Revista Colombiana de Matemáticas Volumen 34 (2000), páginas 57-89

Some results on the geometry of full flag manifolds and harmonic maps

MARLIO PAREDES*

Universidad Industrial de Santander, Bucaramanga, Colombia

ABSTRACT. In this note we study, for n = 5, 6, 7, the geometry of the full flag manifolds, $F(n) = \frac{U(n)}{U(1) \times \cdots \times U(1)}$. By using tournaments we characterize all of the (1,2)-symplectic invariant metrics on F(n), for n = 5, 6, 7, corresponding to different classes of non-integrable invariant almost complex structure.

Keywords and phrases. Flag manifolds, (1,2)-symplectic metrics, harmonic maps, Hermitian geometry.

2000 Mathematics Subject Classification. Primary 53C15. Secondary 53C55, 14M15, 58E20, 05C20.

1. Introduction

Eells and Sampson [ES], proved that if $\phi: M \to N$ is a holomorphic map between Kähler manifolds then ϕ is harmonic. This result was generalized by Lichnerowicz (see [L] or [Sa]) as follows: Let (M, g, J_1) and (N, h, J_2) be almost Hermitian manifolds with M cosymplectic and N (1,2)-symplectic. Then any \pm holomorphic map $\phi: (M, J_1) \to (N, J_2)$ is harmonic.

We are interested to study harmonic maps, $\phi: M^2 \to F(n)$, from a closed Riemannian surface M^2 to a full flag manifold F(n). Then by the Lichnerowicz theorem, we must study (1,2)-symplectic metrics on F(n), because a Riemannian surface is a Kähler manifold and a Kähler manifold is a cosymplectic manifold (see [Sa] or [GH]).

^{*}Supported by CAPES (Brazil) and COLCIENCIAS (Colombia).

The study of invariant metrics on F(n) involves almost complex structures on F(n). Borel and Hirzebruch [BH], proved that there are $2^{\binom{n}{2}} U(n)$ -invariant almost complex structures on F(n). This number is the same number of tournaments with n players or nodes. A tournament is a digraph in which any two nodes are joined by exactly one oriented edge (see [M] or [BS]). There is a natural identification between almost complex structures on F(n) and tournaments with n players, see [MN3] or [BS].

The tournaments can be classified in isomorphism classes. In that classification, one of this classes corresponds to the integrable structures and the another ones correspond to non-integrable structures. Burstall and Salamon [BS], proved that a almost complex structure J on F(n) is integrable if and only if the associated tournament to J is isomorphic to the canonical tournament (the canonical tournament with n players, $\{1, 2, \ldots, n\}$, is defined by $i \to j$ if and only if i < j). In that paper the identification between almost complex structures and tournaments plays a very important role.

Borel [Bo], proved that exits a (n-1)-dimensional family of invariant Kähler metrics on F(n) for each invariant complex structure on F(n). Eells and Salamon [ESa], proved that any parabolic structure on F(n) admits a (1,2)symplectic metric. Mo and Negreiros [MN2], showed explicitly that there is a *n*-dimensional family of invariant (1,2)-symplectic metrics for each parabolic structure on F(n), the identification between almost complex structures and tournaments is strongly used in that paper.

Mo and Negreiros ([MN1], [MN2]) studied the geometry of F(3) and F(4). In this paper we study the F(5), F(6) and F(7) cases. We obtain the following families of (1,2)-symplectic invariant metrics, different to the Kähler and parabolic: On F(5), two 5-parametric families; on F(6), four 6-parametric families, two of them generalizing the two families on F(5) and, on F(7) we obtain eight 7-parametric families, four of them generalizing the four ones on F(6).

These metrics are used to produce new examples of harmonic maps $\phi: M^2 \to F(n)$, applying the result of Lichnerowicz mentioned above.

These notes are part of the author's Doctoral Thesis [P]. I wish to thank my advisor Professor Caio Negreiros for his right advise. I would like to thank Professor Xiaohuan Mo for his helpful comments and dicussions on this work.

2. Preliminaries

A full flag manifold is defined by

(2.1) $F(n) = \{(L_1, \ldots, L_n) : L_i \text{ is a subspace of } \mathbb{C}^n, \dim_{\mathbb{C}} L_i = 1, L_i \perp L_i\}.$

The unitary group U(n) acts transitively on F(n). Using this action we obtain an algebraic description for F(n):

(2.2)
$$F(n) = \frac{U(n)}{T} = \underbrace{\frac{U(n)}{U(1) \times \dots \times U(1)}}_{n-times},$$

where $T = \underbrace{U(1) \times \cdots \times U(1)}_{n-times}$ is a maximal torus in U(n).

Let \mathfrak{p} be the tangent space of F(n) in (T). The Lie algebra $\mathfrak{u}(n)$ is such that (see [ChE])

(2.3)
$$\mathfrak{u}(n) = \{X \in Mat(n,\mathbb{C}) : X + \overline{X}^{\iota} = 0\} = \mathfrak{p} \oplus \underbrace{\mathfrak{u}(1) \oplus \cdots \oplus \mathfrak{u}(1)}_{n-times}.$$

Definition 2.1. An invariant almost complex structure on F(n) is a linear map $J: \mathfrak{p} \to \mathfrak{p}$ such that $J^2 = -I$.

Example 2.1. If we consider

$$F(3) = \frac{U(3)}{U(1) \times U(1) \times U(1)} = \frac{U(3)}{T},$$

in this case

$$\mathfrak{p} = T(F(3))_{(T)} = \left\{ \left(\begin{array}{ccc} 0 & a & b \\ -\bar{a} & 0 & c \\ -\bar{b} & -\bar{c} & 0 \end{array} \right) : a, b, c, \in \mathbb{C} \right\}.$$

The following linear map is an example of a almost complex structure on F(3)

$$\begin{pmatrix} 0 & a & b \\ -\bar{a} & 0 & c \\ -\bar{b} & -\bar{c} & 0 \end{pmatrix} \longmapsto \begin{pmatrix} 0 & (-\sqrt{-1})a & (-\sqrt{-1})b \\ (-\sqrt{-1})\bar{a} & 0 & (\sqrt{-1})c \\ (-\sqrt{-1})\bar{b} & (\sqrt{-1})\bar{c} & 0 \end{pmatrix}.$$

There is a natural identification between almost complex structures on F(n)and tournaments with n players.

Definition 2.2. A tournament or n-tournament \mathcal{T} , consists of a finite set $T = \{p_1, p_2, \ldots, p_n\}$ of n players, together with a dominance relation, \rightarrow , that assigns to every pair of players a winner, i.e. $p_i \rightarrow p_j$ or $p_j \rightarrow p_i$. If $p_i \rightarrow p_j$ then we say that p_i beats p_j .

A tournament \mathcal{T} may be represented by a directed graph in which T is the set of vertices and any two vertices are joined by an oriented edge.

Let \mathcal{T}_1 be a tournament with n players $\{1, \ldots, n\}$ and \mathcal{T}_2 another tournament with m players $\{1, \ldots, m\}$. A homomorphism between \mathcal{T}_1 and \mathcal{T}_2 is a mapping $\phi : \{1, \ldots, n\} \to \{1, \ldots, m\}$ such that

(2.4)
$$s \xrightarrow{\tau_1} t \implies \phi(s) \xrightarrow{\tau_2} \phi(t) \qquad \text{or} \qquad \phi(s) = \phi(t).$$

When ϕ is bijective we said that \mathcal{T}_1 and \mathcal{T}_2 are isomorphic.

An n-tournament determines a score vector

(2.5)
$$(s_1,\ldots,s_n),$$
 such that $\sum_{i=1}^n s_i = \binom{n}{2},$

with components equal the number of games won by each player. Isomorphic tournaments have identical score vectors. Figure 1 shows the isomorphism classes of *n*-tournaments for n = 2, 3, 4, together with their score vectors. For $n \geq 5$, there exist non-isomorphic *n*-tournaments with identical score vectors, see Figure 2. The canonical *n*-tournament \mathcal{T}_n is defined by setting $i \to j$ if

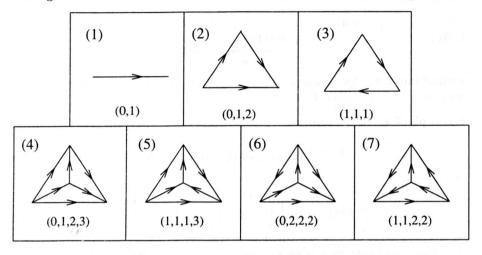


FIGURE 1. Isomorphism classes of *n*-tournaments to n = 2, 3, 4.

and only if i < j. Up to isomorphism, \mathcal{T}_n is the unique *n*-tournament satisfying the following equivalent conditions:

- the dominance relation is transitive, i.e. if $i \to j$ and $j \to k$ then $i \to k$,
- there are no 3-cycles, i.e. closed paths $i_1 \rightarrow i_2 \rightarrow i_3 \rightarrow i_1$, see [M],
- the score vector is (0, 1, 2, ..., n 1).

For each invariant almost complex structure J on F(n), we can associate a *n*-tournament $\mathcal{T}(J)$ in the following way: If $J(a_{ij}) = (a'_{ij})$ then $\mathcal{T}(J)$ is such that for i < j

(2.6)
$$(i \to j \Leftrightarrow a'_{ij} = \sqrt{-1} a_{ij})$$
 or $(i \leftarrow j \Leftrightarrow a'_{ij} = -\sqrt{-1} a_{ij})$,
see [MN3].

Example 2.2. The tournament in the Figure 3 corresponds to the almost complex structure in the example 2.1

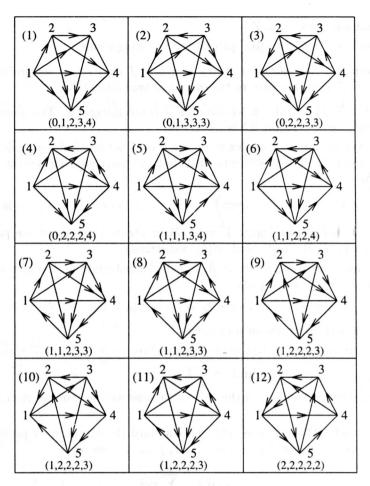


FIGURE 2. Isomorphism classes of 5-tournaments.

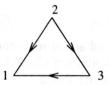


FIGURE 3. Tournament of the example 2.2

An almost complex structure J on F(n) is said to be integrable if (F(n), J) is a complex manifold. An equivalent condition is the famous Newlander-Nirenberg equation (see [NN]):

(2.7)
$$[JX, JY] = J[X, JY] + J[JX, Y] + [X, Y].$$

for all tangent vectors X, Y.

Burstall and Salamon [BS] proved the following result:

Theorem 2.1. An almost complex structure J on F(n) is integrable if and only if $\mathcal{T}(J)$ is isomorphic to the canonical tournament \mathcal{T}_n .

Thus, if $\mathcal{T}(J)$ contains a 3-cycle then J is not integrable. The almost complex structure of example 2.1 is integrable.

An invariant almost complex structure J on F(n) is called parabolic if there is a permutation τ of n elements such that the associate tournament $\mathcal{T}(J)$ is given, for i < j, by

$$(\tau(j) \to \tau(i), \text{ if } j-i \text{ is even})$$
 or $(\tau(i) \to \tau(j), \text{ if } j-i \text{ is odd})$

Classes (3) and (7) in Figure 1 and (12) in Figure 2 represent the parabolic structures on F(3), F(4) and F(5) respectively.

A *n*-tournament \mathcal{T} , for $n \geq 3$, is called irreducible or Hamiltonian if it contains a *n*-cycle, i.e. a path

$$\pi(n) \to \pi(1) \to \pi(2) \to \cdots \to \pi(n-1) \to \pi(n),$$

where π is a permutation of *n* elements.

A *n*-tournament \mathcal{T} is transitive if given three nodes i, j, k of \mathcal{T} then

 $i \to j \text{ and } j \to k \implies i \to k.$

The canonical tournament is the only one transitive tournament up to isomorphisms.

We consider \mathbb{C}^n equipped with the standard Hermitian inner product, i.e. for $V = (v_1, \ldots, v_n)$ and $W = (w_1, \ldots, w_n)$ in \mathbb{C}^n , we have

(2.8)
$$\langle V, W \rangle = \sum_{i=1}^{n} v_i \overline{w_i}$$

We use the convention

(2.9)
$$\overline{v_i} = v_{\overline{\imath}}$$
 and $\overline{f_{i\overline{\jmath}}} = f_{\overline{\imath}j}$.

A frame consists of an ordered set of n vectors (Z_1, \ldots, Z_n) , such that $Z_1 \wedge \ldots \wedge Z_n \neq 0$, and it is called unitary, if $\langle Z_i, Z_j \rangle = \delta_{ij}$. The set of unitary frames can be identified with the unitary group.

If we write

(2.10)
$$dZ_i = \sum_j \omega_{i\bar{j}} Z_j,$$

the coefficients $\omega_{i\bar{j}}$ are the Maurer-Cartan forms of the unitary group U(n). They are skew-Hermitian, i.e.

(2.11)
$$\omega_{i\bar{j}} + \omega_{\bar{j}i} = 0$$

and satisfy the equation

(2.12)
$$d\omega_{i\bar{j}} = \sum_{k} \omega_{i\bar{k}} \wedge \omega_{k\bar{j}}$$

For more details see [ChW].

We may define all left invariant metrics on (F(n), J) by (see [B1] or [N1])

(2.13)
$$ds_{\Lambda}^2 = \sum_{i,j} \lambda_{ij} \omega_{i\bar{j}} \otimes \omega_{\bar{\imath}j},$$

where $\Lambda = (\lambda_{ij})$ is a real matrix such that:

(2.14)
$$\begin{cases} \lambda_{ij} > 0, & \text{if } i \neq j \\ \lambda_{ij} = 0, & \text{if } i = j \end{cases}$$

and the Maurer-Cartan forms $\omega_{i\bar{j}}$ are such that

(2.15)
$$\omega_{i\bar{j}} \in \mathbb{C}^{1,0}$$
 ((1,0) type forms) $\iff i \xrightarrow{f(J)} j.$

Note that, if $\lambda_{ij} = 1$ for all i, j in (2.13), then we obtain the normal metric (see [ChE]) induced by the Cartan-Killing form of U(n).

The metrics (2.13) are called Borel type and they are almost Hermitian for every invariant almost complex structure J, i.e. $ds^2_{\Lambda}(JX, JY) = ds^2_{\Lambda}(X, Y)$, for all tangent vectors X, Y. When J is integrable ds^2_{Λ} is said to be Hermitian.

Definition 2.3. Let J be an invariant almost complex structure on F(n), $\mathcal{T}(J)$ the associated tournament, and ds^2_{Λ} an invariant metric. The Kähler form with respect to J and ds^2_{Λ} is defined by

(2.16)
$$\Omega(X,Y) = ds_{\Lambda}^{2}(X,JY),$$

for any tangent vectors X, Y.

For each permutation τ , of *n* elements, the Kähler form can be write in the following way (see [MN2])

(2.17)
$$\Omega = -2\sqrt{-1} \sum_{i < j} \mu_{\tau(i)\tau(j)} \omega_{\tau(i)\overline{\tau(j)}} \wedge \omega_{\overline{\tau(i)\tau(j)}},$$

where

(2.18)
$$\mu_{\tau(i)\tau(j)} = \varepsilon_{\tau(i)\tau(j)} \lambda_{\tau(i)\tau(j)},$$

 and

(2.19)
$$\varepsilon_{ij} = \begin{cases} 1 & \text{if } i \to j \\ -1 & \text{if } j \to i \\ 0 & \text{if } i = j \end{cases}$$

Definition 2.4. Let J be an invariant almost complex structure on F(n). Then F(n) is said to be almost Kähler if and only if Ω is closed, i.e. $d\Omega = 0$. If J is integrable and Ω is closed then F(n) is said to be a Kähler manifold.

The following result was proved by Mo and Negreiros in [MN2].

Theorem 2.2.

(2.20)

$$d\Omega = 4 \sum_{i < j < k} C_{\tau(i)\tau(j)\tau(k)} \Psi_{\tau(i)\tau(j)\tau(k)}$$

where

(2.21)
$$C_{ijk} = \mu_{ij} - \mu_{ik} + \mu_{jk}$$

and

(2.22)
$$\Psi_{ijk} = Im(\omega_{i\bar{j}} \wedge \omega_{\bar{i}k} \wedge \omega_{j\bar{k}}).$$

We denote by $\mathbb{C}^{p,q}$ the space of complex forms with degree (p,q) on F(n). Then, for any i, j, k, we have either

(2.23)
$$\Psi_{ijk} \in \mathbb{C}^{0,3} \oplus \mathbb{C}^{3,0} \quad \text{or} \quad \Psi_{ijk} \in \mathbb{C}^{1,2} \oplus \mathbb{C}^{2,1}$$

Definition 2.5. An invariant almost Hermitian metric ds_{Λ}^2 is said to be (1, 2)-symplectic if and only if $(d\Omega)^{1,2} = 0$. If $d^*\Omega = 0$ then the metric is said to be cosymplectic.

Figure 4 is included in the known Salamon's paper [Sa] and it contains a classification of the almost Hermitian structures. This figure provides the following implications

Kähler \implies (1,2)-symplectic \implies cosymplectic.

For a complete classification see [GH].

The following result due to Mo and Negreiros [MN2], is very useful to study (1,2)-symplectic metrics on F(n):

Theorem 2.3. If J is a U(n)-invariant almost complex structure on F(n), $n \ge 4$, such that $\mathcal{T}(J)$ contains one of 4-tournaments in the Figure 5 then J does not admit any invariant (1, 2)-symplectic metric.

A smooth map $\phi: (M,g) \to (N,h)$ between two Riemannian manifolds is said to be harmonic if and only if it is a critical point of the energy functional

(2.24)
$$E(\phi) = \frac{1}{2} \int_{M} |d\phi|^2 v_g \,,$$

where $|d\phi|$ is the Hilbert–Schmidt norm of the linear map $d\phi$, i.e. ϕ is harmonic if and only if it satisfies the Euler–Lagrange equations

(2.25)
$$\delta E(\phi) = \left. \frac{d}{dt} \right|_{t=0} E(\phi_t) = 0$$

for all variation (ϕ_t) of ϕ and $t \in (-\varepsilon, \varepsilon)$ (see [EL]).

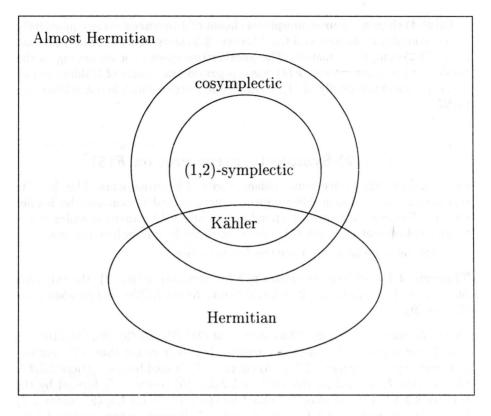


FIGURE 4. Almost Hermitian Structures

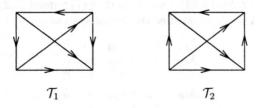


FIGURE 5. 4-tournaments of Theorem 2.3

3. (1,2)-Symplectic Structures on F(3) and F(4)

It is known that, on F(3) there is a 2-parametric family of Kähler metrics and a 3-parametric family of (1,2)-symplectic metrics corresponding to the non-integrable almost complex structures class. Then each invariant almost complex structure on F(3) admits a (1,2)-symplectic metric, see [ESa], [Bo].

On F(4) there are four isomorphism classes of 4-tournaments or equivalently almost complex structures and the Theorem 2.3 shows that two of them do not admit (1,2)-symplectic metric. The another two classes corresponding to the Kähler and parabolic cases. F(4) has a 3-parametric family of Kähler metrics and a 4-parametric family of (1,2)-symplectic metrics which is not Kähler, see [MN2].

4. (1, 2)-Symplectic Structures on F(5)

Figure 2 shows the twelve isomorphism classes of 5-tournaments. The class (1) corresponds to the integrable complex structures and it contains the Kähler metrics. The other classes correspond to non-integrable almost complex structures, in particular the class (11) corresponds to the parabolic structure.

To the remain classes we have the following result:

Theorem 4.1. Between the classes of 5-tournaments (Figure 2), the only ones that admit (1, 2)-symplectic metrics, different to the Kähler and parabolic, are (7) and (9).

Proof. We use the Theorem 2.3 to prove that (2), (3), (4), (5), (6), (8), (10) and (11) do not admit (1,2)-symplectic metric. It is easy to see that: (2) contains \mathcal{T}_1 formed by the vertices 1,2,3,4; (3) contains \mathcal{T}_1 formed by the vertices 2,3,4,5; (4) contains \mathcal{T}_2 formed by the vertices 1,2,3,4; (5) contains \mathcal{T}_2 formed by the vertices 2,3,4,5; (6) contains \mathcal{T}_2 formed by the vertices 1,3,4,5; (8) contains \mathcal{T}_2 formed by the vertices 2,3,4,5; (8) contains \mathcal{T}_2 formed by the vertices 1,2,3,4 and (11) contains \mathcal{T}_2 formed by the vertices 1,2,3,4. Then neither of them admit (1,2)-symplectic metric.

Using formulas (2.20)-(2.23), we obtain that (7) admits (1,2)-symplectic metric if and only if $\Lambda = (\lambda_{ij})$ satisfies the linear system

$\lambda_{12} - \lambda_{13} + \lambda_{23}$	=	0
$\lambda_{12} - \lambda_{14} + \lambda_{24}$	=	0
$\lambda_{13} - \lambda_{14} + \lambda_{34}$	=	0
$\lambda_{23} - \lambda_{24} + \lambda_{34}$	=	0
$\lambda_{23} - \lambda_{25} + \lambda_{35}$	=,	0
$\lambda_{24} - \lambda_{25} + \lambda_{45}$	=	0
$\lambda_{34} - \lambda_{35} + \lambda_{45}$	=	0

Then (7) admits (1,2)-symplectic metric if and only if $\Lambda = (\lambda_{ij})$ satisfies

$$\lambda_{13} = \lambda_{12} + \lambda_{23}$$

$$\lambda_{14} = \lambda_{12} + \lambda_{23} + \lambda_{34}$$

$$\lambda_{24} = \lambda_{23} + \lambda_{34}$$

$$\lambda_{25} = \lambda_{23} + \lambda_{34} + \lambda_{45}$$

$$\lambda_{25} = \lambda_{24} + \lambda_{45}$$

Similarly, we obtain that (9) admit (1,2)-symplectic metric if and only if $\Lambda = (\lambda_{ij})$ satisfies

Now we can write the respective matrices

	0	λ_{12}	$\lambda_{12}+\lambda_{23}$	$\lambda_{12}+\lambda_{23}+\lambda_{34}$	λ_{15}
1.13	λ_{12}	0	λ_{23}	$\lambda_{23} + \lambda_{34}$	$\lambda_{23} + \lambda_{34} + \lambda_{45}$
$\Lambda_{(7)} =$	$\lambda_{12} + \lambda_{23}$	λ_{23}	0	λ_{34}	$\lambda_{34} + \lambda_{45}$
2.1	$\lambda_{12} + \lambda_{23} + \lambda_{34}$	$\lambda_{23} + \lambda_{34}$	λ_{34}	0	λ_{45}
	λ_{15}	$\lambda_{23} + \lambda_{34} + \lambda_{45}$	$\lambda_{34} + \lambda_{45}$	λ_{45}	o)
	0	λ_{12}	$\lambda_{12}+\lambda_{23}$	$\lambda_{12} + \lambda_{23} + \lambda_{34}$	λ_{15}
12	λ_{12}	0	λ_{23}	$\lambda_{23} + \lambda_{34}$	$\lambda_{12} + \lambda_{15}$
$\Lambda_{(9)} =$	$\lambda_{12} + \lambda_{23}$	λ_{23}	0	λ_{34}	$\lambda_{34} + \lambda_{45}$
	$\lambda_{12}+\lambda_{23}+\lambda_{34}$	$\lambda_{23} + \lambda_{34}$	λ_{34}	0	λ_{45}
	λ15	$\lambda_{12} + \lambda_{15}$	$\lambda_{34} + \lambda_{45}$	λ_{45}	o)

The Theorem 4.1 says that F(n) admits (1,2)-symplectic metrics, different to the Kähler and parabolic, if and only if $n \ge 5$.

5. (1, 2)-Symplectic Structures on F(6)

There are 56 isomorphism classes of 6-tournaments (see [M]), which are presented in Figures 6, 7 and 8. Again, the class (1) corresponds to the integrable complex structures. The other classes correspond to non-integrable almost complex structures, and the class (52) corresponds to the parabolic structure.

In this case we have the following result

Theorem 5.1. Between the classes of 6-tournaments (Figure 6, 7 and 8), the only ones that admit (1,2)-symplectic metrics, different to the Kähler and parabolic, are (19), (31), (37) and (55).

Proof. We use the Theorem 2.3 to prove that each of the classes of 6-tournaments different to the (1), (19), (31), (37), (52) and (55) does not admit (1,2)-symplectic metrics:

- (2) contains \mathcal{T}_1 formed by the vertices 1,2,3,4.
- (3) contains \mathcal{T}_2 formed by the vertices 1,2,3,4.
- (4) contains \mathcal{T}_1 formed by the vertices 1,2,3,5.
- (5) contains \mathcal{T}_2 formed by the vertices 2,3,4,5.

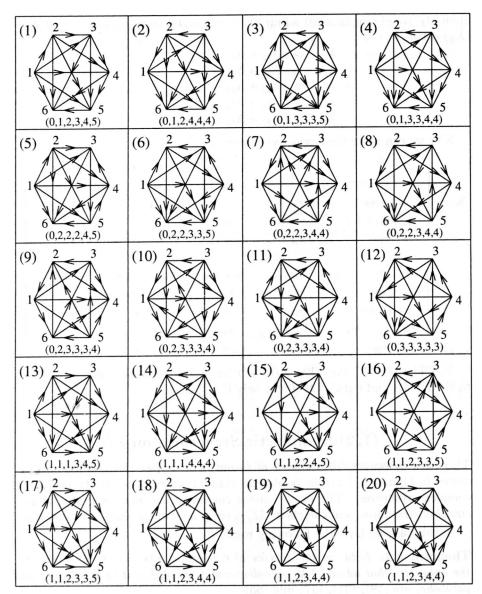


FIGURE 6. Isomorphism classes of 6-tournaments

- (6) contains \mathcal{T}_2 formed by the vertices 1,2,3,4.
- (7) contains \mathcal{T}_1 formed by the vertices 1,2,3,4.
- (8) contains \mathcal{T}_1 formed by the vertices 1,2,3,4.

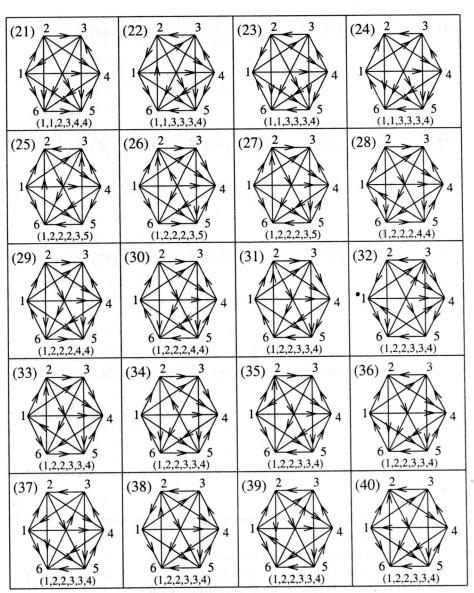


FIGURE 7. Isomorphism classes of 6-tournaments

- (9) contains \mathcal{T}_1 formed by the vertices 1,2,3,4.
- (10) contains \mathcal{T}_1 formed by the vertices 1,2,3,4.
- (11) contains \mathcal{T}_2 formed by the vertices 1,2,3,4.

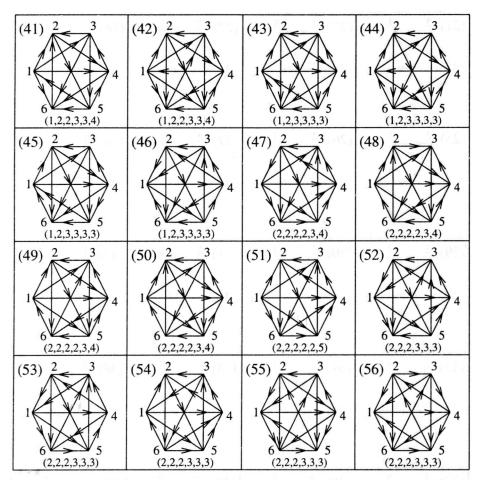


FIGURE 8. Isomorphism classes of 6-tournaments

- (12) contains \mathcal{T}_1 formed by the vertices 2,3,5,6.
- (13) contains \mathcal{T}_2 formed by the vertices 3,4,5,6.
- (14) contains \mathcal{T}_2 formed by the vertices 3,4,5,6.
- (15) contains \mathcal{T}_2 formed by the vertices 2,3,4,5.
- (16) contains \mathcal{T}_2 formed by the vertices 1,2,3,4.
- (17) contains \mathcal{T}_2 formed by the vertices 3,4,5,6.
- (18) contains \mathcal{T}_2 formed by the vertices 3,4,5,6.
- (20) contains \mathcal{T}_2 formed by the vertices 2,3,4,5.
- (21) contains \mathcal{T}_2 formed by the vertices 2,3,4,5.
- (22) contains \mathcal{T}_1 formed by the vertices 1,2,3,5.
- (23) contains \mathcal{T}_1 formed by the vertices 1,2,3,5.

- (24) contains \mathcal{T}_2 formed by the vertices 1,2,3,4.
- (25) contains \mathcal{T}_2 formed by the vertices 1,2,3,4.
- (26) contains \mathcal{T}_2 formed by the vertices 3,4,5,6.
- (27) contains \mathcal{T}_2 formed by the vertices 2,3,4,5.
- (28) contains \mathcal{T}_2 formed by the vertices 3,4,5,6.
- (29) contains \mathcal{T}_2 formed by the vertices 2,3,4,5.
- (30) contains T₂ formed by the vertices 2,3,4,5.
 (32) contains T₁ formed by the vertices 1,2,3,4.
- (33) contains \mathcal{T}_2 formed by the vertices 3,4,5,6.
- (34) contains \mathcal{T}_2 formed by the vertices 3,4,5,6.
- (35) contains \mathcal{T}_2 formed by the vertices 2,3,4,5.
- (36) contains \mathcal{T}_2 formed by the vertices 1,2,3,4.
- (38) contains \mathcal{T}_1 formed by the vertices 3,4,5,6.
- (39) contains \mathcal{T}_2 formed by the vertices 1,2,3,4.
- (40) contains \mathcal{T}_1 formed by the vertices 3,4,5,6.
- (41) contains \mathcal{T}_1 formed by the vertices 3,4,5,6.
- (42) contains \mathcal{T}_2 formed by the vertices 1,2,3,6.
- (43) contains \mathcal{T}_1 formed by the vertices 3,4,5,6.
- (44) contains \mathcal{T}_1 formed by the vertices 3,4,5,6.
- (45) contains \mathcal{T}_2 formed by the vertices 1,2,3,4.
- (46) contains \mathcal{T}_1 formed by the vertices 2,3,5,6.
- (47) contains \mathcal{T}_2 formed by the vertices 1,3,4,6.
- (48) contains \mathcal{T}_2 formed by the vertices 2,3,4,5.
- (49) contains \mathcal{T}_2 formed by the vertices 1,2,3,4.
- (50) contains \mathcal{T}_2 formed by the vertices 1,2,3,4.
- (51) contains \mathcal{T}_2 formed by the vertices 1,3,5,6.
- (53) contains \mathcal{T}_1 formed by the vertices 1,2,4,6.
- (54) contains \mathcal{T}_2 formed by the vertices 1,2,4,5.
- (56) contains \mathcal{T}_1 formed by the vertices 1,2,4,6.

By making similar computations to we made in the proof of Theorem 4.1 we obtain:

• The class (19) admits (1,2)-symplectic metric if and only if the elements of corresponding matrix $\Lambda_{(19)} = (\lambda_{ij})$ satisfy the following system of linear equations

$\lambda_{12} - \lambda_{13} + \lambda_{23}$	-	0	$\lambda_{12} - \lambda_{14} + \lambda_{24}$	=	0
$\lambda_{12} - \lambda_{15} + \lambda_{25}$	==	0	$\lambda_{13} - \lambda_{14} + \lambda_{34}$	=	0
$\lambda_{13} - \lambda_{15} + \lambda_{35}$	=	0	$\lambda_{14} - \lambda_{15} + \lambda_{45}$	=	0
$\lambda_{23} - \lambda_{24} + \lambda_{34}$	=	0	$\lambda_{23} - \lambda_{25} + \lambda_{35}$	=	0
$\lambda_{23} - \lambda_{26} + \lambda_{36}$	=	0	$\lambda_{24} - \lambda_{25} + \lambda_{45}$	=	0
$\lambda_{24} - \lambda_{26} + \lambda_{46}$	=	0	$\lambda_{25} - \lambda_{26} + \lambda_{56}$	=	0
$\lambda_{34} - \lambda_{35} + \lambda_{45}$	=	0	$\lambda_{34} - \lambda_{36} + \lambda_{46}$	=	0
$\lambda_{35} - \lambda_{36} + \lambda_{56}$	=	0	$\lambda_{45} - \lambda_{46} + \lambda_{56}$	=	0.

Then the metric $ds^2_{\Lambda_{(19)}}$ is (1,2)-symplectic if and only if

λ_{13}	=	$\lambda_{12} + \lambda_{23}$	λ_{26}	=	$\lambda_{23}+\lambda_{34}+\lambda_{45}+\lambda_{56}$
λ_{14}	=	$\lambda_{12} + \lambda_{23} + \lambda_{34}$	λ_{35}	=	$\lambda_{34} + \lambda_{45}$
λ_{15}	=	$\lambda_{12}+\lambda_{23}+\lambda_{34}+\lambda_{45}$	λ_{36}	=	$\lambda_{34} + \lambda_{45} + \lambda_{56}$
λ_{24}	=	$\lambda_{23} + \lambda_{34}$	λ_{46}	=	$\lambda_{45} + \lambda_{56}$
λ_{25}	=	$\lambda_{23} + \lambda_{34} + \lambda_{45}.$			

• In similar way the class (31) admits (1,2)-symplectic metric if and only if the elements of the corresponding matrix $\Lambda_{(31)} = (\lambda_{ij})$ satisfy the following relations

λ_{13}	=	$\lambda_{12} + \lambda_{23}$	λ_{26}	=	$\lambda_{12} + \lambda_{16}$
λ_{14}	=	$\lambda_{12}+\lambda_{23}+\lambda_{34}$	λ_{35}	=	$\lambda_{34} + \lambda_{45}$
λ_{15}	=	$\lambda_{12}+\lambda_{23}+\lambda_{34}+\lambda_{45}$	λ_{36}	=	$\lambda_{34} + \lambda_{45} + \lambda_{56}$
λ_{24}	=	$\lambda_{23} + \lambda_{34}$	λ_{46}	=	$\lambda_{45} + \lambda_{56}$
λ_{25}	=	$\lambda_{23} + \lambda_{34} + \lambda_{45}.$			

• Similarly, the class (37) admits (1,2)-symplectic metric if and only if the elements of the corresponding matrix $\Lambda_{(37)} = (\lambda_{ij})$ satisfy the following relations

λ_{14}	=	$\lambda_{12} + \lambda_{25} + \lambda_{45}$	λ_{26}	=	$\lambda_{25} + \lambda_{45} + \lambda_{46}$
λ_{15}	=	$\lambda_{12} + \lambda_{25}$	λ_{34}	=	$\lambda_{36} + \lambda_{46}$
λ_{16}	=	$\lambda_{12} + \lambda_{25} + \lambda_{45} + \lambda_{46}$	λ_{35}	e n l	$\lambda_{12} + \lambda_{13} + \lambda_{25}$
λ_{23}	=	$\lambda_{12} + \lambda_{13}$	λ_{56}	=	$\lambda_{45} + \lambda_{46}$
λ_{24}	=	$\lambda_{25} + \lambda_{45}.$			

• Finally, the class (55) admits (1,2)-symplectic metric if and only if the elements of the corresponding matrix $\Lambda_{(55)} = (\lambda_{ij})$ satisfy the following relations

 $\mathbf{\nabla}$

λ_{13}	=	$\lambda_{12}+\lambda_{25}+\lambda_{35}$	λ_{26}	=	$\lambda_{12} + \lambda_{14} + \lambda_{46}$
λ_{15}	=	$\lambda_{12} + \lambda_{25}$	λ_{34}		$\lambda_{36} + \lambda_{46}$
λ_{16}	=	$\lambda_{14} + \lambda_{46}$	λ_{45}	==	$\lambda_{35} + \lambda_{36} + \lambda_{46}$
λ_{23}	=	$\lambda_{25} + \lambda_{35}$	λ_{56}	=	$\lambda_{35} + \lambda_{36}$
λ_{24}	=	$\lambda_{12} + \lambda_{14}$			

The matrices $\Lambda_{(19)}$, $\Lambda_{(31)}$, $\Lambda_{(37)}$ and $\Lambda_{(55)}$ correponding to the classes (19), (31), (37) and (55) are presented on the end of this paper.

6. (1, 2)-Symplectic Structures on F(7)

This case has a problem because it is not known any collection of tournament drawings for $n \ge 7$. The collection of tournaments drawings of n = 2, 3, 4, 5, 6, is contained in the Moon's book [M].

There are 456 isomorphism classes of 7-tornaments. In the Dias's M. Sc. Thesis [D] was obtained a representant matrix of each class of 7-tournament. The matrix $M(\mathcal{T}) = (a_{ij})$ of the tournament \mathcal{T} is defined by

$$a_{ij} = \begin{cases} 0, & \text{if } j \xrightarrow{\mathcal{T}} i \\ 1, & \text{if } i \xrightarrow{\mathcal{T}} j. \end{cases}$$

Obviously, it has the matrix is equivalent to have the tournament drawing.

We used the matrices generated in [D] together with the Digraph computer program, created by Professor Davide Carlo Demaria, in order to know which 7-tournaments contain the tournaments in Figure 5. Table 1 shows the matrices of the 7-tournaments which admit (1,2)-symplectic metric. Using the matrices

1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1		0	0	1	1	1	1	1	1
4	0	0	0	1	1	1	1		0	0	0	1	1	1	1	
	0	0	0	0	1	1	1		0	0	0	0	1	1	1	
11	0	0	0	0	0	1	1		0	0	0	0	0	1	1	
	0	0	0	0	0	0	1		0	0	0	0	0	0	1	
1	0	0	0	0	0	0	0/	(1	0	0	0	0	0	0	1
1	0	1	1	1	1	1	0)	1	0	1	1	1	1	1	0	1
1	0	0	1	1	1	1	0		0	0	1	1	1	1	0	
\mathbb{N}	0	0	0	1	1	1	1		0	0	0	1	1	1	0	
	0	0	0	0	1	1	1		0	0	0	0	1	1	1	
1	0	0	0	0	0	1	1		0	0	0	0	0	1	1	- W
	0	0	0	0	0	0	1		0	-0	0	0	0	0	1	
(1	1	0	0	0	0	0 /		1	1	1	0	0	0	0	/
1	0	1	1	1	1	1	0)	1	0	1	1	1	1	0	0	1
1	0	0	1	1	1	1	0		0	0	1	1	1	1	0	
	0	0	0	1	1	1	0		0	0	0	1	1	1	1	
	0	0	0	0	1	1	0		0	0	0	0	1	1	1	
	0	0	0	0	0	1	1		0	0	0	0	0	1	1	
	0	0	0	0	0	0	1		1	0	0	0	0	0	1	
(1	1	1	1	0	0	0/	$ \langle$	1	1	0	0	0	0	0	
1	0	1	1	1	1	0	0 \	1	0	1	1	1	1	0	0	1
1	0	0	1	1	1	1	0	11	0	0	1	1	1	0	0	1
	0	0	0	1	1	1	0		0	0	0	1	1	1	1	
	0	0	0	0	1	1	1		0	0	0	0	1	1	1	
	0	0	0	0	0	1	1		0	0	0	0	0	1	1	
	1	0	0	0	0	0	1		1	1	0	0	0	0	1	1
(1	1	1	0	0	0	0/		1	1	0	0	0	0	0	1
1	0	1	•1	1	1	0	0 \	1	0	1	1	1	0	0	0	1
1	0	0	1	1	1	0	0	11	0	0	1	1	1	0	0	1
	0	0	0	1	1	1	0		0	0	0	1	1	1	0	1
1	0	0	0	0	1	1	1		0	0	0	0	1	1	1	10
	0	0	0	0	0	1	1		1	0	0	0	0	1	1	
	1	1	0	0	0	0	1		1	1	0	0	0	0	1	
1	1	1	1	0	0	0	0/	1	1	1	1	0	0	0	0	

TABLE 1. Matrices of the 7-tournaments which admit (1,2)-symplectic metric

in the Table 1 we construct the 7-tournament drawings which admit (1,2)-symplectic metric. Figures 9 and 10 show this 7-tournaments. Class (1) in the Figure 9 represents the integrable structures and the class (10) in Figure 10 corresponds to the parabolic structures. To the remain classes we have the following result.

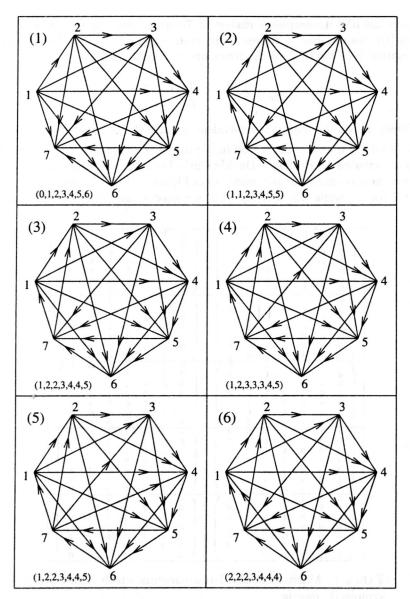


FIGURE 9. Isomorphism classes of 7-tournaments which admit (1,2)-symplectic metric

Theorem 6.1. The classes of 7-tournaments (2) through (9) in the Figures 9 and 10 admit (1, 2)-symplectic metrics, different to the Kähler and parabolic.

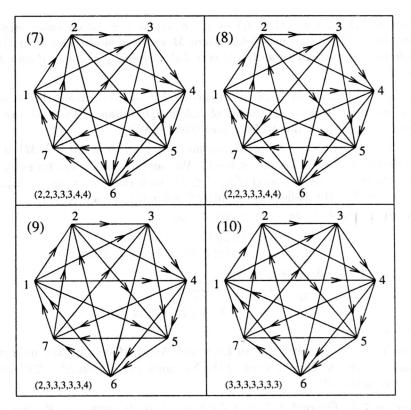


FIGURE 10. Isomorphism classes of 7-tournaments which admit (1,2)-symplectic metric

Proof. The proof is made through a long calculation similar to the proof of Theorem 4.1. \Box

The matrices $\Lambda_{(2)}$ through $\Lambda_{(9)}$ corresponding to the classes (2) through (9) are presented on the end of this paper.

Wolf and Gray [WG] proved that the normal metric on F(n) is not (1,2)-symplectic for $n \ge 4$. Our results give a simple proof of this fact to n = 5, 6, 7.

7. Harmonic Maps

In this section we construct new examples of harmonic maps using the following result due to Lichnerowicz [L]:

Theorem 7.1. Let $\phi: (M, g, J_1) \to (N, h, J_2)$ be a \pm holomorphic map between almost Hermitian manifolds where M is cosymplectic and N is (1, 2)symplectic. Then ϕ is harmonic. (ϕ is \pm holomorphic if and only if $d\phi \circ J_1 = \pm J_2 \circ d\phi$).

In order to construct harmonic maps $\phi: M^2 \to F(n)$ using the theorem above, we need to know examples of holomorphic maps. Then we use the following construction due to Eells and Wood [EW].

Let $h: M^2 \to \mathbb{CP}^{n-1}$ be a full holomorphic map (*h* is full if h(M) is not contained in none \mathbb{CP}^k , for all k < n-1). We can lift *h* to \mathbb{C}^n , i.e. for every $p \in M$ we can find a neighborhood of $p, U \subset M$, such that $h_U = (u_0, \ldots, u_{n-1}) : M^2 \supset U \to \mathbb{C}^n - 0$ satisfies $h(z) = [h_U(z)] = [(u_0(z), \ldots, u_{n-1}(z))].$

We define the k-th associate curve of h by

$$\begin{array}{ccccc} \mathcal{O}_k : & M^2 & \longrightarrow & \mathbb{G}_{k+1}(\mathbb{C}^n) \\ & z & \longmapsto & h_U(z) \wedge \partial h_U(z) \wedge \dots \wedge \partial^k h_U(z) \end{array}$$

for $0 \le k \le n - 1$. And we consider

$$egin{array}{rcl} h_k:&M^2&\longrightarrow&\mathbb{CP}^{n-1}\ &z&\longmapsto&\mathcal{O}_k^{\perp}(z)\cap\mathcal{O}_{k+1}(z), \end{array}$$

for $0 \ge k \ge n-1$.

The following theorem, due to Eells and Wood ([EW]), is very important because it gives the classification of the harmonic maps from $S^2 \sim \mathbb{CP}^1$ into a projective space \mathbb{CP}^{n-1} .

Theorem 7.2. For each $k \in \mathbb{N}$, $0 \le k \le n-1$, h_k is harmonic. Furthermore, given $\phi : (\mathbb{CP}^1, g) \to (\mathbb{CP}^{n-1}, Killing metric)$ a full harmonic map, then there are unique k and h such that $\phi = h_k$.

This theorem provides in a natural way the following holomorphic maps

 $egin{array}{cccc} \Psi : & M^2 & \longrightarrow & F(n) \ & z & \longmapsto & (h_0(z), \dots, h_{n-1}(z)), \end{array}$

called by Eells–Wood's map (see [N2]).

We called \mathfrak{M}_n the set of (1,2)-symplectic metrics on F(n), for n = 5, 6 and 7 characterized in the sections above. Using Theorem 7.1 we obtain the following result

Theorem 7.3. Let $\phi: M^2 \to (F(n), g), g \in \mathfrak{M}$ a holomorphic map. Then ϕ is harmonic.

In addition for maps from a flag manifold into a flag manifold we obtain the following result

Proposition 7.1. Let ϕ : $(F(l),g) \rightarrow (F(k),h)$ a holomorphic map, with $g \in \mathfrak{M}_l$ and $h \in \mathfrak{M}_k$. Then ϕ is harmonic.

THE GEOMETRY OF FULL FLAG MANIFOLDS AND HARMONIC MAPS 77

λ_{16}	$\begin{array}{l}\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$	$\begin{array}{l}\lambda_{34}+\lambda_{45}\\+\lambda_{56}\end{array}$	$\lambda_{45} + \lambda_{56}$	λ56	0
$\begin{array}{l}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$	$\lambda_{23} + \lambda_{34} + \lambda_{45}$	$\lambda_{34} + \lambda_{45}$	λ_{45}	0	λ_{56}
$\lambda_{12} + \lambda_{23} + \lambda_{34}$	$\lambda_{23} + \lambda_{34}$	λ_{34}	0	λ_{45}	$\lambda_{45} + \lambda_{56}$
$\lambda_{12} + \lambda_{23}$	λ_{23}	0	λ_{34}	$\lambda_{34} + \lambda_{45}$	$\begin{array}{c}\lambda_{34}+\lambda_{45}\\+\lambda_{56}\end{array}$
λ_{12}	0	λ_{23}	$\lambda_{23} + \lambda_{34}$	$\lambda_{23} + \lambda_{34} + \lambda_{45}$	$\begin{array}{l}\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$
0	λ_{12}	$\lambda_{12} + \lambda_{23}$	$\begin{array}{l}\lambda_{12}+\lambda_{23}\\+\lambda_{34}\end{array}$	$\lambda_{12} + \lambda_{23} + \lambda_{34} + \lambda_{45}$	λ_{16}
- 1949-0		I			

 $\Lambda_{(19)}$

BIBLIOTESAD, M. HELMANNEB

UNIVERDITAD

λ_{16}	$\lambda_{12}+\lambda_{16}$	$\lambda_{34} + \lambda_{45} + \lambda_{56}$	$\lambda_{45} + \lambda_{56}$	λ_{56}	0
$\begin{array}{l}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$	$\begin{array}{l}\lambda_{23}+\lambda_{34}\\+\lambda_{45}\end{array}$	$\lambda_{34} + \lambda_{45}$	λ_{45}	0	λ_{56}
$\begin{array}{l}\lambda_{12}+\lambda_{23}\\+\lambda_{34}\end{array}$	$\lambda_{23} + \lambda_{34}$	λ_{34}	0	λ_{45}	$\lambda_{45} + \lambda_{56}$
$\lambda_{12}+\lambda_{23}$	λ_{23}	0	λ_{34}	$\lambda_{34} + \lambda_{45}$	$\lambda_{34}+\lambda_{45}+\lambda_{56}$
λ_{12}	0	λ_{23}	$\lambda_{23} + \lambda_{34}$	$\begin{array}{l}\lambda_{23}+\lambda_{34}\\+\lambda_{45}\end{array}$	$\lambda_{12} + \lambda_{16}$
0	λ_{12}	$\lambda_{12} + \lambda_{23}$	$\frac{\lambda_{12}+\lambda_{23}}{+\lambda_{34}}$	$\begin{array}{l}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$	λ_{16}

 $\Lambda_{(31)}$

1.1.14

7

MARLIO PAREDES

$\begin{array}{l}\lambda_{12}+\lambda_{25}\\+\lambda_{45}+\lambda_{46}\end{array}$	$\begin{array}{l}\lambda_{25}+\lambda_{45}\\+\lambda_{46}\end{array}$	λ_{36}	λ_{46}	$\lambda_{45} + \lambda_{46}$	0
$\lambda_{12} + \lambda_{25}$	λ_{25}	$\begin{array}{l}\lambda_{12}+\lambda_{13}\\+\lambda_{25}\end{array}$	λ_{45}	0	$\lambda_{45} + \lambda_{46}$
$\lambda_{12} + \lambda_{25} + \lambda_{45}$	$\lambda_{25} + \lambda_{45}$	$\lambda_{36} + \lambda_{46}$	0	λ_{45}	λ_{46}
λ_{13}	$\lambda_{12} + \lambda_{13}$	0	$\lambda_{36} + \lambda_{46}$	$\lambda_{12} + \lambda_{13} + \lambda_{25}$	λ_{36}
λ_{12}	0	$\lambda_{12} + \lambda_{13}$	$\lambda_{25}+\lambda_{45}$	λ_{25}	$\lambda_{25} + \lambda_{45} + \lambda_{46}$
0	λ_{12}	λ_{13}	$\lambda_{12} + \lambda_{25} + \lambda_{45}$	$\lambda_{12} + \lambda_{25}$	$\lambda_{12}+\lambda_{25}+\lambda_{46}+\lambda_{46}$

1

 $\Lambda_{(37)}$

				ar tana tana	
$\lambda_{14} + \lambda_{46}$	$\begin{array}{l}\lambda_{12}+\lambda_{14}\\+\lambda_{46}\end{array}$	λ_{36}	λ_{46}	$\lambda_{35} + \lambda_{36}$	0
$\lambda_{12} + \lambda_{25}$	λ_{25}	λ_{35}	$\begin{array}{l}\lambda_{35}+\lambda_{36}\\+\lambda_{46}\end{array}$	0	$\lambda_{35} + \lambda_{36}$
λ_{14}	$\lambda_{12} + \lambda_{14}$	$\lambda_{36} + \lambda_{46}$	0	$\lambda_{35} + \lambda_{36} + \lambda_{46}$	λ_{46}
$\lambda_{12} + \lambda_{25} + \lambda_{35}$	$\lambda_{25} + \lambda_{35}$	0	$\lambda_{36} + \lambda_{46}$	λ_{35}	λ_{36}
λ_{12}	0	$\lambda_{25} + \lambda_{35}$	$\lambda_{12} + \lambda_{14}$	λ_{25}	$\lambda_{12} + \lambda_{14} + \lambda_{46}$
0	λ_{12}	$\begin{array}{c}\lambda_{12}+\lambda_{25}\\+\lambda_{35}\end{array}$	λ_{14}	$\lambda_{12} + \lambda_{25}$	$\lambda_{14} + \lambda_{46}$
1. 		11		120000000000000000000000000000000000000	

 $\Lambda_{(55)}$

-

-

λ17	$\lambda_{23} + \lambda_{34} + \lambda_{45} + \lambda_{56} + \lambda_{67}$	$\lambda_{34} + \lambda_{45}$ $- \lambda_{56} + \lambda_{67}$	$\lambda_{45} + \lambda_{56} + \lambda_{67}$	$\lambda_{56} + \lambda_{67}$	λ67	0
	$\begin{array}{c} \lambda_{23} + \lambda_{34} & \lambda_{21} \\ + \lambda_{45} + \lambda_{56} & \end{array}$		$\lambda_{45} + \lambda_{56}$	λ56	0	λ67
$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$	$\begin{array}{c}\lambda_{23}+\lambda_{34}\\+\lambda_{45}\end{array}$	$\lambda_{34} + \lambda_{45}$	λ45	0	λ_{56}	$\lambda_{56} + \lambda_{67}$
$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}\end{array}$	$\lambda_{23} + \lambda_{34}$	λ_{34}	0	λ_{45}	$\lambda_{45} + \lambda_{56}$	$\begin{array}{c}\lambda_{45}+\lambda_{56}\\+\lambda_{67}\end{array}$
$\lambda_{12}+\lambda_{23}$	λ_{23}	0	λ34	$\lambda_{34} + \lambda_{45}$	$\begin{array}{c}\lambda_{34}+\lambda_{45}\\+\lambda_{56}\end{array}$	$\begin{array}{l}\lambda_{34}+\lambda_{45}\\+\lambda_{56}+\lambda_{67}\end{array}$
λ12	0	λ23	$\lambda_{23} + \lambda_{34}$	$\begin{array}{c}\lambda_{23}+\lambda_{34}\\+\lambda_{45}\end{array}$	$\begin{array}{l}\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$	$\begin{array}{l}\lambda_{23}+\lambda_{34}+\lambda_{45}\\+\lambda_{56}+\lambda_{67}\end{array}$
0	λ12	$\lambda_{12} + \lambda_{23}$	$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}\end{array}$	$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$	$\begin{array}{c}\lambda_{12}+\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$	λ_{17}
_			II			_

A(2) =

	λ17	λ45 + λ ₆₇	λ56 67	λ67		
λ_{17}	$\lambda_{12} + \lambda_{17}$	$\lambda_{34} + + \lambda_{56} -$	$\begin{array}{l}\lambda_{45}+\lambda_{56}\\+\lambda_{67}\end{array}$	$\lambda_{56} + \lambda_{67}$	λ67	0
$\lambda_{12} + \lambda_{23} + \lambda_{34} + \lambda_{45} + \lambda_{56}$	$\begin{array}{l}\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$	$\lambda_{34} + \lambda_{45} + \lambda_{56}$	$\lambda_{45} + \lambda_{56}$	λ_{56}	0	λ_{67}
Ŧ	$\begin{array}{c}\lambda_{23}+\lambda_{34}\\+\lambda_{45}\end{array}$	$\lambda_{34} + \lambda_{45}$	λ_{45}	0	λ_{56}	$\lambda_{56} + \lambda_{67}$
$\lambda_{12} + \lambda_{23} + \lambda_{34}$	$\lambda_{23} + \lambda_{34}$	λ_{34}	0	λ_{45}	$\lambda_{45} + \lambda_{56}$	$\begin{array}{l}\lambda_{45}+\lambda_{56}\\+\lambda_{67}\end{array}$
$\lambda_{12}+\lambda_{23}$	λ_{23}	0	λ_{34}	$\lambda_{34} + \lambda_{45}$	$\begin{array}{c}\lambda_{34}+\lambda_{45}\\+\lambda_{56}\end{array}$	$\begin{array}{l}\lambda_{34}+\lambda_{45}\\+\lambda_{56}+\lambda_{67}\end{array}$
λ_{12}	0	λ_{23}	$\lambda_{23} + \lambda_{34}$	$\lambda_{23} + \lambda_{34} + \lambda_{45}$	$\begin{array}{c}\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$	$\lambda_{12}+\lambda_{17}$
0	λ_{12}	$\lambda_{12} + \lambda_{23}$	$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}\end{array}$	$\begin{array}{l}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$	$\begin{array}{c}\lambda_{12}+\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$	λ_{17}
		-	Λ(3) =			_

 $\begin{array}{c}\lambda_{45}+\lambda_{56}\\+\lambda_{67}\end{array}$ $\lambda_{12} + \lambda_{17}$ $\begin{array}{c}\lambda_{12}+\lambda_{17}\\+\lambda_{23}\end{array}$ $\lambda_{56} + \lambda_{67}$ λ_{17} λ_{67} 0 $\begin{array}{c}\lambda_{12}+\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$ $\begin{array}{l}\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$ $\lambda_{34} + \lambda_{45} + \lambda_{56}$ $\lambda_{45} + \lambda_{56}$ λ_{56} λ67 0 $\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$ $\lambda_{23} + \lambda_{34} + \lambda_{45}$ $\lambda_{34} + \lambda_{45}$ $\lambda_{56} + \lambda_{67}$ λ_{45} λ_{56} 0 $\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}\end{array}$ $\lambda_{23} + \lambda_{34}$ $\begin{array}{l}\lambda_{45}+\lambda_{56}\\+\lambda_{67}\end{array}$ $\lambda_{45} + \lambda_{56}$ λ_{34} λ_{45} 0 $\lambda_{34} + \lambda_{45}$ $\begin{array}{l}\lambda_{34}+\lambda_{45}\\+\lambda_{56}\\\lambda_{12}+\lambda_{17}\\+\lambda_{23}\end{array}$ $\lambda_{12} + \lambda_{23}$ λ_{23} λ_{34} 0 $\begin{array}{c}\lambda_{23}+\lambda_{34}\\+\lambda_{45}\\\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$ $\lambda_{23} + \lambda_{34}$ $\lambda_{12} + \lambda_{17}$ λ_{23} λ_{12} 0 $\begin{array}{c}\lambda_{12}+\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$ $\begin{array}{l}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$ $\lambda_{12} + \lambda_{23} + \lambda_{34}$ $\lambda_{12} + \lambda_{23}$ λ_{12} λ_{17}

 $\Lambda_{(4)} =$

_						
λ_{17}	$\lambda_{12} + \lambda_{17}$	$\begin{array}{c}\lambda_{12}+\lambda_{17}\\+\lambda_{23}\end{array}$	$\begin{array}{c}\lambda_{12}+\lambda_{17}\\+\lambda_{23}+\lambda_{34}\end{array}$	$\lambda_{56} + \lambda_{67}$	λ67	0
$\begin{array}{c}\lambda_{12}+\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$	$\begin{array}{l}\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$	$\begin{array}{l}\lambda_{34}+\lambda_{45}\\+\lambda_{56}\end{array}$	$\lambda_{45}+\lambda_{56}$	λ_{56}	0	λ67
$\begin{array}{l}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$	$\begin{array}{c}\lambda_{23}+\lambda_{34}\\+\lambda_{45}\end{array}$	$\lambda_{34} + \lambda_{45}$	λ_{45}	0	λ_{56}	$\lambda_{56} + \lambda_{67}$
$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}\end{array}$	$\lambda_{23} + \lambda_{34}$	λ_{34}	0	λ_{45}	$\lambda_{45} + \lambda_{56}$	$\begin{array}{c}\lambda_{12}+\lambda_{17}\\+\lambda_{23}+\lambda_{34}\end{array}$
$\lambda_{12} + \lambda_{23}$	λ_{23}	0	λ_{34}	$\lambda_{34} + \lambda_{45}$	$\begin{array}{c}\lambda_{34}+\lambda_{45}\\+\lambda_{56}\end{array}$	$\begin{array}{c}\lambda_{12}+\lambda_{17}\\+\lambda_{23}\end{array}$
λ_{12}	0	λ_{23}	$\lambda_{23} + \lambda_{34}$	$\begin{array}{c}\lambda_{23}+\lambda_{34}\\+\lambda_{45}\end{array}$	$\begin{array}{l}\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$	$\lambda_{12} + \lambda_{17}$
0	λ12	$\lambda_{12} + \lambda_{23}$	$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}\end{array}$	$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$	$\begin{array}{c}\lambda_{12}+\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$	λ_{17}
			A(5) =			

Ċ	$\lambda_{12} + \lambda_{23}$ $\lambda_{12} + \lambda_{23}$ $\lambda_{12} + \lambda_{23}$ $\lambda_{34} + \lambda_{34} + \lambda_{44} + \lambda_{44}$
$+ \lambda_{34} \qquad \begin{array}{c} \lambda_{23} + \lambda_{34} \\ + \lambda_{45} \\ \end{array}$	λ_{23} $\lambda_{23} + \lambda_{34}$ $\lambda_{23} + + + + + + + + + + + + + + + + + + +$
$34 \qquad \lambda_{34} + \lambda_{45}$	$0 \qquad \lambda_{34} \qquad \lambda_{34}$
	λ_{34} 0
45	$\lambda_{34} + \lambda_{45}$ λ_{45}
+ λ ₅₆	$\begin{array}{ll} \lambda_{34} + \lambda_{45} & \lambda_{45} + \lambda_{56} \\ + \lambda_{56} & \end{array}$
$\begin{array}{ll} + \lambda_{56} & \lambda_{56} + \lambda_{67} \\ \lambda_{67} & \lambda_{56} + \lambda_{67} \end{array}$	$\begin{array}{cccc} \lambda_{34} + \lambda_{45} & \lambda_{45} + \lambda_{56} + \lambda_{56} \\ + \lambda_{56} + \lambda_{67} & + \lambda_{67} \end{array}$

11 $\Lambda_{(6)}$

_						_	
λ_{17}	$\lambda_{12} + \lambda_{17}$	$\begin{array}{c}\lambda_{12}+\lambda_{17}\\+\lambda_{23}\end{array}$	$\begin{array}{c}\lambda_{45}+\lambda_{56}\\+\lambda_{67}\end{array}$	$\lambda_{56} + \lambda_{67}$	λ_{67}	0	
$\lambda_{17} + \lambda_{67}$	$\begin{array}{l}\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$	$\begin{array}{c}\lambda_{34}+\lambda_{45}\\+\lambda_{56}\end{array}$	$\lambda_{45} + \lambda_{56}$	λ56	0	λ_{67}	
$\begin{array}{l}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$	$\lambda_{23} + \lambda_{34} + \lambda_{45}$	$\lambda_{34} + \lambda_{45}$	λ_{45}	0	λ56	$\lambda_{56} + \lambda_{67}$	
$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}\end{array}$	$\lambda_{23} + \lambda_{34}$	λ_{34}	0	λ_{45}	$\lambda_{45}+\lambda_{56}$	$\begin{array}{l}\lambda_{45}+\lambda_{56}\\+\lambda_{67}\end{array}$	
$\lambda_{12}+\lambda_{23}$	λ_{23}	0	λ_{34}	$\lambda_{34} + \lambda_{45}$	$\begin{array}{c} \lambda_{34}+\lambda_{45}\\ +\lambda_{56} \end{array}$	$\begin{array}{c}\lambda_{12}+\lambda_{17}\\+\lambda_{23}\end{array}$	
λ_{12}	0		$\lambda_{23} + \lambda_{34}$	$\begin{array}{c}\lambda_{23}+\lambda_{34}\\+\lambda_{45}\end{array}$	$\begin{array}{c}\lambda_{23}+\lambda_{34}\\+\lambda_{45}+\lambda_{56}\end{array}$	$\lambda_{12} + \lambda_{17}$	
0	λ_{12}	$\lambda_{12} + \lambda_{23}$	$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}\end{array}$	$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$	$\lambda_{17} + \lambda_{67}$	λ17	
			A(7) =				

			2				
	λ17	$\lambda_{12} + \lambda_{17}$	$\begin{array}{l}\lambda_{34}+\lambda_{45}\\+\lambda_{56}+\lambda_{67}\end{array}$	$\begin{array}{l}\lambda_{45}+\lambda_{56}\\+\lambda_{67}\end{array}$	$\lambda_{56} + \lambda_{67}$	λ_{67}	0
	$\lambda_{17} + \lambda_{67}$	$\begin{array}{c}\lambda_{12}+\lambda_{17}\\+\lambda_{67}\end{array}$	$\lambda_{34} + \lambda_{45} + \lambda_{56}$	$\lambda_{45} + \lambda_{56}$	λ_{56}	0	λ_{67}
	$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$	$\begin{array}{c}\lambda_{23}+\lambda_{34}\\+\lambda_{45}\end{array}$	$\lambda_{34} + \lambda_{45}$	λ_{45}	0	λ_{56}	$\lambda_{56} + \lambda_{67}$
	$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}\end{array}$	$\lambda_{23}+\lambda_{34}$	λ34	0	λ_{45}	$\lambda_{45}+\lambda_{56}$	$\begin{array}{l}\lambda_{45}+\lambda_{56}\\+\lambda_{67}\end{array}$
	$\lambda_{12} + \lambda_{23}$	λ_{23}	0	λ34	$\lambda_{34} + \lambda_{45}$	$\lambda_{34} + \lambda_{45} + \lambda_{56}$	$\begin{array}{l}\lambda_{34}+\lambda_{45}\\+\lambda_{56}+\lambda_{67}\end{array}$
	λ_{12}	0	λ_{23}	$\lambda_{23}+\lambda_{34}$	$\lambda_{23} + \lambda_{34} + \lambda_{45}$	$\begin{array}{c}\lambda_{12}+\lambda_{17}\\+\lambda_{67}\end{array}$	$\lambda_{12}+\lambda_{17}$
	0	λ12	$\lambda_{12} + \lambda_{23}$	$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}\end{array}$	$\begin{array}{l}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$	$\lambda_{17} + \lambda_{67}$	λ_{17}
j k sala k na k pokato (k an kat)			Λ(8) =			

λ_{17}	$\lambda_{12}+\lambda_{17}$	$\begin{array}{c}\lambda_{12}+\lambda_{17}\\+\lambda_{23}\end{array}$	$\begin{array}{l}\lambda_{45}+\lambda_{56}\\+\lambda_{67}\end{array}$	$\lambda_{56} + \lambda_{67}$	λ67	0
$\lambda_{17} + \lambda_{67}$	$\begin{array}{c}\lambda_{12}+\lambda_{17}\\+\lambda_{67}\end{array}$	$\begin{array}{c}\lambda_{34}+\lambda_{45}\\+\lambda_{56}\end{array}$	$\lambda_{45}+\lambda_{56}$	λ_{56}	0	λ_{67}
$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$	$\begin{array}{c}\lambda_{23}+\lambda_{34}\\+\lambda_{45}\end{array}$	$\lambda_{34} + \lambda_{45}$	λ45	0	λ56	$\lambda_{56} + \lambda_{67}$
$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}\end{array}$	$\lambda_{23} + \lambda_{34}$	λ34	0	λ_{45}	$\lambda_{45} + \lambda_{56}$	$\begin{array}{c}\lambda_{45}+\lambda_{56}\\+\lambda_{67}\end{array}$
$\lambda_{12}+\lambda_{23}$	λ_{23}	0	λ34	$\lambda_{34} + \lambda_{45}$	$\begin{array}{c} \lambda_{34}+\lambda_{45}\\ +\lambda_{56}\end{array}$	$\begin{array}{c}\lambda_{12}+\lambda_{17}\\+\lambda_{23}\end{array}$
λ_{12}	0	λ_{23}	$\lambda_{23} + \lambda_{34}$	$\begin{array}{c}\lambda_{23}+\lambda_{34}\\+\lambda_{45}\end{array}$	$\begin{array}{c}\lambda_{12}+\lambda_{17}\\+\lambda_{67}\end{array}$	$\lambda_{12} + \lambda_{17}$
0	λ_{12}	$\lambda_{12}+\lambda_{23}$	$\begin{array}{c}\lambda_{12}+\lambda_{23}\\+\lambda_{34}\end{array}$	$\begin{array}{l}\lambda_{12}+\lambda_{23}\\+\lambda_{34}+\lambda_{45}\end{array}$	$\lambda_{17} + \lambda_{67}$	λ17
	Internet Descent		Λ(9) =	#100.97940+01013000	an an an a dhear	outeff 1.0

References

- [B1] M. BLACK, Harmonic Maps into Homogeneous Spaces, Pitman Res. Notes Math. Ser., vol. 255, Longman, Harlow, 1991.
- [Bo] A. BOREL, Kählerian Coset Spaces of Semi-Simple Lie Groups, Proc. Nat. Acad. of Sci. 40 (1954), 1147–1151.

MARLIO PAREDES

THE GEOMETRY OF FULL FLAG MANIFOLDS AND HARMONIC MAPS

- [BH] A. BOREL & F. HIRZEBRUCH, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
- [BS] F. E. BURSTALL & S. SALAMON, Tournaments, Flags and Harmonic Maps, Math. Ann. 277 (1987), 249–265.
- [ChE] J. CHEEGER & D. G. EBIN, Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam, 1975.
- [ChW] S. S. CHERN & J. G. WOLFSON, Harmonic Maps of the Two-Sphere into a Complex Grassmann Manifold II, Ann. of Math. 125 (1987), 301-335.
- [D] A. O. DIAS, Invariantes Homotópicos em Torneios, Tese de Mestrado, IMECC-UNICAMP, 1998.
- [EL] J. EELLS & L. LEMAIRE, Selected Topics in Harmonic Maps, C. B. M. S. Regional Conference Series in Mathematics, vol. 50, American Mathematical Society, Providence, 1983.
- [ES] J. EELLS & J. H. SAMPSON, Harmonic Mappings of Riemannian Manifolds, Amer. J. Math. 86 (1964), 109–160.
- [ESa] J. EELLS & S. SALAMON, Twistorial Constructions of Harmonic Maps of Surfaces into Four-Manifolds, Ann. Scuola Norm. Sup. Pisa (4) 12 (1985), 589-640.
- [EW] J. EELLS & J. C. WOOD, Harmonic Maps from Surfaces to Complex Projective Spaces, Advances in Mathematics 49 (1983), 217–263.
- [GH] A. GRAY & L. M. HERVELLA, The Sixteen Classes of Almost Hermitian Manifolds and Their Linear Invariants, Ann. Mat. Pura Appl. 123 (1980), 35–58.
- [L] A. LICHNEROWICZ, Applications Harmoniques et Variétés Kählériennes, Symposia Mathematica 3 (Bologna, 1970), 341-402.
- [M] J. W. MOON, Topics on Tournaments, Holt, Rinehart and Winston, New York, 1968.
- [MN1] X. MO & C. J. C. NEGREIROS, Hermitian Structures on Flag Manifolds, Relatorio de Pesquisa 35/98, IMECC-UNICAMP (1998).
- [MN2] X. MO & C. J. C. NEGREIROS, (1,2)-Symplectic Structures on Flag Manifolds, Tohoku Mathematical Journal 52 (2000), no. 02, 271–283.
- [MN3] X. Mo & C. J. C. NEGREIROS, Tournaments and Geometry of Full Flag Manifolds, Proceedings of the XI Brazilian Topology Meeting, Rio Claro, Brazil, World Scientific (1999).
- [N1] C. J. C. NEGREIROS, Some Remarks about Harmonic Maps into Flag Manifolds, Indiana University Mathematics Journal 37 (1988), no. 3, 617–636.
- [N2] C. J. C. NEGREIROS, Harmonic Maps from Compact Riemann Surfaces into Flag Manifolds, Thesis, University of Chicago, 1987.
- [NN] A. NEWLANDER & L. NIRENBERG, Complex Analitic Coordinates in Almost Complex Manifolds, Ann. of Math. 65 (1957), 391-404.
- [P] M. PAREDES, Aspectos da Geometria Complexa das Variedades Bandeira, Doctoral Thesis, Universidade Estadual de Campinas, 2000.
- [Sa] S. SALAMON, Harmonic and Holomorphic Maps, Lecture Notes in Mathematics 1164, Springer, 1986.
- [WG] J. A. WOLF & A. GRAY, Homogeneous Spaces Defined by Lie Groups Automorphisms. II, Journal of Differential Geometry, 2 (1968), no. 2, 115-159.

(Recibido en octubre de 2000)

ESCUELA DE MATEMÁTICAS UNIVERSIDAD INDUSTRIAL DE SANTANDER APARTADO AEREO 678 BUCARAMANGA (SANTANDER), COLOMBIA *e-mail*: mparedes@uis.edu.co