Revista Colombiana de Matematicas
Volumen 33 (1999), paginas 91-103

Harmonizable locally spatially
isotropic random fields
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ABSTRACT. In this paper, the local behavior of harmonizable spatially isotropic
random fields is considered. Spectral representations are obtained for general-
ized and ordinary harmonizable spatially isotropic fields with spatially isotropic
increments of order M. The representation of a field with spatially isotropic
increments of order M is also presented.

Keywords and phrases. Harmonizable fields; isotropic fields; spectral representa-
tions.

1991 Mathematics Subject Classification. Primary 60G60. Secondary 60G20.

1. Introduction

In recent years the study of harmonizable processes has played a central role
in the development of the theory of non-stationary processes. Crucial to this
development is the pioneering work of Chang and Rao [2] on bimeasures and
Morse-Transue integration. Their paper set the stage for the recent advances in
the theory. A recent account of the development of harmonizable processes and
some of their applications may be found in Swift [14]. That paper also contains
a detailed bibliography of the existing work on harmonizable processes.

The corresponding theory for harmonizable fields and their applications is
being developed by R. J. Swift in a series of papers [9]-[11], [13]-[15]. In this
paper, spectral representations for local classes of fields is developed.

91



92 RANDALL J. SWIFT

After the necessary background on harmonizable fields is presented, a brief
account of the development of local fields is given. The notion of a generalized
random field is central to this material and the required theory is detailed. The
paper concludes with spectral representations of several classes of local fields.

2. Background

In the following, the probability space, (2, X, P), is always present.

The desired class of random functions is obtained by considering a random
field X : R® — LZ(P) that is stationary. Recall that such a field can be
expressed as:

X(t) = / ] eMtdz(n), (1)

where Z(+) is a o-additive stochastic measure on the Borel o-algebra B of R",
with orthogonal values in the complex Hilbert space, L3(P), of centered random
variables. The covariance, r(:,-), of the field is

r(s,t)z/ ei(s_t>')‘dF()\),

where E(Z(A)Z(B)) = F(AN B), F a positive finite Borel measure on R".
Here E(-) denotes the expectation.

A generalization of the concept of stationarity is given by fields X : R* —
L%(P) with covariance r(-,-) expressible as

T(s,t) = / / eiA's—iAI»tdF(A’ A,),

where F(-,) is a complex bimeasure, called the spectral bimeasure of the field,
of bounded variation in the Vitali’s sense or more inclusively in Fréchet’s sense;
in which case the integrals are strict Morse-Transue (cf. Rao, [6] and Chang
and Rao [2]). The covariance as well as the field are termed strongly or weakly
harmonizable respectively. Every weakly or strongly harmonizable field X :
R™ — L?(P) has an integral representation given by (1), where Z : B — L?(P)
is a stochastic measure (not necessarily with orthogonal values) and is called
the spectral measure of the field. Both of these concepts reduce to the stationary
case if F' concentrates on the diagonal A = A’ of R® x R".

A general class of non-stationary processes which extends the ideas of the
harmonizable class was first considered by Cramér in 1952.
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Definition 2.1. A second-order random field X : R® — L%(P) is of Cramér
class (or class (C)) if its covariance function r(-,-) is representable as

T‘(tl,tz) = /" /"g(tl,A)g(tz,A,) dF(/\, Al) (2)

relative to a family {g(t,-),t € R} of Borel functions and a positive definite
function F(-,-) of locally bounded variation on R™ x R™, with each g satisfying
the (Lebesgue) integrability condition:

0< / / g(t1, A)g(ta, N) dF(A,X') < 00, t € R™

If F(-,-) has a locally finite Fréchet variation, then the integrals in equation
(2) are in the sense of (strict) Morse-Transue and the corresponding concept is
termed weak class (C).

3. Local classes of fields

In the modern statistical theory of turbulence, random fields with certain local
properties are often considered. A useful addition to this theory is given by
considering a random field X (£) which is not necessarily of class (C), but whose
increment field

IrX(t)=X({t+71)—X(t)
is of class (C). Rao (7], obtained the spectral representations for these locally
class (C) random fields. Rao showed that the representations are obtained
by considering generalized (in the sense of Gel’fand and Vilenkin, [4]) random
fields, since they provide the required differentiability structure. The notion of
a generalized field will now be given for completeness.

Consider the space K of infinitely differentiable functions A(t) having com-
pact supports, which with compact convergence becomes a locally convex lin-
ear topological space. A generalized random field X is a linear functional
X : K — C such that if {pn}, C K,¢n — 0 in the topology of K, then
X(¢n) — 0 in probability, as n — oo.

The mean of a generalized field is the linear functional

m(h) = E(X(h)), he K

and similarly its covariance is the bilinear (conjugate linear in the complex
case) functional

r(h1,h) = E(X(h1)X(hg)), hi€ K, i=1,2.
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Ordinary fields generate the corresponding generalized fields by the relation

X(h)= | X(t)h(t)dt for h €K,
Rn

The converse is not true unless an additional condition is assumed. That is, if
a generalized field X ( -) has point values (also called “of function space type”)
then the reverse implication holds.

Using this, and results from the theory of generalized functions, one defines
the derivative X (™1:-™n)(h) of a generalized field )?(h) as

X(mama)(py = (=1)M X (R(m1mn)) - M =my + ... + M.

Using these ideas, one can define the class of generalized class (C) fields as
follows.

Definition 3.1. A generalized random field X : K — C with zero mean and
covariance functional r(-,-) is of weak class (C) if it can be expressed as

i) = [ BOR(N)AFR,X) 3)

where F(-,-) is a function of locally bounded Fréchet variation satisfying where
|dF(A, X))

< 00 4

/" / (L +[IA12) (1 +[1A]2))% Y

where p > 0, || - || is the Euclidean length. Further the integrals relative to F'

are in the strict Morse-Transue sense and h; are the g-transforms of h;, i = 1,2

R = [ gt Nt (5)

This Definition was given by Rao [7] for class (C) fields and extended to weak
class (C) by Swift [14]. Spectral bimeasures F(-,-) which satisfy equation (4)
are known as tempered.

It may be shown that such an X (-) admits a representation

X(h) = / R(A)dZ(N)
where Z : B — L%(P) is a vector measure such that

E(Z(A)Z(B)) = /A /B dF(\, ).

If in the representation (3) g(t,A) = ei’\‘t, then the generalized randem field
X(-) will be a weakly harmonizable random field. That is, the covariance has
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representation

=

i) = [ [ BORAAFRX), ©

where F(,-) is a positive definite function which satisfies equation (4). Further,
one notes that the integrals relative to F' are in the strict Morse-Transue sense.

The theory of generalized fields will be used throughout the remaining sec-
tions of this paper.

A useful extension of the classes thus far considered was considered by Swift
[14] and is given by the class of fields X (-) for which the increments of order M
are of class (C). More specifically, if X (h), is an arbitrary generalized random
field, then it is a random field with class (C) increments of order M if its
generalized partial derivatives X (myma,... ’"‘")(h), where my+mo+...4+m, =
M are of class (C).

Swift showed that for a field to have class (C) increments, g must satisfy
further conditions. Specifically for the case of class (C) increments of order M,
it is required that g satisfies g(t, A — X') = g(¢,A)B(t,\’) for all t, A\, \" € R"
where

Mg(t,0)
axiange ... oagn 7 0 for e #0 @)
with
OMB(t,A)
oMy, = o (t, X)X, (8)

and ax(0,A) = ax # 0. One notes that these restrictions are satisfied if
g(t, \) = eirt,

Using this, Swift obtained the following representation of generalized random
fields with class (C) increments of order M.

Theorem 3.1. A generalized random field X(h) with Mth order class (C)
increments has spectral representation:

Xy =[R2 (N) + (0 Tarh0)
R"—{0}

where Zy () is the spectral measure associated with its class(C) Mth order
partial derivative field Y(-) = X(muma,....mn) (B)(.) and h is the g-transform
(5) of h with g satisfying g(t, A — X') = g(t,A)B3(t, X') for all t, A, A" € R" and
(7) and (8). More specifically,

Zy : B(R™ — {0}) = L3(P)
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is a measure such that
Fy (A, B) = E(Zy (A)Zy (B)),
which is of finite Vitali variation, where B(R™ — {0}) is the Borel o-algebra of

R™ — {0}. Further, (-,-) is the inner product and the Mth order gradient is
defined as:

T = (~D)Ma- (8™ /0N, 0™ [0X72,... 8™ [ONT).
The covariance functional of X (+) is given by

r(hy, ha) = / / Ry (A)ha(N)dF (A, X) + (A 30h1(0), arha(0))
"—{0} JR"~{0} )

with A a positive definite matrix.

As noted before, the conditions upon g are satisfied when g(t,A) = ei)"t, in

which case the previous representation specializes to:
= [ BNy )+ (D) (o, Tuh(0)
R"—{0

where Zy () is the spectral measure associated with its strongly harmonizable
Mth order partial derivative field Y(-) = X (m1m2.;mn)(h)(.) and h is the
Fourier transform of h and Zy, a a second-order random vector and v/ M as
defined above.

An important subclass of random fields satisfy an additional condition called
isotropy. Isotropic random fields X (-), have covariance r(-,-) which are invari-
ant under rotation and reflection. Isotropic fields play an important role in
the statistical theory of turbulence, where direction in space is unimportant
[17]). Swift [9] obtained the representation of a weakly harmonizable isotropic
covariance as

v([|As — A't][) /
=T ————"dF(A\, A 1
oo =2r(3) [ [T HESp e o)
where J,(-) is the Bessel function (of the first kind) of order v = 2% and
F(-,-) is a complex function of bounded Fréchet variation, with || - || denoting

the vector norm.

Isotropic covariances 7(s,t) are functions of the lengths [|s||, ||t|| of the
vectors 8,t and of the angle @ between s and £. Detailed studies of harmonizable
isotropic random fields can be found in the papers of Swift cited above.

Using the ideas presented above, Swift [14], obtained the representation of
a generalized random field with strongly harmonizable isotropic increments of
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order M as

oo h(m,n)

X(h )—a,,/]R h(t) Y ) Sh(u

m=0 I[=1
Tmes A1)
haiosdin bl R JIONT 11
A o Zm i)
|i|l=M

where E(ZL (B1)ZL,(B3)) = 6mm:0uF(B1, Bz), with F(-,-) as a tempered
function of bounded Vitali variation, and u = ﬁ a unit vector. Further,

2m + 2v)(m + 2v - 1)!
(2v)!m! ’
are the spherical harmonics on the unit n-sphere of order m with a,, > 0,02 =

22”“1‘(%)%% and X = (Xnm1,Xm2,--. ,Xmn) is a random vector which
satisfies

St (), 1<I<h(m,n)= m>1, Sh(u)=
m 0

E(XmiZt (B)) =0, k=1,...,n
and
0, for k # 7,

EXmeXa;) = {b for k = j

where the p; denotes the moments of h.

4. Harmonizable locally spatially isotropic fields

An addition to the theory given above is obtained by considering a random field
X :R x R™ — L3(P). The random field X (t,z) is both a function of a spatial
variable « and a time variable t. These fields are often useful in applications
such as the theory of turbulence, cf. Yaglom [17], and meteorology, cf. Jones
[5]. These fields have been previously considered in the stationary isotropic
case, and some results for these fields may be found in papers by Jones, [5]
and Roy [8], as well as the texts of Adler [1], Yadrenko [16], and Yaglom [17].
Recently, Swift [11], considered these fields in the harmonizable case. The
spectral representation of these fields, termed weakly harmonizable spatially
isotropic, is
00 h‘( v"’)

_ 1 zwt V+k /\”(EH) 1
X =an Y 3 shiw [ [ et Shaz .

m=0 [=0
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A natural problem, in light of the previous sections, is the spectral represen-
tation of a field X (¢, ) that has harmonizable spatially isotrcpic increments
in the spatial variable . The representation of a field X (¢,x) that has har-
monizable increments in the time variable ¢ was recently obtained by Swift
[15].

The fields under consideration are mappings on R x R™ and can thus be
regarded as mappings on R™*! so that the above outlined theory of generalized
fields may be applied with minor modifications detailed below. In light of this
theory, it is natural to consider an appropriate derivative field. More precisely,

Definition 4.1. A mapping X : R x R® — L?(P) is a strongly harmonizable
spatially isotropic random field with strongly harmonizable spatially isotropic
increments of order M if its generalized partial derivatives
dlmumasmn) X (R(t, z))
Ox(mi,ma,... . my)
where mj + mg + ... +m, = M are strongly harmonizable spatially isotropic.

A spectral representation for such a field is given in the following theorem.

Theorem 4.1. A generalized strongly harmonizable spatially isotropic ran-
dom field X (h) with strongly harmonizable spatially isotropic increments of
order M has spectral representation:

h(t,m))/ /n oy =

=, N (Alll)
> Y Sh(u / / giwt Jmtv Tt bt 2)dZY (w, A) dedt
s A or  (Mlzl)”

o0 h(mn)

tan Y Y Sh(u / / / ||| h(t, z)e™t dedt dW! (w)

m=0 1=0
where Z! (-, -) is the spectral measure associated with its strongly harmonizable
spatial isotropic partial derivative random field

§mimas.smn) X (h(t, z))

Y(t’ :E) = Ox(mi,ma,...,my) !
and
7z iwt Jotm (Allz]])
Rl (w, A =/ h(t, x)eit LE I gt 13
= fo Jao "2 Ry 19

is the Fourier-Bessel transform of h(t,x). More specifically,
Z}, : B(R x (0,00)) — L(P)
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is a measure such that F(:,, -, ) is of finite Vitali variation, where B(R x (0, 00))
is the Borel o-algebra of (R x (0,00)). Further, for each m = 0,1,... ,00 and
l=0,...,h(m,n) the stochastic measure W} (-) is defined by

Z! (w,€) — 2} (w, —€)
l _ m\"%> m\%)
Win(w) = limy k! '

Proof. Using the relationship between X and the partial derivative
6(m1,m2,... 'm"))?(h(t, m))/aw(ml,mz,... ,m,.)’

(cf. Yaglom [17]), it follows that since the measure F is tempered,

= (3(m1’m2""'m")h(t,m)> _ (—1)M §(mima,...,mn)

X 6m(m1,m2,...,m") ox(mi,mz,... ,mn

8(""1:"121 yMon)
= (-1) / / — X (t, @)h(t, z)dxdt.

dx(mima, .. ;my)

X(h(t,m))

Since the partial derivative
a(ml,mg,... ’m")j{;(h(t, m))/am(ml,mz,... ,m,.),

is a strongly harmonizable spatially isotropic field with spectral representation

o(mima,...,mn)  _

Y(t,z) = X(h(t,z))

Ox(mi,ma,... my)

oo h(m,n)

_ l twt V+m ’\”m”) l
=) ) Sm // Ol Zmled),

m=0 =0
then

~ a(ml,mmmvm")h(t,a?) M T
X( o ) =(-1) /_m/"Y(t,m)h(t,m)dzdt.

Integrating by parts repeatedly and noting that the various partial derivatives
of h(-,-) have compact supports one has

oo h(m,n)

~ 6(m1,m2, .,m,‘)h
X( Ox(mi,ma,.. .,m,t,)m ) //n Qn Z Z Sﬁn(u)

m=0 =0
TmsvQllzl]) 8mmar- ma) bt )
wt +l/ : .
dz, A) dzdt
/L+ /\||:z:||)" am(ml,mz,...,mﬂ) m(w? ) T

€
+ [ tim [ Garhl w0 a2, ),
R €

e—0 J_

where €7 M is the Mth order gradient.
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The partial derivative (™1™, mn) (¢, &) /@a(m1:M2:--Mn) can be replaced
by h(t, ) since the set of partial derivatives of functions  in X coincides with
the subspace of K, consisting of functions satisfying

Yo(h) =+ =Ym-1(h) =0.
Thus

oo h(m,n)

h(t,x)) //nanzzsl

m=0 [=0
tthm+u(/\“z”) "
// Nlz]])” —iome e ®)dZn, (w, ) dedt

/hm/ Iahl (w,A)dZE (w, \)

oo h(m,n)

[ [ X ¥ s

m=0 =0
/ / ghat ’"’;,"l ’\I’I’)””) (t, 2)dZ, (w, ) dedt

oo h(m,n)
+anz Z St (u /// llz||Mh(t, x)et dedt AW} (w),
m=0 [=0
where for m = 0,1,... ;00 and | = 0,...,h(m,n), the stochastic measure
WL (-) is defined by

Z! (w,e) = Zt, (w, —¢)

l _n m\*) m\%)

Whie) = liy Zos9 S (28,

This gives the desired spectral representation. ¥
Using the relationship

X(h) = A/n h(t,x) X (¢, x) dtdx

with the spectral representation of the previous theorem, (since X(-) is point
valued), the spectral representation of the ordinary field X (-, -) can be obtained

as
oo h(m,n)

l iwt Imev (AllZ]]) 4
X(t, m)—anm _ 2 Sk // o=l dZ}, (w, )

o0 h(m TL)

tan 30 S0 Shw [ fle]Me awh )

m=0 [=0

(14)
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This result is summarized in the following proposition.

Proposition 4.1. A strongly harmonizable spatially isotropic random field
with strongly harmonizable spatially isotropic increments of order M has a
spectral representation given by (14) where Z! (-,-) is the spectral measure
associated with its strongly harmonizable spatial isotropic partial derivative
random field
mi,ma,... ,Mn
Y(t, z) = lmayma )X(h(t,w))y
Ox(mi,ma,... ,mn)

and for each m = 0,1,...,00 and [ = 0,... ,h(m,n) the stochastic measure
W.(+) is defined by

Z! (w,e) — 2 (w,—€
W'(w)—gl_)o ( )k! ( )_

Now letting

Jm4v (Al|z]])
o (t, ||z)) = an// giwt AT 47! (w, A
(& ll=ll) = 0+ (All=z|[)¥ ( )

one has

E(¥,,(t, |ll) =
and

E(¥o (s, |21 T5: (8, [191)) = Smeme S F (s, 8, |1, 1))

using a form of Fubini’s theorem. More specifically, first apply z* € (L3(P))*
to both sides, then taking z* inside the integral, which is permissible, (cf. [3],
1V.9), since z* Z!, (-, -) is a scalar measure, the classical Fubini theorem applies,
Dunford and Schwartz, [3]. Hence, the above representation can be extended
for all time-varying random fields with Mth order spatially isotropic increments
which need not be harmonizable. These facts are summarized in the following
theorem.

Theorem 4.2. A random field X : Rx R™ — L3(P) is time-varying with Mth
order spatially isotropic increments iff it admits the spectral representation

X(t,x) =
oo p(m,n) oo h(m,n) '
Y Sh@tla tan Y Y Shw) [ llel e awhw)
m=0 1=0 m=0 1=0 R
where

\I/in(.,.),mzo,l,..., l=1,---,p(man)
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are a sequence of random fields such that
E(Yr(t, 121 T4 (2, 121) = SmmsOurbim (2,2, |2, |]])

and
oo

3 p(m,n)bu(t,t, |1l ]]) < co.

m=0

This result gives the representation of a time-varying field with Mth order
spatially isotropic increments and for M = 1 reduces to the representation of
a time varying field on a sphere, given by R. H. Jones [5].
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