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The problem of assigning a sum, finite or infinite, to a divergent series was
already studied by Euler. Several approaches have been made towards the
solution, but none has been fully satisfactory. The problem rests on the con-
struction of a generalized limit Limn, that is, a functional f on the space of
real sequences x = (xn) such that:

1. f(x) E i[-oo, 00] for any sequence x.
2. f(x) = limn Xn for any convergent sequence x = (xn).

3. f(ax + by) = af(x) + bf(y) for each couple of real numbers a, b and for
each couple of sequences x, y, except in the case of indetermination.

4. f(x) ::::0 for each x ::::0, i. e., Xn ::::0 for all n E No
A solution to the problem is given (due to the compactness of i) by the limit
limn,u over a non trivial ultrafilter U in N consisting of unbounded subsets of
N. This limit can be approximated by limits over filters F with countable basis
in N which are finer than the Frechet filter, coarser than the given ultrafilter U.
Then the inferior limit limn,yxn and the superior limit limn,yxn give a lower
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and upper bound for limn,u Xn. Moreover, for each sequence (xn), there exists
one such filter :F ~ U such that limn,}" Xn = limn,u Xn.

Conversely, if Limn is a multiplicative generalized limit over all bounded real
sequences, that is,

then there is an ultrafilter U in N such that Limnxn = limn,u Xn for any
bounded sequence (xn).

For any generalized limit f E £7x, (= (£00) *) there exists a finitely additive
measure J1 = J1j 2: 0, defined over the subsets of N, such that

f(x) = i xndJ1(n) (x = (xJ\£oo),

J1(N) = 1 and J1( {n}) = 0 for all n E No Conversely, if J1 2: 0 is a finitely additive
measure defined over the subsets of N, such that J1(N) = 1 and J1( {n}) = 0 for
any n EN, then the integral

f(x) = i xndJ1(n)

defined for all x = (z.,) E £00' gives a generalized limit f = Limn over £00'
i.e., over all bounded sequences of real numbers. Hence, f (XA) = J1(A) for any
subset A of Nand Ilfll = 1.

If (Ai)iEJ is a net of elements Ai = (Ain)nEN E £1 satisfying IIAil11 ~ M
(i E N) for a given constant M > 0, lim, Ain = 0 for any n E Nand
lim, I::=1 Ain = 1, then we have

00
lim L AinXn = lim Xn

, n
n=l

for all convergent sequences (xn).

Hence,
00

f(x) = lim L AinXn,
n=l

defines a linear extension of the usual limit Lim Xn (E R) over the sequences
(xn) for which the limit lim, I::=1 AinXn exists. This linear algorithm of con-
vergence for 1= N is due to Toeplitz (see [K]).

From the latter it turns out that if U is an ultrafilter of subsets of an infinite
directed set I, and finer than the corresponding Frechet filter, i. e., the filter of
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the sets {j :j > i}, we have that
ex>

f(x) = lim L AinXn
',U n=1

is a functional defined not only for bounded sequences, but also for those se-
quences (xn) for which the series L~=1 AinXn (i E I) are convergent.

This functional satisfies the above conditions 1-3, but it is not necessarily a
generalized limit since it does not satisfy 4. Indeed, if Ai,2k-l 2': 0, Ai,2k s:; 0 for
all kEN, L~1 Ai,2k-l = 2 and L~IAi,2k = -1 (i EN), for the sequences
Xn = 1 + (_l)n 2': 0 we have

ex>

lim L AinXn = -2 < O.,
n=1

On the contrary, if Ain > 0 for any i E I, n E N, then under the previous
conditions we have that

ex>

is a generalized limit over all sequences (xn) for which L~=1 AinXn is convergent
for all i E I. This holds in any case if each Ai has finite support, i. e., if for
each i E I there is an ni E N such that Ain = 0 for n 2': ni·

Now, we are going to prove the converse property.

Theorem 1. Let

S = {a = (ak)kEN E £1: Ilalll = 1, ak 2': 0 for all kEN}

and let (An)nEN be a sequence of elements An = (Ank)kEN E S weakly dense in
S. The, for any generalized limit f over £ex>' there exists an ultrafilter U in N
such that

ex>

f(x) = lim An(X) = lim L AnkXk (x = (xkhEN E £ex»
n,U n,U k=l

and

J.l(A) = lim LAnk (A <;;; N)
n,U

kEA

for the measure J.l= J.lf associated with t.
Proof. Since £1 is separable and IIfilii" = 1, by Goldstine's theorem, according
to which the unit ball of a Banach space is weak* -dense in the unit ball of
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the bidual, there exists a new sequence (An)nEN in f1 with II.\nl11 = 1 and an
ultrafilter in U in N such that

lim An(X) = f(x)
n,U

for all x E foo'
Let

and

M- (A) = lim L A;;k (A - = sup] -A, O})
n,U

kEA

for each subset A of N. Then
00

and

M+(N) - M-(N) = M(N) = f (xo) = 1

where Xo = (1,1, ... ). It follows that M-(A) = M-(N) = 0 for any subset A of
N. Hence

and

f(x) = lim L IAnkl Xk (x = (Xk) E foo),
n,U

kEN

from which it turns out that, for any generalized limit f over foo' there exists
a sequence (A~)nEN c S and an ultrafilter U in N such that

f(x) = lim A~(X)
n,U

for all x E foo. Then the result follows immediately.
It is well known that for every x E foo there exists a real continuous function

z' E C(j3N) (space of continuous functions on the Cech-Stone compactification
j3N of N) defined by

x' (u) = lim Xn (x = (xn) E foo)
n,U

for each ultrafilter U in Nand u = limn,u n E pN. We denote by x" the
restriction x' In', where n = j3N" N. Hence,

x"(u) = Iim z.; (x = (xn) E foo)
n,U
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for every non-trivial ultrafilter U in Nand u = limn,u n E n.
The mapping x H x' from £CXJ into C(,BN) is an isometric isomorphism, as

well as the mapping x H x" from £CXJ/ca into C(n). Therefore

Ilx"ll = li~ Ixnl = Ilxllloo/co

where x = (xn) E £CXJ'

Definition 2. A Toeplitz sequence is a sequence (An)nEN whose terms An =

(Ank)kEN lie in

S = {a = (an) E £1 : Italll = 1, an ~ 0 for all n EN}

and such that limn Ank = 0 for any kEN. A Toeplitz matrix is a matrix (Ank)
with real entries such that

1. Ank ~ 0 for all n, kEN.
2. 2:::%"=1 Ank = 1 for all n E No
3. limn Ank = 0 for all kEN.

Then the rows of a Toeplitz matrix form a Toeplitz sequence.
We denote by F the set of all generalized limits over £CXJ and by Fa the set

of the functionals f E £':x, for which there exists a Toeplitz sequence (An)nEN
and a non-trivial ultrafilter U in N such that

f(x) = lim An(X)
n,U

for all x E £CXJ,i. e., f = Iimn,u An in £':x, for the weak*-topology. Then Fa S;; F
and we say that the elements of Fa are Toeplitz generalized limits.

From the isometry between the spaces £CXJ/Ca and C(n) it follows that
F S;; (£CXJ/ co) *, furnished with the weak" -topology, is isomorphic to the set
of probability measures on n endowed with the weak*-topology. Therefore, F
is a weak" -compact set and the extremal points of F are the limits limn,u Xn
over the non-trivial ultrafilters U in N, corresponding to the 0 of Dirac of C(n)*.

Theorem 3. For any countable subset A of Fa, the w*-closure A:*, rests in Fa·
Hence, Fa is countably weak*-compact.

Proof. Let A = {Ji: i E N} S;; Fa. Since fi E Fa, there exists a Toeplitz
sequence (A~)nEN such that fi E X; where Ai = {A~ : n EN}. It is clear that

we can take A~k < 1 for k = 1,2, ... , i (A~ = (A~k) kEN)' Let A = U:1Ai =
{A~ : i, n E N}, then A is a Toeplitz sequence and A S;; X*. Therefore, A:* S;;
X* n Fa.

Corollary 4. Fa is a norm-closed set in £':x, (or in (£CXJ/ co) *).
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Theorem 5. F~ = F.

Proof. We are going to prove first that F~ contains the convex hull of Fa, from
which it follows that F~ is a convex set.

Let A = {An : n E N} be a Toeplitz sequence, then, for each f E X* n Fa
there is an ultrafilter U in N such that

f(x) = lim An(X)n,U
for all x E £00' Conversely, for any non-trivial ultrafilter U in N we have that
the functional

belongs to X* n Fa. From this follows the existence of a continuous map U H

f (U, .) from 0 = jJN <, N into r: such that

f(u,x) = lim An(X)n,U
where u = limn,u n E 0 and x E £00' in such a way that u s-r ] (u, .) is a contin-
uous mapping from 0 into X* nFa when the weak*-topology is considered. For
the Toeplitz sequence Ai = {A~ : n EN}, let u H fi(u,.) be the corresponding
mapping.

Let u 1, U2, ... ,Um be distinct elements of 0 and VI, V2, ... , Vm be distinct
open-closed neighborhoods of Ul,U2,' .. ,Um, respectively, in O. Then there
exist homeomorphisms 'PI, 'P2, ... , 'Pm from jJN onto jJN, corresponding to
permutations of N, such that 'Pi (Vi) = Vi. Let u; = 'P (Ui) for i = 1,2, ... ,m.
Then, for ai 2: 0 (i = 1,2, ... , m) and L::':1 ai = 1 we have that the mapping

m m

X H L adi(u;, x) = liW L aiA~i(n)(x) (x E £00)
i=l I 1 i=l

if Ul = .limn,u, n E 0, i. e.,
m

L adi(u;,.) E F~.
i=1

Since this holds for any system of open-closed neighborhoods distinct from 0,
namely VI, V2,"" Vm and u; E Vi, and the maps fi are continuous, we have
that

m

L adi(ui,.) E F~,
i=1

from which it follows immediately that F~ contains the convex hull of Fa.
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To conclude the proof we just have to apply the Krein-Milman theorem
taking into consideration that Fo contains the extremal points of F, since they
are the limits limn,u Xn over the non-trivial ultrafilters U in N, and F is a
convex weak* -cornpact set,

Proposition 6. Let a1, a2"", am be positive real numbers with 2::1 ai =
1 (ai > 0) and let U1, U2, , , . , Urn be non-trivial ultrafilters in N for which there
exists a Toeplitz sequence A = P'n)nEN such that

( x --+ ~ ai ~iJ~~xn) E"A* (x = (xn) E Roo) ,

the for every sequence of real numbers (a~) satisfying a~ 2: 0 and 2::':1a~ = 1
there exists a Toeplitz sequence A' = (A~)nEN such that

(
X --+ f a; lim xn) E N* (x = (xn) E Roo) ,

i=l n,U ...

Proof. We may assume that the ultrafilters U1,U2"" ,Urn are different and,
therefore, there exist disjoint subsets Af1, M2" .' , Mrn of N such that M, E Ui

for i = 1,2, , . , , m, Since

(
X --+ f ai lim xn) E"A*

i=l n,U",

there exists an ultrafilter U in N such that
rn

L ai lim Xn = lim An(X)
i=l n,Ui n,U

for every x = (xn) E Roo. Then

ai lim Xn = lim An (XXMJ
n,Ui n,U

for i = 1,2,., " m, and hence

~ 'I' I' ~ a; \ ( ) I' ~ .x, (XXMJL ai im Xn = imL - /\n XXMi = imL ai --(--)-. n,Ui n,U. ai n,u . An XM'
t=1 t=1 t=I'

for all x = (xn) E Roo, which proves our claim since (An (.XMJ IAn (XMJ)nEN
(i = 1,2"", m) are essentially Toeplitz sequences, Indeed, if

M: = {n EN: An(XMJ > ~i } (E U)

and we put

d (x) = An(XXMJ C M'
An () ror n E i'An XMi

A~(X) = An(X) for n ~ M:,
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then (A~);,nEl'I is a Toeplitz sequence which, equivalently, can replace

(
An (.XM,) )
An(XM,) i,nEl'I'

Given two non-trivial ultrafilters U1 and U2 in N, we will write U1 U2,

meaning that there is a Toeplitz sequence An = (An)nEl'I such that

0: lim Xn + (1- 0:) lim Xn = lim An(X)
n,U1 n,U2 n,U

for every x = (xn) E £00 and some non-trivial ultrafilter U in N and some
o < 0: < 1, that is,

(X ---+ 0: lim Xn + (1 - 0:) lim xn) EX:.
n,U1 n,U2

Then from Proposition 6 it follows that the same holds for every 0 < 0: < 1.
Given two non-trivial ultrafilters U1 and U2 in N, we will write U1 ~ U2

meaning that there exists a Toeplitz sequence (An)nEl'I such that

lim Xn = lim An(X)
n,U1 n,U2

for every x = (z.,) E £00' Since the product of two Toeplitz matrices is a
Toeplitz matrix, U1 < U2 < U3 implies U1 < U3.

Let sp be a permutation of Nand U be a non-trivial ultrafilter in N. Then
cp(U) denote the ultrafilter consisting of all the sets cp(M) with M E U. It
is easily seen that U ~ cp(U) ~ U for every permutation cp of N and every
ultrafilter U.

Proposition 7. U1 ~ U2 if and only if there exists an ultrafilter U such that
U1 < U and U2 ~ U.

Proof. Assume that U1 ~ U2, rejecting the trivial case U1 = U2. From the proof
of Pr position 6 it follows that there exists an ultrafilter U such that U1 ~ U
and U2'~ U.

Now suppose U1 ~ U and U2 ~ U. Then there exist two Toeplitz sequences
(A~)nEl'I and (A~)nEN such that

lim Xn = lim A~ (x)
n,U1 n,U

and

for every x = (xn) E £00' Then, since

0: lim Xn + (1- 0:) lim Xn = lim[O:A~+ (1- O:)A~](X)
n,U1 n,U2 n,U
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for every x = (Xn) E foo and a < a < 1, and (a>.~ + (1- a)>'~)nEN is a Toeplitz
sequence, it follows that U1 ~ U2.

Theorem 8. Fa is a convex set if and only if U1 ~ U2 for every pair of non-
trivial ultrafilters U1 and U2 in N.

Proof. Of course, if Fa is a convex set, U1 ~ U2 for every pair of ultrafilters U1

and U2 in N.
Suppose U1 ~ U2 for every pair of ultrafilters U1 and U2 in N. Let h,h E Fa,

then there exist two Toeplitz sequences (>'~JnEN and (>'~)nEN such that

h (x) = lim >.~ (x)
n,U1

and

h(x) = lim >.~(x)
n,U2

for every x E foo and some ultrafilters U1 and U2. Then, since U1 ~ U2, there
exist two Toeplitz sequences (JL~)nEN and (JL~)nEN, and an ultrafilter U such
that

for every x = (xn) E foo' Now, since the product of the Toeplitz matrices corre-
sponding to the pairs ((JL~)nEN, (>'~)nEN) and ((JL~)nEN, (>'~)nEN) is a Toeplitz
matrix, we may assume U1 = U2 = U. Therefore,

ah(x) + (1 - a)h(x) = lim [a>.~ + (1 - a)>.~] (x)
n,U

for every x E foo and a < a < 1. This proves that ah + (1 - a)h E Fa for
every 0 < a < 1, and hence, that Fa is a convex (under the above hypothesis).

Problem. Is Fa a convex set?
If Fa is not a convex set, then Fa =I- F and Fa is not weakly* compact.

Therefore, for every Toeplitz sequence A there exists a generalized Toeplitz
limit f ~ li.* (f E Fa)·

Proposition 9. For every non-trivial ultrafilter Ua in N, the cardinal number
of the set

P(Ua) = {U : U :::;Ua}

is c, and the cardinal number of the set

Q(Ua) = {U : U ::::Ua}
is 2c. If A is a set of ultrafilters in N with cardinal number less than 2c

, then
there exists an ultrafilter U1 such that An Q(Ud = 0.
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Proof. Indeed, the cardinal number of P(Uo) is less than or equal to the cardinal
number of the set of Toeplitz sequences, and therefore card P(Uo) :s; c. On the
other hand, since P(Uo) contains all the ultrafilters cp(Uo) corresponding to
the permutations sp of N, we have card P(Uo) :::::c. In the same way, card
Q(Uo) :::::c.

Now we are going to see that card Q(Uo) = 2c. Let .An(x) = Xk for

Then (.An)nENis a Toeplitz sequence. For each ultrafilter Uo let us put

u, = {n = G) + i :k EM}
for every M E Uo. Then the sets M, define ultrafilters Ui. Since

u,n Mj n { n EN: n > G) } = 0

for 1 :s; i < j :s; k, it follows that the ultrafilters Ui are different. As in
Theorem 5, let us consider the continuous map u H f(u,.) from n = ,6N" N
into £:x, such that

f(u,x) = lim.An(x)
n,U

for every x E £00 and u = limn,u n E n = ,6N <, N, so that we can identify u
with U. Then

{u = u En: f(u,x) = lim Xn for all x = (xn) E too}
n,Uo

is an infinite closed set (because it contains the ultrafilters Ui). From this it
follows (according to [E-S, pag. 132]) that the cardinal number of this set is 2c,

and hence that Q(Uo) = 2c (since card n = 2C according to [E-S, pag. 132]).
Finally, if card A < 2c, then

card U{P(U) :U E A} ::s; c- cardA < 2c (= cardfl)

and therefore there exists a non-trivial ultrafilter U1 ~ U{P(U) : U E A}, which
implies An Q(Ud = 0.

Proposition 10. Let us assume that Fo is a convex set. Then, if (Un)nEN is a
sequence of non-trivial ultrafilters in N, there exists an ultrafilter U such that
u; :s; U for every n EN.
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Proof. Let (Mn)nEN be a sequence of disjoint infinite subsets of N. Then there
exists a sequence ('Pn)nEN of permutations of N such that Mn E 'Pn(Un) for
every n E N. If Fa is a convex set, Corollary 4 implies that

(X --+ f: 2-n lim Xk) E Fa (x = (Xn)nEJ\I)·
n=l k,'f!n(Un)

Therefore, there exists a Toeplitz sequence (AkhEJ\I and an ultrafilter U in N
such that

00
LTn lim xk=limAk(x)
n=l k,'f!n(Un) k,U

for every x = (Xk) E £00' and therefore

Tn lim xk=limAk(xXMn)
k,'f!n(Un) k,U

and

1· li 2n \ ( ) n Ak(XXMJim = im /\k XXMn = im \ ( )k.'f!n(Un) k,U k,U /\k XMn
for every x = (xn) E £00' Since (Ak(.XMJ/Ak(XMJ)nEJ\I is essentially a
Toeplitz sequence for all n E N (as in Proposition 6), it follows that Un :::;
'Pn(Un) :::;U and u; < U for every n EN.
Theorem 11. For any Toeplitz sequence (Ak)nEN, there exists some x E £00
for which limn An(X) does not exist. That is to say, there exist two non-trivial
ultrafilters Ul, U2 in N and an element x E £00 such that

lim An(X) =I- lim An(X).
n,Ul n.U2

Proof. Indeed, if the ordinary limit

limAn(XA) = Ii(A)
n

existed for every set A ~ N, then, according to the Hahn-Vitali-Saks-Nikodym
theorem [D-U, I. 4.8], Ii would turn out to be countably additive (as a limit of
the countably additive measures

lin: Iin(A) = An(XA) (A ~ N)),
which would lead us to a contradiction: 1 - Ii(N) = 2::=11i( {n}) = O. The
result also follows from Schur property of £1.

Definition 12. Given a non-trivial ultrafilter Uo in N and a Toeplitz sequence
A = (An)nEN we define the primitive set relative to Uo as the set P = P(Ua, A)
consisting of all the ultrafilters U such that

lim Xn = lim An(X)
n,Uo n,U
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for all x = (Xn) E foo.

Given a second Toeplitz sequence N = ('\~)nEN we define the reflexive set
relative to Uo as the set R = R(Uo, A, N) consisting of the ultrafilters U' such
that

lim Xn = lim ,\~ (x)
n,U' n,U

for every x = (xn) E foo and some U E P(Uo, A).

Proposition 13. Identifying, as in the proof of Proposition 9, every non-
trivial ultrafilter U in N with u = limn,u n E n = ;3N "N, we have that
every primitive set P = P(Uo, A) is closed and has empty interior, and every
refelexive set R = R(Uo, A, N) is closed.

Proof. Let u >-t f(x,.) be a continuous map from;3N into f':xo such that fen, x) =
,\(x). Then

{u En: f(u,x) = lim xn}
n,Uo

is a closed set and, hence, so is P.
On the other hand, if P had an interior point, there would exist an open-

closed U in n such that

for every U E U. Let M be a subset of N such that M" M = U, then that
equality would hold for every non-trivial ultrafilter U 3 M and the limit of
the sequence (An(X))nEM should exist for every x E foo' which contradicts
Theorem 11.

Since P = P(Uo, A) is a compact set, the set of all the generalized limits f
on foP such that

f(x) = lim'\~(x)
n,U

for some U E P is a weakly* closed set and, hence, the set R = R(Uo, A, N) is
closed as well.

Now, using the Continuum Hypothesis (CH) we are going to prove the fol-
lowing theorem.

Theorem 14. Given a non-trivial ultrafilter Uo in N, Uo ~ U1 holds for every
non-trivial ultrafilter U1 in N if and only if some reflexive set R = R(Uo, A, N)
has an interior point.
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Proof. Suppose that R = R(Uo, A, A') has an interior point. Then there exists
an open-closed non-empty set U ~ R. Let M be an infinite subset of N such
that M "M = U and let <p be a bijection from Nonto M. If A" = (>'~)nEN is
a Toeplitz sequence such that >'~(n),n = 1 and >'~(n),k = 0 for every k i= n, we
have that for each U1 E n there exists U' E R such that

lim Xn = lim >'~(n)(x) = lim >.~(x)
n,U1 n,U1 n,U'

for every x = (xn) E £00' Therefore,
00

lim Xn = lim L>'~i>'~~Xk = lim>.~(x)
n,U1 n,U . n,U

t=1

for every x = (xn) E £00 if we choose U E P so that

lim Xn = lim >.~(x)
n,U' n,U

Then, by Proposition 7, we have Uo ~ UI for every U1 En.
Now, assume that every reflexive set R = R(Uo, A, A') lacks interior points.

It will suffice to prove that UR(Uo, A, A') does not have interior points either.
With this aim, it is enough to prove that the union UoE A Ro of non-dense closed
sets does not contain a non-empty open-closed set Uo if card A :::::c. In order
to do this, we proceed as in Baire's category theorem, using (CR) and Cantor's
separability property: for every decreasing sequence of non-empty open-closed
sets there exists a non-empty open-closed set which is contained in all sets of
the sequence. Indeed, if A is the set of all ordinal numbers less than c = WI,

supposing that a decreasing family (Uo)o<oo of non-empty open-closed sets
satisfying Ro n Uo = 0 for every 0: < 0:0 has been constructed and U is a non-
empty open-closed set contained in no<oo U«, since Roo 1!. U we deduce that
there exists a non-empty open-closed set Uoo ~ U such that Roo n Uoo = 0.
To conclude the proof it is enough to note that every x E no<c Uo does not
belong to Uo<c u; and belongs to U» if we take U1 ~ Ue.

Corollary 15 (CR). Given a non-trivial ultrafilter Uo in N, we have Uo ~ U1

for every non-trivial ultrafilter U1 in N jf and only if some reflexive set R =
R(Uo, A, A') = n (= I1N" N).
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