Sobre un teorema de Fröberg y los grafos saturados

MARIO E. ESTRADA* Universidad de Antioquia, Medellín, COLOMBIA

ABSTRACT. Saturated Cohen-Macaulay (=CM) Rings are studied and the theorem of Fröberg characterizing the CM simplicial complexes having a 2-linear resolution is proved, using results of R. H. Villarreal on CM graphs.

Keywords and phrases. Cohen-Macaulay Rings, simplicial complex, Stanley-Reisner Rings, pure resolutions.

1991 Mathematics Subject Classification. Primary: 15H10. Secondary 13F20, 13D40, 05C80.

RESUMEN. Se estudian los Anillos de Cohen-Macaulay (=CM) Saturados y se prueba el Teorema de Fröberg que caracteriza los complejos simpliciales CM con una resolución 2-lineal usando resultados sobre grafos CM de R. H. Villarreal.

1. Introducción

Sea G un grafo con $V=\{v_1,\ldots,v_n\}$ como conjunto de vértices y $R=k[X_1,\ldots,X_n]$ el anillo de polinomios en n-variables sobre un campo k y donde identificamos el vértice v_i con la variable $X_i,\ i=1,\ldots n$. El ideal de aristas de $G,\ I(G)$ es el ideal de R generado por los monomios X_iX_j siempre que los vértices $v_i,\ v_j$ sean adyacentes en G. El anillo R/I(G) se denomina el anillo de aristas o líneas ("edge algebra") de G. Se dice que el grafo G es Cohen-Macaulay (se escribe C-M) si R/I(G) es un anillo de Cohen-Macaulay.

^{*}Parcialmente apoyado por ICTP, TRIESTE y CIEN, Facultad de Ciencias Exactas, Universidad de Antioquia.

Es conocido que si q representa el número de aristas de G y g = ht(I(G)) la altura de I(G), entonces si G es C-M, $q \leq g(g+1)/2$; este hecho motiva la definición: Un grafo G de C-M es saturado si q = g(g+1)/2. La importancia de los grafos saturados puede atribuirse al hecho de que un grafo es saturado si y solo si R/I(G) admite una 2-resolución lineal ([R-V]). El objetivo de este trabajo es presentar la demostración de un teorema de Fröberg [Fr] usando las técnicas que utiliza R. H. Villarreal [V] al estudiar los grafos C-M. En su artículo Fröberg se apoya fuertemente en el concepto de anillo cara (face ring) o anillo de Stanley-Reisner asociado a un complejo simplicial. Recordemos que un complejo simplicial Δ sobre un conjunto $V = \{v_1, \ldots, v_n\}$ de vértices es una colección de subconjuntos de V que satisface las siguientes condiciones:

- (1) $F \subset G$, $G \in \Delta \Longrightarrow F \in \Delta$.
- (2) $\{v_i\} \in \Delta, i = 1, \ldots, n.$

Cada elemento F de Δ se denomina cara de Δ y se define $\dim(F) = \#F - 1$ y $\dim(\Delta) = \max_{F \in \Delta} (\dim(F))$. Aquí #F es el cardinal de F como conjunto.

Definición 1.1. Sea Δ un complejo simplicial finito sobre el conjunto de vértices $V = \{x_1, \ldots, x_n\}$. Dado un campo k el anillo cara o de Stanley-Reisner de Δ , $k[\Delta]$, es $k[X_1, \ldots, X_n]/I_{\Delta}$, donde

$$I_{\Delta} = \langle (X_{i_1}, \dots, X_{i_k}); i_1 < i_2 < \dots < i_r, \{X_{i_1}, \dots, X_{i_k}\} \notin \Delta \rangle.$$

Si Δ es de dimensión d, para todo r, $1 \leq r \leq d$, el r-esqueleto de Δ es $\Delta_r = \{F \in \Delta : \dim F \leq r\}$. Así, dado un complejo simplicial Δ su 1-esqueleto $G(\Delta)$ es un grafo. Recíprocamente, dado un grafo G se le asocia un complejo simplicial del modo siguiente.

Definición 1.2. El complejo simplicial complementario $\Delta(G)$ de un grafo G viene dado por:

$$\Delta(G) = \{A \subset V(G) : A \ es \ un \ conjunto \ independiente \ de \ v\'ertices \ en \ G\}.$$

A es un conjunto independiente de vértices en G si sus vértices no son adyacentes. Nos interesa ([V]) considerar el 1-esqueleto de $\Delta(G)$, que es precisamente el grafo G^c complementario de G respecto al grafo completo de n vértices K_n . Tanto un grafo G como un complejo simplicial G se denominan C-M si G si G (G) denota su 1-esqueleto, se ve que G está generado por elementos de grado dos si y solo si G es ve que G está generado por elementos de grado dos corresponden precisamente a las aristas de G el grafo complementario de G, es por ello que G es G es G o lo que es lo mismo G es C-M como complejo simplicial si y solo si G es C-M como grafo, o sea como "edge algebra". Pero mientras más simple el grafo, más complicado es G y por ello se estudia G directamente. Los grafos saturados han sido caracterizados por Fröberg G demostrando que cuando G esté generado por elementos de grado dos, G es G es saturados i y solo si G es un G es un G es un G es que G es caracterizados por Fröberg G es saturados i y solo si G es un G es

Definición 1.3. ([Fr]) Sea Δ un complejo simplicial, entonces

- (1) K_{d+1} es un d-árbol.
- (2) Si G es un d-árbol y v es un vértice nuevo que se adjunta a G via un subgrafo K_d de G (o sea $\{v\} \cup K_d$ es completo), entonces $\{v\} \cup G$ es un d-árbol.

Un 0-árbol es un conjunto de puntos aislados y un 1-árbol es un árbol usual.

Teorema 1.1. ([Fr]) Sea Δ un complejo simplicial, entonces las siguientes condiciones son equivalentes:

- (1) $K[\Delta]$ es C-M de dimensión d+1 y tiene una resolución 2-lineal.
- (2) El 1-esqueleto $G(\Delta)$ de Δ es un d-árbol $y \Delta = \Delta(G(\Delta))$.

En la sección 3 daremos otra prueba de este resultado de Fröberg basándonos en los resultados de R. H. Villarreal [V].

2. Preliminares

Antes de citar los resultados de [V] que usaremos en la prueba del teorema de Fröberg, recordemos algunos conceptos propios de la teoría de grafos ([H]). Se dice, dado un grafo G = (V, E) con conjunto de vértices V y de aristas E, que un subconjunto $A \subset V$ de vértices es un cubrimiento minimal (m.v.c.)de G si toda arista de G incide en algún vértice de A y si A no contiene un subconjunto con esta propiedad. Se demuestra que en todo grafo C-M todos los cubrimientos minimales tienen el mismo cardinal $\alpha_0(G)$ y que la altura de I(G), ht(I(G)), es $\alpha_0(G)$. Un grafo se dice bipartido si $V = V_1 \cup V_2$, donde V_1 y V_2 son dos subconjuntos disjuntos de vértices de G, de modo que toda arista de G une vértices de V_1 con vértices de V_2 . La codimensión de un grafo G de n vértices, Cod(G), se define como Cod(G) = n - ht(G). El grafo complementario G^c de G es su grafo complementario respecto del grafo completo de n vértices K_n . El grado de un vértice v de G, deg (v), es el número de aristas de G que inciden en v. Denotaremos por q = #E el número de aristas de G y g = ht(I(G)). Antes de mencionar los resultados de [V] que nos interesa destacar, introducimos una notación que es la misma de [V]. Sea H un grafo con $V(H) = \{x_1, x_2, \dots, x_n, z, w\}$ como conjunto de vértices. Se supone que z es advacente a w, que $\deg(w) = 1$ y $\deg(z) \geq 2$. Suponemos también que hemos etiquetado H de modo que x_1, x_2, \dots, x_k, w sean los vértices adyacentes a z en H. Se define $G = H - \{z, w\}$. Se cumple la siguiente:

Proposición 2.1. (Cor. 4.5 de [V]) Si G es C-M y $\{x_1, x_2, \ldots, x_k\}$ es un m.v.c. de G, entonces H es C.M.

Cuando z no está unido con un punto extremo como el w del caso anterior entonces se considera el grafo H con vértices $V(H) = \{x_1, x_2, \ldots, x_n, z\}$. Si $\{x_1, x_2, \ldots, x_k\}$ son los vértices de H adyacentes a z en H, se supone deg $(x_i) \ge 1$

2 para todo $i=1,2,\ldots,k$ y deg $(z)\geq 2$. Ahora $G=H\smallsetminus\{z\}$ y el resultado de nuestro interés es el siguiente:

Proposición 2.2. (Cor. 4.9 de [V]) Si G es C-M y $\{x_1, x_2, \ldots, x_{k-1}\}$ es un m.v.c. de G, entonces H es C.M.

3. El teorema de Fröberg

Enunciamos ahora nuestro resultado principal, que corresponde al Teorema 2 de [Fr].

Proposición 3.1. Existe una correspondencia biunívoca entre los grafos saturados G de n vértices $y \operatorname{Cod}(G) = s$, $1 \leq n \leq s-1$ y los (s-1) – árboles. Estos son precisamente los complementarios G^c de los grafos saturados G.

Proof. Obsérvese, primero que como G tiene g(g+1)/2 aristas y g=n-s, G^{c} tendrá $q^{c} = \frac{1}{2}n(n-1) - q$, o sea $q^{c} = (s-1)n - s(s-1)/2$ aristas. Recordemos también [V] que un grafo $G = \bigcup_{i=1}^t G_i$ con componentes conexas G_i , i = 1, ..., t es C-M si y solo si cada G_i es C-M y que es saturado si y solo si a lo sumo una de las componentes conexas tiene mas de un vértice y es saturado. Es fácil percatarse que los casos extremos s = 1 y s = n - 1 corresponden, respectívamente a $G = K_n$, o sea G^c es un 0-árbol consistente de n puntos aislados y a g = 1, q = 1 o sea $G = K_2 \cup \{(n-2) \text{ v\'ertices aislados}\}$. Probemos primeramente que si G es saturado entonces G^c es un (s-1) -árbol. Como Cod(G) = s y G es C-M todos los m.v.c. en G tienen g = n - s vértices y el resto de los vértices de G constituyen, en cada caso, conjuntos independientes de s vértices cada uno y por tanto forman un K_s en G^c . Más aun, cada vértice de G pertenece al menos a uno de tales conjuntos independientes, es decir pertenecen a algún K_s en G^c . Por tanto al construir G^c , cada vez que adjuntamos un vértice lo unimos con otros (s-1) de modo que formen un nuevo K_s tal como la expresión $q^c = (s-1)n - s(s-1)/2$ sugiere, la cual también garantiza la conexidad, hasta alcanzar n vértices y construir el (s-1)árbol. Recíprocamente, supongamos que G^c es un (s-1)-árbol con n vértices. G^c tendrá $q^c = (s-1)n - s(s-1)/2$ aristas y como $(G^c)^c = G$, G tiene exactamente $q = \frac{n(n-1)}{2} - q^c = (n-s)(n-s+1)/2$ aristas. Por ello para probar que G es saturado basta con comprobar que:

- i) ht(G) = n s.
- ii) G es C-M.

Para demostrar i) usaremos inducción en el número de vértices. Recuérdese que si $z \in V(G^c)$ y denotamos $G' = G^c \setminus \{z\}$ se tiene $(G')^c = (G^c \setminus \{z\})^c = G - \{z\}$, considerando ahora a z como vértice de G. Tomemos un vértice $z \in V(G^c)$ de deg (z) = s - 1 en G^c , o sea unido con (s - 1) vértices de G^c de modo que juntos conformen un K_s . Entonces $G' = G^c \setminus \{z\}$ tiene un

vértice y (s-1) aristas menos que G^c y es también un (s-1)-árbol. Por la hipótesis de inducción $(G')^c = G - \{z\}$ es saturado y de codimensión s. Como $ht(G - \{z\}) = ht(G) - 1$, se tiene Cod(G) = s, lo que prueba i).

Para probar ii), o sea que G es C-M, basta comprobar haciendo uso de las Proposiciones (2.1) ó (2.2), según el caso, que si $\{y_1,\ldots,y_k\}$ son los vértices adyacentes a z en G, entonces $\{y_1,\ldots,y_{k-1}\}$ constituye un m.v.c. de $G \setminus \{z\}$. Para ello tomemos a z tal que deg (z) = s - 1 en G^c , y sea $\{x_1,x_2,\ldots,x_{s-1}\}$ el conjunto de vértices adyacentes a z en G^c . Su complemento A consiste en (n-s) vértices adyacentes a z en G; más aun, como $\{z,x_1,x_2,\ldots,x_{s-1}\}$ es un K_s en G^c y Cod (G) = s, el conjunto A es un m.v.c. en G. Si denotamos $A = \{y_1,\ldots,y_{n-s}\}$ se ve que el conjunto $\{y_1,\ldots,y_{n-s-1}\}$, tanto en el caso que y_{n-s} sea un punto extremal o no, constituye un m.v.c. de G.

Observemos que durante la demostración anterior también se probó lo siguiente.

Proposición 3.2. Todo grafo saturado con n vértices $y \operatorname{Cod}(G) = s$, $1 \le s \le n-1$ puede construirse sobre un grafo saturado de n-1 vértices G' $y \operatorname{Cod}(G') = s$, adjuntando un vértice z a G' y uniéndolo con (n-s) vértices de G', (n-s-1) de los cuales forman un m.v.c. en G'.

Observación 3.1. G puede construirse incluso a partir del grafo $K_2 \cup \{(s-1) \text{ v\'ertices aislados}\}.$

Corolario 3.1. Existe una correspondencia biunívoca entre los grafos saturados G de Cod(G) = 2 y los árboles.

Veamos ahora la cuestión de la conectividad y los puntos extremos de los grafos saturados. Tal como observamos anteriormente un grafo G es saturado si y solo si a lo sumo una de sus componentes conexas tiene mas de un vértice y esta componente es saturada.

Proposición 3.3. Sea G un grafo saturado con n vértices, Cod(G) = s y ht(G) = g.

- (i) Para que G sea conexo es necesario que $g \ge s$, es decir, $n \ge 2s$.
- (ii) Si G es conexo y $2s \ge n$, es decir, 2s = n, entonces G tiene puntos extremos.
- Proof. (i) Tal como observamos antes podemos comenzar a construir G a partir de $K_2' := K_2 \cup \{(s-1) \ puntos \ aislados\}$, que tiene g=1. En cada paso, al añadir un vértice z debemos unirlo con (n-s) vértices de $G'=G\setminus\{z\}$, (n-s-1) de los cuales forman un m.v.c. de G' y por tanto no podemos unir z con más de un vértice aislado de G' cada vez, lo que equivale a-decir que debemos añadir al menos (s-1) vértices para garantizar la conectividad. Como en cada paso g se incrementa en uno, resulta $g \geq s$.
- (ii) Para que G sea conexo de $\operatorname{Cod}(G) = s$ y sin puntos extremos debemos añadir a K_2' al menos (s-1) puntos para garantizar la conectividad y al menos uno más para evitar algún punto extremal, lo que resultaría en n > 2s.

- Observación 3.2. (1) La condición (i) de la proposición anterior es claramente no suficiente. Es fácil encontrar grafos disconexos saturados tales que 2g > n, o sea n > 2s. También un grafo conexo puede tener puntos extremales y cumplir n > 2s.
 - (2) Los grafos bipartidos saturados G de n vértices son aquellos con ht(g) = g = n/2, $E(G) = \{(x_i, y_j) : 1 \le j \le i \le g\}$, y $V = V_1 \cup V_2$, $V_1 = \{x_1, x_2, ..., x_g\}$, $V_2 = \{y_1, y_2, ..., y_g\}$, ver [E-V].
 - (3) Los grafos de suspensión saturados son del tipo $G = S(K_n)$. Efectivamente si $G = S(G_0)$ es la suspensión de G_0 , que tiene n vértices, entonces ht(G) = n y como q = n(n+1)/2 por ser G saturado, donde como antes q = #E es el número de aristas de G, el número de aristas de G_0 será $g_0 = q n = n(n-1)/2$, o sea $G = K_n$.
 - (4) Se sabe [V] que los únicos ciclos C-M son el triángulo, el pentágono y el heptágono. Por tanto el único ciclo saturado es el triángulo.
 - (5) Sabemos ya que todo grafo completo es saturado.
 - (6) Los únicos árboles saturados son K_2 y $S(K_2)$. Basta recordar (ver [V]) que los únicos árboles C-M son los grafos de suspensión.

Referencias

- [B-He] W. Bruns, H. Herzog, Cohen Macaulay Ring, Cambridge Univ. Press, 1993.
- [Es] M. ESTRADA, On Bipartite and Saturated Cohen-Macaulay Graphs, Reporte de Inv., ICIMAF, Cuba, Septiembre 1996.
- [E-V] M. ESTRADA, R.H. VILLARREAL, Cohen-Macaulay Bipartite Graphs, Arch. Math., 68 (1997), 124-128.
- [Fr] R. FRÖBERG, On Stanley-Reisner Rings, Topics in Algebra, Banach Center Publications, vol. 26, part 2, Polish Scientific Publishers, Warsaw, 1996.
- [H] F. HARARY, Graph Theory, Adison-Wesley, Reading, M.A, 1972.
- [R-V] C. RENTERIA, R. H. VILLAREAL, Koszul Homology of Cohen-Macaulay Rings With Linear Resolutions, Proceedings or the A.M.S 115, No 1, May 1992.
- [S-V-V] A. SIMIS, W. V. VASCONCELOS, R. H. Villarreal: On the Ideal Theory of Graphs, J. of Algebra, 167 (1994), 389-419.
- [St] R. STANLEY, Combinatorics and Conmutative Algebra, Birkhauser, 1993.
- [V] R. H. VILLARREAL, Cohen-Macaulay Graphs, Manuscripta Math. 66 (1990), 277– 293.

(Recibido en noviembre de 1999; revisado por el autor en octubre de 2000)

DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD DE ANTIOQUIA MEDELLÍN, COLOMBIA

e-mail: mestrada@matematicas.udea.edu.co