} \alpha_i \lim_{n,\mathcal{U}_i} x_n = \lim_{n,\mathcal{U}} \lambda_n(x)$$

for every $x = (x_n) \in \ell_{\infty}$. Then

$$\alpha_{i}\lim_{n,\mathcal{U}_{i}}x_{n}=\lim_{n,\mathcal{U}}\lambda_{n}\left(x\chi_{M_{i}}\right)$$

for $i = 1, 2, \ldots, m$, and hence

$$\sum_{i=1}^{m} \alpha_{i}^{\prime} \lim_{n, \mathcal{U}_{i}} x_{n} = \lim_{n, \mathcal{U}} \sum_{i=1}^{m} \frac{\alpha_{i}^{\prime}}{\alpha_{i}} \lambda_{n} \left(x \chi_{M_{i}} \right) = \lim_{n, \mathcal{U}} \sum_{i=1}^{m} \alpha_{i}^{\prime} \frac{\lambda_{n} \left(x \chi_{M_{i}} \right)}{\lambda_{n} \left(\chi_{M_{i}} \right)}$$

for all $x = (x_n) \in \ell_{\infty}$, which proves our claim since $(\lambda_n (.\chi_{M_i}) / \lambda_n (\chi_{M_i}))_{n \in \mathbb{N}}$ (i = 1, 2, ..., m) are essentially Toeplitz sequences. Indeed, if

$$M'_{i} = \left\{ n \in \mathbb{N} : \lambda_{n}(\chi_{M_{i}}) > \frac{\alpha_{i}}{2} \right\} \quad (\in \mathcal{U})$$

and we put

$$\lambda_n^i(x) = \frac{\lambda_n(x\chi_{M_i})}{\lambda_n(\chi_{M_i})} \quad \text{for } n \in M'_i, \qquad \lambda_n^i(x) = \lambda_n(x) \quad \text{for } n \notin M'_i,$$

then $(\lambda_n^i)_{i,n\in\mathbb{N}}$ is a Toeplitz sequence which, equivalently, can replace

$$\left(\frac{\lambda_n(.\chi_{M_i})}{\lambda_n(\chi_{M_i})}\right)_{i,n\in\mathbb{N}}$$

Given two non-trivial ultrafilters \mathcal{U}_1 and \mathcal{U}_2 in \mathbb{N} , we will write $\mathcal{U}_1 \simeq \mathcal{U}_2$, meaning that there is a Toeplitz sequence $\Lambda_{\alpha} = (\lambda_n)_{n \in \mathbb{N}}$ such that

$$\alpha \lim_{n,\mathcal{U}_1} x_n + (1-\alpha) \lim_{n,\mathcal{U}_2} x_n = \lim_{n,\mathcal{U}} \lambda_n(x)$$

for every $x = (x_n) \in \ell_{\infty}$ and some non-trivial ultrafilter \mathcal{U} in \mathbb{N} and some $0 < \alpha < 1$, that is,

$$\left(x \to \alpha \lim_{n,\mathcal{U}_1} x_n + (1-\alpha) \lim_{n,\mathcal{U}_2} x_n\right) \in \overline{\Lambda}^*_{\alpha}$$

Then from Proposition 6 it follows that the same holds for every $0 < \alpha < 1$.

Given two non-trivial ultrafilters \mathcal{U}_1 and \mathcal{U}_2 in \mathbb{N} , we will write $\mathcal{U}_1 \leq \mathcal{U}_2$ meaning that there exists a Toeplitz sequence $(\lambda_n)_{n \in \mathbb{N}}$ such that

$$\lim_{n,\mathcal{U}_1} x_n = \lim_{n,\mathcal{U}_2} \lambda_n(x)$$

for every $x = (x_n) \in \ell_{\infty}$. Since the product of two Toeplitz matrices is a Toeplitz matrix, $\mathcal{U}_1 \leq \mathcal{U}_2 \leq \mathcal{U}_3$ implies $\mathcal{U}_1 \leq \mathcal{U}_3$.

Let φ be a permutation of \mathbb{N} and \mathcal{U} be a non-trivial ultrafilter in \mathbb{N} . Then $\varphi(\mathcal{U})$ denote the ultrafilter consisting of all the sets $\varphi(M)$ with $M \in \mathcal{U}$. It is easily seen that $\mathcal{U} \leq \varphi(\mathcal{U}) \leq \mathcal{U}$ for every permutation φ of \mathbb{N} and every ultrafilter \mathcal{U} .

Proposition 7. $\mathcal{U}_1 \simeq \mathcal{U}_2$ if and only if there exists an ultrafilter \mathcal{U} such that $\mathcal{U}_1 \leq \mathcal{U}$ and $\mathcal{U}_2 \leq \mathcal{U}$.

Proof. Assume that $\mathcal{U}_1 \simeq \mathcal{U}_2$, rejecting the trivial case $\mathcal{U}_1 = \mathcal{U}_2$. From the proof of Proposition 6 it follows that there exists an ultrafilter \mathcal{U} such that $\mathcal{U}_1 \leq \mathcal{U}$ and $\mathcal{U}_2 \leq \mathcal{U}$.

Now suppose $\mathcal{U}_1 \leq \mathcal{U}$ and $\mathcal{U}_2 \leq \mathcal{U}$. Then there exist two Toeplitz sequences $(\lambda'_n)_{n \in \mathbb{N}}$ and $(\lambda''_n)_{n \in \mathbb{N}}$ such that

$$\lim_{n,\mathcal{U}_1} x_n = \lim_{n,\mathcal{U}} \lambda'_n(x)$$

and

$$\lim_{n,\mathcal{U}_2} x_n = \lim_{n,\mathcal{U}} \lambda_n''(x)$$

for every $x = (x_n) \in \ell_{\infty}$. Then, since

$$\alpha \lim_{n,\mathcal{U}_1} x_n + (1-\alpha) \lim_{n,\mathcal{U}_2} x_n = \lim_{n,\mathcal{U}} [\alpha \lambda'_n + (1-\alpha)\lambda''_n](x)$$

for every $x = (x_n) \in \ell_{\infty}$ and $0 < \alpha < 1$, and $(\alpha \lambda'_n + (1-\alpha)\lambda''_n)_{n \in \mathbb{N}}$ is a Toeplitz sequence, it follows that $\mathcal{U}_1 \simeq \mathcal{U}_2$.

Theorem 8. F_0 is a convex set if and only if $\mathcal{U}_1 \simeq \mathcal{U}_2$ for every pair of nontrivial ultrafilters \mathcal{U}_1 and \mathcal{U}_2 in \mathbb{N} .

Proof. Of course, if F_0 is a convex set, $\mathcal{U}_1 \simeq \mathcal{U}_2$ for every pair of ultrafilters \mathcal{U}_1 and \mathcal{U}_2 in \mathbb{N} .

Suppose $\mathcal{U}_1 \simeq \mathcal{U}_2$ for every pair of ultrafilters \mathcal{U}_1 and \mathcal{U}_2 in \mathbb{N} . Let $f_1, f_2 \in F_0$, then there exist two Toeplitz sequences $(\lambda'_n)_{n \in \mathbb{N}}$ and $(\lambda''_n)_{n \in \mathbb{N}}$ such that

$$f_1(x) = \lim_{n, \mathcal{U}_1} \lambda'_n(x)$$

and

$$f_2(x) = \lim_{n, \mathcal{U}_2} \lambda_n''(x)$$

for every $x \in \ell_{\infty}$ and some ultrafilters \mathcal{U}_1 and \mathcal{U}_2 . Then, since $\mathcal{U}_1 \simeq \mathcal{U}_2$, there exist two Toeplitz sequences $(\mu'_n)_{n \in \mathbb{N}}$ and $(\mu''_n)_{n \in \mathbb{N}}$, and an ultrafilter \mathcal{U} such that

$$\lim_{n,\mathcal{U}_1} x_n = \lim_{n,\mathcal{U}} \mu'_n(x), \quad \lim_{n,\mathcal{U}_2} x_n = \lim_{n,\mathcal{U}} \mu''_n(x)$$

for every $x = (x_n) \in \ell_{\infty}$. Now, since the product of the Toeplitz matrices corresponding to the pairs $((\mu'_n)_{n \in \mathbb{N}}, (\lambda'_n)_{n \in \mathbb{N}})$ and $((\mu''_n)_{n \in \mathbb{N}}, (\lambda''_n)_{n \in \mathbb{N}})$ is a Toeplitz matrix, we may assume $\mathcal{U}_1 = \mathcal{U}_2 = \mathcal{U}$. Therefore,

$$\alpha f_1(x) + (1-\alpha)f_2(x) = \lim_{n,\mathcal{U}} \left[\alpha \lambda'_n + (1-\alpha)\lambda''_n\right](x)$$

for every $x \in \ell_{\infty}$ and $0 < \alpha < 1$. This proves that $\alpha f_1 + (1 - \alpha)f_2 \in F_0$ for every $0 < \alpha < 1$, and hence, that F_0 is a convex (under the above hypothesis).

Problem. Is F_0 a convex set?

If F_0 is not a convex set, then $F_0 \neq F$ and F_0 is not weakly^{*} compact. Therefore, for every Toeplitz sequence Λ there exists a generalized Toeplitz limit $f \notin \overline{\Lambda}^*$ $(f \in F_0)$.

Proposition 9. For every non-trivial ultrafilter \mathcal{U}_0 in \mathbb{N} , the cardinal number of the set

$$P(\mathcal{U}_0) = \{\mathcal{U} : \mathcal{U} \leq \mathcal{U}_0\}$$

is c, and the cardinal number of the set

$$Q(\mathcal{U}_0) = \{\mathcal{U} : \mathcal{U} \ge \mathcal{U}_0\}$$

is 2^c. If A is a set of ultrafilters in \mathbb{N} with cardinal number less than 2^c, then there exists an ultrafilter \mathcal{U}_1 such that $A \cap Q(\mathcal{U}_1) = \emptyset$.

Proof. Indeed, the cardinal number of $P(\mathcal{U}_0)$ is less than or equal to the cardinal number of the set of Toeplitz sequences, and therefore card $P(\mathcal{U}_0) \leq c$. On the other hand, since $P(\mathcal{U}_0)$ contains all the ultrafilters $\varphi(\mathcal{U}_0)$ corresponding to the permutations φ of \mathbb{N} , we have card $P(\mathcal{U}_0) \geq c$. In the same way, card $Q(\mathcal{U}_0) \geq c$.

Now we are going to see that card $Q(\mathcal{U}_0) = 2^c$. Let $\lambda_n(x) = x_k$ for

$$\binom{k}{2} < n \le \binom{k+1}{2}$$
 $\binom{k}{2} = \frac{k(k-1)}{2}$.

Then $(\lambda_n)_{n \in \mathbb{N}}$ is a Toeplitz sequence. For each ultrafilter \mathcal{U}_0 let us put

$$M_i = \left\{ n = \binom{k}{2} + i : k \in M \right\}$$

for every $M \in \mathcal{U}_0$. Then the sets M_i define ultrafilters \mathcal{U}_i . Since

$$M_i\cap M_j\cap\left\{n\in\mathbb{N}:n>\binom{k}{2}
ight\}=arnothing$$

for $1 \leq i < j \leq k$, it follows that the ultrafilters \mathcal{U}_i are different. As in Theorem 5, let us consider the continuous map $u \mapsto f(u, .)$ from $\Omega = \beta \mathbb{N} \setminus \mathbb{N}$ into ℓ_{∞}^* such that

$$f(u,x) = \lim_{n,\mathcal{U}} \lambda_n(x)$$

for every $x \in \ell_{\infty}$ and $u = \lim_{n,\mathcal{U}} n \in \Omega = \beta \mathbb{N} \setminus \mathbb{N}$, so that we can identify u with \mathcal{U} . Then

$$\left\{ \mathcal{U} = u \in \Omega : f(u, x) = \lim_{n, \mathcal{U}_0} x_n \text{ for all } x = (x_n) \in \ell_\infty \right\}$$

is an infinite closed set (because it contains the ultrafilters \mathcal{U}_i). From this it follows (according to [E-S, pag. 132]) that the cardinal number of this set is 2^c , and hence that $Q(\mathcal{U}_0) = 2^c$ (since card $\Omega = 2^c$ according to [E-S, pag. 132]). Finally, if card $A < 2^c$, then

$$\operatorname{card} \left[\int \{ P(\mathcal{U}) : \mathcal{U} \in A \} \le c \cdot \operatorname{card} A < 2^c \quad (= \operatorname{card} \Omega) \right]$$

and therefore there exists a non-trivial ultrafilter $\mathcal{U}_1 \notin \bigcup \{P(\mathcal{U}) : \mathcal{U} \in A\}$, which implies $A \cap Q(\mathcal{U}_1) = \emptyset$.

Proposition 10. Let us assume that F_0 is a convex set. Then, if $(\mathcal{U}_n)_{n \in \mathbb{N}}$ is a sequence of non-trivial ultrafilters in \mathbb{N} , there exists an ultrafilter \mathcal{U} such that $\mathcal{U}_n \leq \mathcal{U}$ for every $n \in \mathbb{N}$.

Proof. Let $(M_n)_{n \in \mathbb{N}}$ be a sequence of disjoint infinite subsets of \mathbb{N} . Then there exists a sequence $(\varphi_n)_{n \in \mathbb{N}}$ of permutations of \mathbb{N} such that $M_n \in \varphi_n(\mathcal{U}_n)$ for every $n \in \mathbb{N}$. If F_0 is a convex set, Corollary 4 implies that

$$\left(x \to \sum_{n=1}^{\infty} 2^{-n} \lim_{k,\varphi_n(\mathcal{U}_n)} x_k\right) \in F_0 \quad (x = (x_n)_{n \in \mathbb{N}}).$$

Therefore, there exists a Toeplitz sequence $(\lambda_k)_{k \in \mathbb{N}}$ and an ultrafilter \mathcal{U} in \mathbb{N} such that

$$\sum_{n=1}^{\infty} 2^{-n} \lim_{k,\varphi_n(\mathcal{U}_n)} x_k = \lim_{k,\mathcal{U}} \lambda_k(x)$$

for every $x = (x_k) \in \ell_{\infty}$, and therefore

$$2^{-n}\lim_{k,\varphi_n(\mathcal{U}_n)} x_k = \lim_{k,\mathcal{U}} \lambda_k(x\chi_{M_n})$$

and

$$\lim_{k,\varphi_n(\mathcal{U}_n)} = \lim_{k,\mathcal{U}} 2^n \lambda_k(x\chi_{M_n}) = \lim_{k,\mathcal{U}} \frac{\lambda_k(x\chi_{M_n})}{\lambda_k(\chi_{M_n})}$$

for every $x = (x_n) \in \ell_{\infty}$. Since $(\lambda_k(.\chi_{M_n})/\lambda_k(\chi_{M_n}))_{n \in \mathbb{N}}$ is essentially a Toeplitz sequence for all $n \in \mathbb{N}$ (as in Proposition 6), it follows that $\mathcal{U}_n \leq \varphi_n(\mathcal{U}_n) \leq \mathcal{U}$ and $\mathcal{U}_n \leq \mathcal{U}$ for every $n \in \mathbb{N}$.

Theorem 11. For any Toeplitz sequence $(\lambda_k)_{n \in \mathbb{N}}$, there exists some $x \in \ell_{\infty}$ for which $\lim_n \lambda_n(x)$ does not exist. That is to say, there exist two non-trivial ultrafilters $\mathcal{U}_1, \mathcal{U}_2$ in \mathbb{N} and an element $x \in \ell_{\infty}$ such that

$$\lim_{n,\mathcal{U}_1}\lambda_n(x)\neq \lim_{n,\mathcal{U}_2}\lambda_n(x).$$

Proof. Indeed, if the ordinary limit

$$\lim_{n} \lambda_n(\chi_A) = \mu(A)$$

existed for every set $A \subseteq \mathbb{N}$, then, according to the Hahn–Vitali–Saks–Nikodym theorem [D-U, I. 4.8], μ would turn out to be countably additive (as a limit of the countably additive measures

$$\mu_n: \mu_n(A) = \lambda_n(\chi_A) \quad (A \subseteq \mathbb{N})),$$

which would lead us to a contradiction: $1 - \mu(\mathbb{N}) = \sum_{n=1}^{\infty} \mu(\{n\}) = 0$. The result also follows from Schur property of ℓ_1 .

Definition 12. Given a non-trivial ultrafilter \mathcal{U}_0 in \mathbb{N} and a Toeplitz sequence $\Lambda = (\lambda_n)_{n \in \mathbb{N}}$ we define the primitive set relative to \mathcal{U}_0 as the set $P = P(\mathcal{U}_0, \Lambda)$ consisting of all the ultrafilters \mathcal{U} such that

$$\lim_{n,\mathcal{U}_0} x_n = \lim_{n,\mathcal{U}} \lambda_n(x)$$

for all $x = (x_n) \in \ell_{\infty}$.

Given a second Toeplitz sequence $\Lambda' = (\lambda'_n)_{n \in \mathbb{N}}$ we define the *reflexive set* relative to \mathcal{U}_0 as the set $R = R(\mathcal{U}_0, \Lambda, \Lambda')$ consisting of the ultrafilters \mathcal{U}' such that

$$\lim_{n,\mathcal{U}'} x_n = \lim_{n,\mathcal{U}} \lambda'_n(x)$$

for every $x = (x_n) \in \ell_{\infty}$ and some $\mathcal{U} \in P(\mathcal{U}_0, \Lambda)$.

Proposition 13. Identifying, as in the proof of Proposition 9, every nontrivial ultrafilter \mathcal{U} in \mathbb{N} with $u = \lim_{n,\mathcal{U}} n \in \Omega = \beta \mathbb{N} \setminus \mathbb{N}$, we have that every primitive set $P = P(\mathcal{U}_0, \Lambda)$ is closed and has empty interior, and every refelexive set $R = R(\mathcal{U}_0, \Lambda, \Lambda')$ is closed.

Proof. Let $u \mapsto f(x, .)$ be a continuous map from $\beta \mathbb{N}$ into ℓ_{∞}^* such that $f(n, x) = \lambda(x)$. Then

$$\left\{ u \in \Omega : f(u, x) = \lim_{n, \mathcal{U}_0} x_n \right\}$$

is a closed set and, hence, so is P.

On the other hand, if P had an interior point, there would exist an openclosed U in Ω such that

$$\lim_{n,\mathcal{U}_0} x_n = \lim_{n,\mathcal{U}} \lambda_n(x) \quad (x = (x_n) \in \ell_\infty)$$

for every $\mathcal{U} \in U$. Let M be a subset of \mathbb{N} such that $\overline{M} \smallsetminus M = U$, then that equality would hold for every non-trivial ultrafilter $\mathcal{U} \ni M$ and the limit of the sequence $(\lambda_n(x))_{n \in M}$ should exist for every $x \in \ell_{\infty}$, which contradicts Theorem 11.

Since $P = P(\mathcal{U}_0, \Lambda)$ is a compact set, the set of all the generalized limits f on ℓ_{∞} such that

$$f(x) = \lim_{n,\mathcal{U}} \lambda'_n(x)$$

for some $\mathcal{U} \in P$ is a weakly^{*} closed set and, hence, the set $R = R(\mathcal{U}_0, \Lambda, \Lambda')$ is closed as well.

Now, using the Continuum Hypothesis (CH) we are going to prove the following theorem.

Theorem 14. Given a non-trivial ultrafilter \mathcal{U}_0 in \mathbb{N} , $\mathcal{U}_0 \simeq \mathcal{U}_1$ holds for every non-trivial ultrafilter \mathcal{U}_1 in \mathbb{N} if and only if some reflexive set $R = R(\mathcal{U}_0, \Lambda, \Lambda')$ has an interior point.

Proof. Suppose that $R = R(\mathcal{U}_0, \Lambda, \Lambda')$ has an interior point. Then there exists an open-closed non-empty set $U \subseteq R$. Let M be an infinite subset of \mathbb{N} such that $\overline{M} \setminus M = U$ and let φ be a bijection from \mathbb{N} onto M. If $\Lambda'' = (\lambda''_n)_{n \in \mathbb{N}}$ is a Toeplitz sequence such that $\lambda''_{\varphi(n),n} = 1$ and $\lambda''_{\varphi(n),k} = 0$ for every $k \neq n$, we have that for each $\mathcal{U}_1 \in \Omega$ there exists $\mathcal{U}' \in R$ such that

$$\lim_{n,\mathcal{U}_1} x_n = \lim_{n,\mathcal{U}_1} \lambda_{\varphi(n)}''(x) = \lim_{n,\mathcal{U}'} \lambda_n''(x)$$

for every $x = (x_n) \in \ell_{\infty}$. Therefore,

$$\lim_{n,\mathcal{U}_1} x_n = \lim_{n,\mathcal{U}} \sum_{i=1}^{\infty} \lambda'_{ii} \lambda''_{ik} x_k = \lim_{n,\mathcal{U}} \lambda''_n(x)$$

for every $x = (x_n) \in \ell_{\infty}$ if we choose $\mathcal{U} \in P$ so that

$$\lim_{n,\mathcal{U}'} x_n = \lim_{n,\mathcal{U}} \lambda'_n(x)$$

Then, by Proposition 7, we have $\mathcal{U}_0 \simeq \mathcal{U}_1$ for every $\mathcal{U}_1 \in \Omega$.

Now, assume that every reflexive set $R = R(\mathcal{U}_0, \Lambda, \Lambda')$ lacks interior points. It will suffice to prove that $\bigcup R(\mathcal{U}_0, \Lambda, \Lambda')$ does not have interior points either. With this aim, it is enough to prove that the union $\bigcup_{\alpha \in A} R_\alpha$ of non-dense closed sets does not contain a non-empty open-closed set \mathcal{U}_0 if card $A \leq c$. In order to do this, we proceed as in Baire's category theorem, using (CH) and Cantor's separability property: for every decreasing sequence of non-empty open-closed sets there exists a non-empty open-closed set which is contained in all sets of the sequence. Indeed, if A is the set of all ordinal numbers less than $c = \omega_1$, supposing that a decreasing family $(U_\alpha)_{\alpha < \alpha_0}$ of non-empty open-closed sets satisfying $R_\alpha \cap U_\alpha = \emptyset$ for every $\alpha < \alpha_0$ has been constructed and U is a non empty open-closed set contained in $\bigcap_{\alpha < \alpha_0} U_\alpha$, since $R_{\alpha_0} \not\supseteq U$ we deduce that there exists a non-empty open-closed set $U_{\alpha_0} \subseteq U$ such that $R_{\alpha_0} \cap U_{\alpha_0} = \emptyset$. To conclude the proof it is enough to note that every $x \in \bigcap_{\alpha < c} U_\alpha$ does not belong to $\bigcup_{\alpha < c} R_\alpha$ and belongs to U_0 if we take $U_1 \subseteq U_0$.

Corollary 15 (CH). Given a non-trivial ultrafilter \mathcal{U}_0 in \mathbb{N} , we have $\mathcal{U}_0 \simeq \mathcal{U}_1$ for every non-trivial ultrafilter \mathcal{U}_1 in \mathbb{N} if and only if some reflexive set $R = R(\mathcal{U}_0, \Lambda, \Lambda') = \Omega \ (= \beta \mathbb{N} \setminus \mathbb{N}).$

References

- [D-U] J. DIESTEL & J. J. UHL, JR., Vector Measures, American Mathematic Society, 1977.
- [E-S] R. ENGELKING & SIEKLUCKI, Outline of General Topology, North-Holland Pub. Co., 1968.
- [K] K. KNOPP, Theory and applications of infinite series, Blackie, 1946.

(Recibido en mayo de 1999)

DEPTO. ANÁLISIS MATEMÁTICO FACULTAD C. C. MATEMÁTICAS UNIVERSIDAD COMPLUTENSE 28040 MADRID, ESPAÑA (SPAIN)

1

1

1 1 1