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ABSTRACT. Let dx(t) = [¢(y(t)) + 1jJ(z(t))]dt, where y(t) and z(t) are inde-
pendent diffusion process. The problem of computing the moment generating
function and the moments of x[T(y, z)], where T(y, z) is a first passage time for
(y(t), z(t)), is considered and solved explicitly in particular instances.
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1. Introduction

We first consider the system of stochastic differential equations

dy(t)
dz(t)

j[y(t)] dt + [by] (tW/2 dB(t),
g[z(t)] dt + [czk(t)Jl/2 dW(t),

(1)
(2)

where b > 0, C > 0, j ~ ° and k ~ ° are constants, and B(t) and W(t) are
independent standard Brownian motions. Let

T(y, z) := inf{t ~ 0: (y(t), z(t)) ED (c ]R2)ly(0) = y, z(O) = z}.

In [6] the authors showed that if j = k = 0, then the (truly) two-dimensional
problems for which we can write that T(y, z) = T( ¢(y) + 'lj;( z)) for some func-
tions ¢(.) and 'lj;(.) are essentially those where D is a straight line or a circle.
Actually, we could also have two boundaries.
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Next, the author of the present paper (see [5]) generalized their results by
considering the system (1), (2). In this case, the boundary of the stopping
region D may be a parabola or an exponential function, for instance. More
precisely, let

M(y, Zj a) := E[e-aT(y,z)j,

where we assume that a is a real, positive parameter. Extending the results
contained in [5J to the case of two boundaries, we may state the following
results.

Proposition 1.1. Let

T(y, z) = inf{t ~ 0 : ¢(y(t)) + 'ljJ(z(t)) = Kl or K2Iy(O) = y, z(O) = z}.

Assume that ¢"(y) and 'ljJ"(z) exist and that ¢'(y) and 'ljJ'(z) are different from
zero for all couples in the continuation region

C := {(y, z) E {R2 : K, < ¢(y) + 'ljJ(z) < K2}.

Then a necessary condition to have the right to write that

M(y, z; a) = N(¢(y) + 'ljJ(z)j a)

(3)

(4)

is that

¢( ) _ d 2-J _e_ l-~ if j i= 2
y - (2 - j)2 Y + 2 - j Y

and
d 2 e

¢(y)=4In(y)+2In(y) ifj=2,

where d and e are constants (and we added the constant 2 under e in the last
expression for simplicity in the sequel).

Similarly, we must have:

and
b 2 E:

'ljJ(z) = ::tIn (z) + 2In(z) if k = 2,

where band E: are constants. Furthermore, we have the relationship bd = cb.

Remarks.
1. In the proof of Proposition 1.1, the author assumed that the functions N,

N' (= d:N(Wj a), where w:= ¢(y) + 'ljJ(z)) and N" are all differentiable
with respect to the parameter a.
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2. It was also assumed, without loss of generality, that the functions ¢J(.)
and 1/J(.) do not contain constant terms.

Corollary 1.1. A second necessary condition for the relation (4) to hold is
that the functions f(·) and g(.) that appear in (1) and (2) must be of the form

f(y) = ¢J'~Y) [/1¢J(y) - ~byj¢J"(y) +,B]

and
1

g(z) = 1/J'(z) 1/11/J(z) - ~czk1/J"(Z) + 'Y],

where /1, f3 and 'Yare constants. Furthermore, we assume that ¢J'(y) and 1/J'(z)
are -=J. 0 for all (y, z) E C, where C is defined in (3).

Now, in the present paper we are interested in computing the distribution
of the integral

rT(y,z)
J
o

[¢J(y(t)) + 1/J(z(t))] dt

for the cases when we can write that T(y, z) = T(¢J(y) +1/J(z)). In Section 2, the
problem of obtaining the moment generating function of the random variable
xIT(y, z)], where

dx(t) = 1¢J(y(t)) + 1/J(z(t))] dt, (5)

is treated. Next, Section 3 deals with the computation of the moments of
x[T(y, z)]. Examples solved explicitly are presented in Section 4. Finally,
concluding remarks are made in Section 5.

2. Moment generating function of x[T(y, z)]

We consider the three-dimensional diffusion process (x(t),y(t),z(t)) defined by
(5), (1) and (2). We may write that

r>:
x[T(y, z)] = x(O) + J

o
1¢J(y(t)) + 1/J(z(t))]dt. (6)

Let

L(x, y, z; s) := Ex [e-sx[T(y,z)]], (7)

where x = x(O) and we assume that s is real and positive. The function
L(x, y, z; s) satisfies the Kolmogorov backward equation

~ (byj Lyy + cz" Lzz) + fLy + gLz + (¢J(y) + 1/J(z) )Lx = 0, (8)



108 MARIO LEFEBVRE

where Lx := 8L/8x, etc. The equation is valid for x E R and for (y, z) in the
continuation region C defined in (3). We also have the boundary condition

L(x, y, z; s) = e-sx if ¢(y) + 'lj;(z) = K1 or K2. (9)

Next, we deduce from (6) and (7) that

L(x,y,z;s) = e-SXp(y,z;s) (10)

for a certain function P, so that Lx = -sL. Furthermore, if the functions ¢,
'lj;, f and 9 are as in Proposition 1.1 and Corollary 1.1, we may write that

P(y, z; s) = Q(Wj s), (11)

where

W := ¢(y) + 'lj;(z). (12)

It is now a simple matter to prove the following proposition.

Proposition 2.1. The function Q( w; s) satisfies the ordinary differential equa-
tion

~(Aw + B)QI/(w; s) + (J.LW + 6.)Q'(w; s) - swQ(w; s) = 0, (13)

where

, A .- bd (= cJ) (14)

B
be2 + C£2

(15 ).- ---
4

6. .- (3 + /. (16)

Theequetioa is valid for K1 < w < K2 and is subject to the boundary condi-
tions

(17)

Proof. Substituting (10) into Eq. (8) and making use of (11) and (12), we
find that the partial differential equation (8) indeed reduces to the ordinary
differential equation (13). Moreover, the boundary conditions (17) follow at
once from (9), (10) and (11). ~

Remark. We can have A = 0 or B = 0, but A and B cannot be equal to zero
at the same time. We can also have J.L = 0 and/or 6. = O.
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Corollary 2.1. If A > 0 in (13), the moment generating function of the ran-
dom variable x[T(y, z)] defined in (6) is given by

L(x, y, z; s) := Ex [e-sx[T(y,zl)] =

{ [

2 + 2AS] 1/2 B }e-sxe-JLw/Aexp - Jl A2 (A +w)

x (B + w)(!+2:h~A2_2ALH2BJLI-~+~l A~-~
A

{ (
-ABS+A6.Jl-BJl2 1 1 2

x C1M A2(Jl2 + 2As)l/2 + "2 + 2A21A - 2A6. + 2BJlI,

1 2 B)1+ A21A2 - 2A6. + 2BJll, A:(Jl2 + 2As)1/2(A + w)

(
-ABs + A6.Jl- BJl2 1 1 2

+ C2U A2(Jl2 + 2As)l/2 + "2 + 2A21A - 2A6. + 2BJlI,

1+ ~2IA2_2A6.+2BJlI'~(Jl2+2As)1/2(~ +w))} (18)

for K1 ~ w ~ K2, where w := ¢(y) + 'ljJ(z) , M(-,',') and U(',',·) are confluent
hypergeometric functions (see [1, p. 504]), and the constants C1 and C2 are
uniquely determined by the boundary conditions (17).

Proof. The general solution of Eq. (13) can be found in many books or by
using a computer software. ~

Remarks.
1. The general solution of Eq. (13) can have many forms, according to the

values taken by the various parameters it contains. We have given in
Corollary 2.1 the solution in the most important case, namely when A is
different from zero. We have assumed, without any (real) loss of gener-
ality, that A is positive. If A is negative, we must also have Jl2 f- -2As.
The solution in the case when A f- 0 but Jl2 = -2As involves Bessel
functions instead of confluent hypergeometric functions (see [7, p. 143]).
The other possible cases are treated in [7, p. 143] as well.

2. The constants K1 and K2 cannot take any values. Indeed if ¢(y)+'ljJ(z) =
y2 + Z2 J for instance, we must obviously have K 1 > O.

3. When we want to solve a problem with only one boundary, we must use
a mathematical argument to discard one of the confluent hypergeometric
functions in (18) by choosing C1 or C2 equal to zero. For example, if we
have M(-,·, w) and U(-,', w) in the general solution of Eq. (13) and if the
variable w can take any value in the interval [K 1,00), then we must get rid
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of the function M (', " w) by setting Cl = 0 because the function M (" " w)
diverges as w -+ 00 (whereas U(·,·, w) tends to zero with w -+ 00; see
[1, p. 508]) and we deduce from the definition of the function L(x, y, Zj s)
that

0< L(x,y,zjs)::::: e:",

Conversely, if w E [0,K2], then we must (generally) choose C2 = 0 and
keep only the function M in (18) (see again [1, p. 508]).

In the next section, the problem of computing the moments of x[T(y, z)] is
discussed.

3. Expected value of x[T(y, z)]

In theory, assuming that it exists, we can obtain the moment of order n of
x[T(y, z)] with respect to the origin, that is mn(x, y, z) := Ex[xn[T(y, z)]],
from the derivative of the function L(x, y, Zj s) with respect to S (n times) and
its limit as S -!. O. However, because the function L involves the parameter s in
the arguments of the confluent hypergeometric functions, the computation of
this derivative, and the limit as s -!. 0, would prove to be quite tedious (all the
more tedious because the constants Cl and C2 also will involve the parameter
s ).

Instead of using this technique, we will rather consider the Kolmogorov
backward equation satisfied by the function mn(x, y, z), namely

~(lryjm~y + czkm~z) + fm~ + gm~ + (¢>(y) + 'ljJ(z))m~ = O. (19)

We have:

mn(x,y,Z) =E{[X+ IT(Y,Z)[¢>(y(t))+'ljJ(z(t))]dtr} (20)

for n = 0,1, ... Using the fact that T(y, z) = T(w), where w := ¢>(y) + 'ljJ(z),
we find that Eq. (19) reduces to

hAw + B)q~w(x, w) + (/LW + !l)q~(x, w) + wq~(x, w) = 0, (21)

where

qn(x, w) = mn(x, y, z)

and the constants A, Band !l are defined in (14), (15) and (16).

We may now state the following result.

(22)
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Proposition 3.1. The mean of the random variable x[T(y, z)J can be obtained
by solving the ordinary differential equation

~(A1O + BM'(1O) + (Ji1O+ ~)q~ (10) + 10 = 0, (23)

subject to the boundary condition
(24)

where
ql(1O) + X = ql(X, 10) := Ex[x[T(y, z)J].

Proof. Eq. (23) and the boundary condition (24) follow directly from (20), (21)
and (22) with n = 1. ~

Corollary 3.1. If we assume that q2(x, 10 = ¢(y) + 'IjJ(z)) := Ex [x2[T(y, z)J]
exists, then the function q2(x, 10) satisfies the ordinary differential equation

~(A1O + B)q~w(x, 10) + (Ji1O+ ~)q~(x, 10) + 21Oql(x, 10) = 0, (25)

subject to

Remarks.
1. We could of course use the functions q2(X,1O) and ql(x,1O) to compute

the variance of x[T(y, z)]. This variance should be independent of x.
2. In general, if it exists, the function qn (x, 10) satisfies the ordinary differ-

ential equation

~(A1O + B)q;:'w(x, 10) + (/l1O+ ~)q;:'(x, 10) + n1Oqn-l(x,1O) = 0,

with the boundary conditions

qn(x,K1) = qn(x,K2) = z".

3. Solving Eq. (23) (and/or Eq. (25)) is, in theory, straightforward. We
have in fact a first order linear equation in h(1O) := q~(1O), the solution
of which is easy to obtain. However, we are then left with the problem
of integrating the function h(w), which, in the general case, is not obvi-
ous. Instead of attempting to find an explicit solution (that is, without
any integral sign), we will give a couple of examples in the next section.
Furthermore, in the special case when Ji = 0, we find that

ql(X,1O) := Ex [x[T(1O)J]

B10 102 u!::-A + ~
~(A + 2~) - A + 2~ + Cl (B + A1O)2t.;A + C2,

where the constants Cl and C2 are such that ql(x,Kd = ql(x,K2) = x.
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4. Examples

The first particular case that we consider is the one where the stochastic dif-
ferential equations (1), (2) take the form (see [5])

dy(t)
al -1

-l3oy(t) dt + Y(t) dt + dB(t),

a2 -1
-l3oz(t) dt + ~ dt + dW(t),

(26)

dz(t) . (27)

where 130, al and a2 are non-negative constants. If 130 is equal to zero, then
the process (y(t), z(t)) is a two-dimensional Bessel process, whereas when al =
a2 = 0, (y(t), z(t)) is a two-dimensional Ornstein-Uhlenbeck process (with the
same parameter (30)' In the notation of Section 1, we have b = c = 1 and
j = k = O.

Next, let

T(y,z):= inf{t?: 0: y2(t) + z2(t) = r2Iy(0) = y,z(O) = z}.

That is, we have ¢(y) = y2 and 'ljJ(z) = z2, so that d = 0 = 4 and e = E: = O.
Furthermore (see Corollary 1.1)

al - 1 1 2 1f(y) = -l3oY + -- = -(p,y - - ·1·2 + (3)
2y 2y 2

implies that p, = -2130 and 13 = al' Similarly, we find that I = a2· Using
these values, we deduce from (13) that we must solve the ordinary differential
equation

~(4w)Q"(w; s) + (-2130w + al + (2)Q'(w; s) - swQ(w; s) = O.

Let us choose 130 = 1 and al = a2 = 3/2. We can then show that the
diffusion processes y(t) and z(t) have an inaccessible boundary at the origin
(see [5]). Hence, if we assume that the starting point (y, z) is situated in the
first quadrant, then the two-dimensional process (y(t), z(t)) cannot leave this
quadrant.

Now, the general solution of the differential equation

2wQ"(w; s) + (3 - 2w)Q'(w; s) = swQ(w; s)
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can be written as

Q(w;s) = (1/2)3/4exp [~(1-(1 + 2S)I/2)]

x {CIM(~(I- (1 + ~S)I/2)'~' (1 + 2S)I/2w)

+ C2U( ~ (1- (1+ ~s)l/2)'~' (1+ 2S)I/2W)}. (28)

If we assume that 0 < y2 + z2 ::; r2, we must set C2 equal to zero in (28) because
(as mentioned above) the function UC,·, w) diverges as w..\- O. It follows that

Ex[e-sx[T(y,zl]J =

[
w _ r2 ] M( Hl- (1+2

1
sl1/2), ~,(1 + 2S)I/2w)

e-sx exp (--)[1 - (1+ 2s)I/2J
2 M ( HI - (1+21s)1/2), ~, (1 + 2S)l/2r2)

for 0 < w ::;r2.

To obtain the mean of x[T(y, z)], we must solve the differential equation

2wq~(w) + (3 - 2wM(w; s) + w = O.

In theory, this is an easy task. However, the solution involves special functions
and will not be given explicitly here.

To conclude, we consider another particular case of the system (1), (2). We
take

dy(t)
dz(t)

(1/2)1/2 dB(t),
3/2 dt + [2z(t)F/2 dW(t).

(29)
(30)

The author has solved the problem of computing the moment generating func-
tion of the first passage time

T(y, z) := inf{t ~ 0: y2(t) + z(t) = r (> O)ly(O) = y, z(O) = z}

(see [5]). We can show that the diffusion process z(t) cannot cross the origin.
We assume that y2 + z ::;r . Then the continuation region is bounded.

In the notation of Section 1, we have b = 1/2, C = 2, d = 4, e = 0, 6 = 1,
e = 0, J.L = 0, 'Y = 3/2 and f3 = 1/2. It follows that A = 2, B = 0 and 6. = 2.
Therefore, we must solve the following equation:

wQI/(w; s) + 2Q'(w; s) = swQ(w; s).
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Its general solution can be written as

so that
-sx _S'/2(y2+zl

E [e-sx[T(y,zl]] = e e [C + C (e2S1/2(y2+zl - 1)] (31)
x 2S1/2(y2 + z) 1 2

for 0 < y2 + Z :::; T.

Because the moment generating function of x[T(y, z)] is bounded and the
function in the right-hand member of Eq. (31) diverges as y2 + z ] 0 if Cl =1= 0,
we deduce that we must choose Cl = o. Then, using the boundary condition

Ex[e-sx[T(y,zllj = e-sx if y2 + z = T,

we can state that

( )
( 2S'/2(y2+zl 1)

E [e-sx[T(y,zl]] = e-sxe-s'/2(y2+z-rl _T_ e -
x y2 + Z (e2s1/2r - 1)

for 0 < y2 + Z :::; T.

Finally, to obtain the mean of x[T(y, z)], we solve the ordinary differential
equation

wq~ (w) + 2q~(w) + w = 0,

subject to the boundary condition

We find that

w2 Cl
ql (w) = - - - - + C2·

6 w
We can show that we must choose Cl = 0 in the preceding equation. The
boundary condition ql (T) = 0 then yields that

T2 _ w2

ql(W) = 6 '

so that

for 0 < y2 + Z :::;T.
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5. Conclusion

The problem of computing the moment generating function of the random vari-
able X[T(Y)], where T(Y) is a first passage time for a one-dimensional diffusion
process y(t) and x(t) is defined by dx(t) = y(t)dt, has already been considered
by the author (see [3], [4]) and in [2], in particular. In the present note, a
similar problem was treated, namely that of obtaining the moment generating
function of an integrated process evaluated at a first passage time T(y, z) for
a two-dimensional diffusion process. We considered the case when the random
variable T(y, z) can be expressed as T(c/>(y) +'IjJ(z)) for some functions c/>(-) and
'IjJ(.), thus reducing the level of difficulty of the problem.

A problem that has not been discussed in this note is that of computing
explicitly the probability density function of the random variable x[T(y, z)].
Although this problem is very difficult in general, because it implies inverting
a Laplace transform with the parameter s appearing as argument of special
functions, it must surely be possible to obtain such a probability density func-
tion in some special cases.

Finally, if it is not possible to write that T(y, z) = T(c/>(y) + 'IjJ(z)), then we
could try to use other techniques to solve the appropriate Kolmogorov backward
equation.
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