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ABSTRACT. In this note we study, for n = 5,6,7, the geometry of the full flag
manifolds, F(n) = U(l)~.(n~U(l)' By using tournaments we characterize all of
the (1,2)-symplectic invariant metrics on F(n), for n = 5,6,7, corresponding to
different classes of non-integrable invariant almost complex structure.
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1. Introduction
Eells and Sampson [ES] , proved that if ¢>: !VI -t N is a holomorphic map
between Kahler manifolds then ¢> is harmonic. This result was generalized by
Lichnerowicz (see [L] or [Sa]) as follows: Let (!VI, g, J1) and (N, h, h) be almost
Hermitian manifolds with !VI cosymplectic and N (1,2)-symplectic. Then any
± holomorphic map ¢>: (!VI, Jd -t (N, h) is harmonic.

We are interested to study harmonic maps, ¢>: !VI2 -t F(n), from a closed
Riemannian surface !VI2 to a full flag manifold F(n). Then by the Lichnerow-
icz theorem, we must study (1,2)-symplectic metrics on F(n), because a Rie-
mannian surface is a Kahler manifold and a Kahler manifold is a cosymplectic
manifold (see [Sa] or [GH]).
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The study of invariant metrics on F(n) involves almost complex structures
on F(n). Borel and Hirzebruch [BH], proved that there are 2(;) U(n)-invariant
almost complex structures on F(n). This number is the same number of tour-
naments with n players or nodes. A tournament is a digraph in which any two
nodes are joined by exactly one oriented edge (see [M] or [BS]). There is a natu-
ral identification between almost complex structures on F(n) and tournaments
with n players, see [MN3] or [BS].

The tournaments can be classified in isomorphism classes. In that classi-
fication, one of this classes corresponds to the integrable structures and the
another ones correspond to non-integrable structures. Burstall and Salamon
[BS], proved that a almost complex structure Jon F(n) is integrable if and only
if the associated tournament to J is isomorphic to the canonical tournament
(the canonical tournament with n players, {1,2, ... ,n}, is defined by i -+ j if
and only if i < j). In that paper the identification between almost complex
structures and tournaments plays a very important role.

Borel [Bo], proved that exits a (n - 1)-dimensional family of invariant Kahler
metrics on F(n) for each invariant complex structure on F(n). Eells and
Salamon [ESa], proved that any parabolic structure on F(n) admits a (1,2)-
symplectic metric. Mo and Negreiros [MN2], showed explicitly that there is a
n-dimensional family of invariant (1,2)-symplectic metrics for each parabolic
structure on F(n), the identification between almost complex structures and
tournaments is strongly used in that paper.

Mo and Negreiros ([MN1]' [MN2]) studied the geometry of F(3) and F(4).
In this paper we study the F(5), F(6) and F(7) cases. We obtain the
following families of (1,2)-symplectic invariant metrics, different to the Kahler
and parabolic: On F(5), two 5-parametric families; on F(6), four 6-parametric
families, two of them generalizing the two families on F(5) and, on F(7) we
obtain eight 7-parametric families, four of them generalizing the four ones on
F(6) ..

These metrics are used to produce new examples of harmonic maps rP: M2 -+
F(n), applying the result of Lichnerowicz mentioned above.

These notes are part of the author's Doctoral Thesis [P]. I wish to thank
my advisor Professor Caio Negreiros for his right advise. I would like to thank
Professor Xiaohuan Mo for his helpful comments and dicussions on this work.

2. Preliminaries
A full flag manifold is defined by

(2.1) F(n) = {(L1, ... , Ln) : L, is a subspace of en, dimcLi = 1, Li..lLj}.
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The unitary group U(n) acts transitively on F(n). Using this action we obtain
an algebraic description for F(n):

(2.2) F(n) = U(n) = U(n)
T U(I) x ... x U(I) ,

" "v

n-times

where T = U(I) x ... x U(I) is a maximal torus in U(n).
" J

n-times

Let p be the tangent space of F(n) in (T). The Lie algebra u(n) is such that
(see [ehEl)

u(n) -t
{X E Mat(n,C): X +X = O}
pEEl u(l) EEl··· EElu(l) .

" ,v

(2.3)
n-times

Definition 2.1. An invariant almost complex structure on F(n) is a linear
map J: p --+ P such that P = - I .

Example 2.1. If we consider

U(3)
F(3) = U(I) x U(I) x U(I)

U(3)
T'

in this case

p ~ T(F(3))(T) ~ {U~ ~c n a,b,c, E C}
The following linear map is an example of a almost complex structure on F(3)

(

0 a b) ( 0 (- A)a (-A) b )
-~ 0 C f----t ( - yCT)~ 0 (yCT)c.
-b -c 0 (-A)b (yCT)c 0

There is a natural identification between almost complex structures on F(n)
and tournaments with n players.

Definition 2.2. A tournament or n-tournament T, consists of a finite set
T = {PI, P2, ... , Pn} of n players, together with a dominance relation, --+, that
assigns to every pair' of players a winner', i. e. P'i --+ Pj or Pj --+ Pi· If Pi --+ Pj
then we say that Pi beats Pi-

A tournament T may be represented by a directed graph in which T is the
set of vertices and any two vertices are joined by an oriented edge.

Let TI be a tournament with n players {I, ... ,n} and 72 another tournament
with m players {I, , m}. A homomorphism between 7i and 72 is a mapping
¢: {I, ... ,n} --+ {i, ,m} such that

(2.4) s I4 t =} ¢(s) ~ ¢(t) or ¢(s) = cjJ(t).
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When r/J is bijective we said that hand T2 are isomorphic.
An n-tournament determines a score vector

fSi = (;),
.=1

with components equal the number of games won by each player. Isomorphic
tournaments have identical score vectors. Figure 1 shows the isomorphism
classes of n-tournaments for n = 2,3,4, together with their score vectors. For
n 2 5, there exist non-isomorphic n-tournaments with identical score vectors,
see Figure 2. The canonical n-tournament Tn is defined by setting i -+ j if

(2.5) such that

(1,1,1)(0,1) (0,1,2)

(1)

(0,1,2,3)

(~ {6~ (7~(~

(1,1,1,3) (0,2,2,2) (1,1,2,2)

FIGURE 1. Isomorphism classes of n-tournaments to n = 2,3,4.

and only if i < j. Up to isomorphism, Tn is the unique n-tournament satisfying
the following equivalent conditions:

• the dominance relation is transitive, i.e. if i -+ j and j -+ k then
i -+ k,

• there are no 3-cycles, i.e. closed paths i1 -+ i2 -+ i3 -+ iI, see [M],
• the score vector is (0,1,2, ... , n - 1).

For each invariant almost complex structure J on F(n), we can associate a
n-tournament T(J) in the following way: If J(aij) = (a~j) then T(J) is such
that for i < j

(2.6) (i -+ j ¢:> a~j =R aij) or (i +- j ¢:> a~j = -R aij),

see [MN3].

Example 2.2. The tournament in the Figure 3 corresponds to the almost
complex structure in the example 2.1
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(:1!fJ!4 (:~4 (:~4
(0,1,2,3,4 ) (0,1,3,3,3) (0,2,2,3,3 )(~~4(:~4 (:~4
(0,2,2,2,4 ) (1,1,1,3,4) (1,1,2,2,4)(~~4 (~~4 (~ifI14

(1,1,2,3,3 ) (1,1,2,3,3) - ( 1,2,2,2,3)

(:1l!J!4 (:~4 (:~4
(1,2,2,2,3) (1,2,2,2,3) (2,2,2,2,2)

FIGURE 2. Isomorphism classes of 5-tournaments.

FIGURE 3. Tournament of the example 2.2

An almost complex structure Jon F(n) is said to be integrable if (F(n), J)
is a complex manifold. An equivalent condition is the famous Newlander-
Nirenberg equation (see [NN]):

(2.7) [JX, JY] = J[X, JY] + J[JX, Y] + [X, Y].
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for all tangent vectors X, Y.
Burstall and Salamon [BS] proved the following result:

Theorem 2.1. An almost complex structure J on F(n) is integrable if and
only if T( J) is isomorphic to the canonical tournament Tn·

Thus, if T(J) contains a 3-cycle then J is not integrable. The almost com-
plex structure of example 2.1 is integrable.

An invariant almost complex structure Jon F(n) is called parabolic if there
is a permutation T of n elements such that the associate tournament T(J) is
given, for i < i, by

(T(j)-+T(i), ifj-i is even) or (T(i)-+T(j), ifj-iisodd)

Classes (3) and (7) in Figure 1 and (12) in Figure 2 represent the parabolic
structures on F(3), F(4) and F(5) respectively.

An-tournament T, for n ~ 3, is called irreducible or Hamiltonian if it
contains a n-cycle, i.e. a path

7I"(n) -+ 71"(1) -+ 71"(2) -+ ... -+ 7I"(n - 1) -+ 7I"(n),

where 71"is a permutation of n elements.
An-tournament T is transitive if given three nodes i, i, k of T then

i -+ j and j -+ k ==> i -+ k.

The canonical tournament is the only one transitive tournament up to isomor-
phisms.

We consider en equipped with the standard Hermitian inner product, i.e.
for V = (VI, ... , vn) and W = (WI, ... , Wn) in en, we have

n

(2.8) (V, W) = LViWi·
i=I

We use the convention

(2.9) Vi = V, and fi'j = f'j·

A frame consists of an ordered set of n vectors (Z1,"" Zn), such that Z1/\
... /\ Zn :I 0, and it is called unitary, if (Zi, Zj) = c5i'j' The set of unitary frames
can be identified with the unitary group.

If we write

sz, = LWi'jZj,
j

the coefficients Wi'j are the Maurer-Cartan forms of the unitary group U(n).
They are skew-Hermitian, i.e.

(2.10)

(2.11)
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and satisfy the equation

(2.12) dwiJ = L Wile 1\ WkJ·

k

For more details see [ChW].
We may define all left invariant metrics on (F(n), J) by (see [Bl] or [N1])

(2.13) ds~ = L )..ijWiJ Q9 W"ij,

i,j

where A = ()..ij) is a real matrix such that:

(2.14) { )..ij > 0, ~f ~:f: i ,
)..ij = 0, If t = J

and the Maurer-Cartan forms WiJ are such that

(2.15) WiJ E C1,0 ((1,0) type forms) {::=} i 7J!.; j.

Note that, if )..ij = 1 for all i,j in (2.13), then we obtain the normal metric (see
[ChE]) induced by the Cartan-Killing form of U(n).

The metrics (2.13) are called Borel type and they are almost Hermitian for
every invariant almost complex structure J, i.e. ds~ (J X, JY) = ds~ (X, Y),
for all tangent vectors X, Y. When J is integrable ds~ is said to be Hermitian.

Definition 2.3. Let J be an invariant almost complex structure on F(n), T(J)
the associated tournament, and ds~ an invariant metric. The K iihler form' with
respect to J and ds~ is defined by

(2.16) n(X, Y) = ds~ (X, JY),

for any tangent vectors X, Y.

For each permutation T, of n elements, the Kahler form can be write in the
following way (see [MN2])

(2.17) n = -2H L {Lr(i)r(j)Wr(i)r(j) 1\ ~r(j)'
i<j

where

(2.18)

and

{

I if i -+ j
Cij = -1 if j -+ i° if i = j

Definition 2.4. Let J be an invariant almost complex structure on F(n). Then
F(n) is said to be almost Kiihler if and only if n is closed, s.e. dn = 0. If J is
integrable and n is closed then F(n) is said to be a Kiihler manifold.

The following result was proved by Mo and Negreiros in [MN2].

(2.19)
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Theorem 2.2.

(2.20) dO = 4 L Cr(i)r(j)r(k) Wr(i)r(j)r(k)'
i<j<k

where

(2.21 ) Cijk = /-lij - /-lik + Iljk,

and

(2.22)

We denote by eM the space of complex forms with degree (p, q) on F(n).
Then, for any i, i.k, we have either

(2.23)

Definition 2.5. An invariant almost Hermitian metric ds~ is said to be (1,2)-
symplectic if and only if (dO)1,2 = O. If d*O = 0 then the metric is said to be
cosymplectic.

Figure 4 is included in the known Salamon's paper [Sa] and it contains
a classification of the almost Hermitian structures. This figure provides the
following implications

Kahler (1,2)-symplectic cosymplectic .

For a complete classification see [GH].

The following result due to Mo and Negreiros [MN2], is very useful to study
(1,2)-symplectic metrics on F(n):

Theorem 2.3. If J is a U(n)-invariant almost complex structure on F(n),
n 2: 4, such that T(J) contains one of 4-toumaments in the Figure 5 then J
does 'not admit any invariant (1,2) -symplectic metric.

A smooth map ¢;: (M,g) -+ (N,h) between two Riemannian manifolds is
said to be harmonic if and only if it is a critical point of the energy functional

1 r 2E(¢;) = 21
M

Id¢;1 v.,

where Id¢;/ is the Hilbert-Schmidt norm of the linear map d¢;, i.e. ¢; is harmonic
if and only if it satisfies the Euler-Lagrange equations

(2.24)

(2.25) bEe¢;) = dd I E(¢;d = 0
t t=o

for all variation (¢;t) of ¢; and t E (-c,c) (see [ELl).
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Almost Hermitian

cosymplectic

(1,2)-symplectic

Hermitian

FIGURE 4. Almost Hermitian Structures

t.
FIGURE 5. 4-tournaments of Theorem 2.3

3. (1,2)-Symplectic Structures on F(3) and F( 4)
It is known that, on F(3) there is a 2-parametric family of Kahler metrics
and a 3-parametric family of (1,2)-symplectic metrics corresponding to the
non-integrable almost complex structures class. Then each invariant almost
complex structure on F(3) admits a (1,2)-symplectic metric, see [ESa], [Bo].
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On F(4) there are four isomorphism classes of 4-tournaments or equivalently
almost complex structures and the Theorem 2.3 shows that two of them do not
admit (1,2)-symplectic metric. The another two classes corresponding to the
Kahler and parabolic cases. F( 4) has a 3-parametric family of Kahler metrics
and a 4-parametric family of (1,2)-symplectic metrics which is not Kahler, see
[MN2J.

4. (1, 2)-Symplectic Structures on F(5)
Figure 2 shows the twelve isomorphism classes of 5-tournaments. The class (1)
corresponds to the integrable complex structures and it contains the Kahler
metrics. The other classes correspond to non-integrable almost complex struc-
tures, in particular the class (11) corresponds to the parabolic structure.

To the remain classes we have the following result:

Theorem 4.1. Between the classes of 5-tournaments (Figur'e 2), the only ones
that admit (1, 2)-symplectic metrics, different to the Kahler and parabolic, are
(7) and (9).

Proof. We use the Theorem 2.3 to prove that (2), (3), (4), (5), (6), (8), (10) and
(11) do not admit (1,2)-symplectic metric. It is easy to see that: (2) contains
1i formed by the vertices 1,2,3,4; (3) contains 1i formed by the vertices 2,3,4,5;
(4) contains h. formed by the vertices 1,2,3,4; (5) contains h. formed by the
vertices 2,3,4,5; (6) contains h. formed by the vertices 1,3,4,5; (8) contains h.
formed by the vertices 2,3,4,5; (10) contains 1i formed by the vertices 1,2,3,4
and (11) contains h. formed by the vertices 1,2,3,4. Then neither of them admit
(1,2)-symplectic metric.

Using formulas (2.20)-(2.23), we obtain that (7) admits (1,2)-symplectic met-
ric if and only if A = (Aij) satisfies the linear system

A12 - A13 + A23 0
A12 - A14 + A24 0
A13 - A14 + A34 0
A23 - A24 + A34 0
A23 - ),25 + A35 0
A24 - A25 + A45 0
A34 - A35 + A45 0

Then (7) admits (1,2)-symplectic metric if and only if A = (Aij) satisfies

A13 A12 + A23

A14 A12 + A23 + A34

A24 A23 + A34

A25 A23 + A34 + A45

A35 A34 + A45
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Similarly, we obtain that (9) admit (1,2)-symplectic metric if and only if A =
()..ij) satisfies

)..12 + )..23

)..12 + )..23 + )..34

)..23 + )..34

)..12 + )..15

)..34 + )..45

Now we can write the respective matrices

[

A:2

1\(7) = A12 + A23

A12 + A23 + A34

Al5

o A15 1An + A34 + .\45

.\34 + .\45

.\45

o

o '\,5 ]
'\,2 + A15

.\34 + .\45

.\45

o

o

o

The Theorem 4.1 says that F(n) admits (1,2)-symplectic metrics, different
to the Kahler and parabolic, if and only if n 2 5.

5. (1, 2)-Symplectic Structures on F(6)
There are 56 isomorphism classes of 6-tournaments (see [MJ), which are pre-
sented in Figures 6, 7 and 8. Again, the class (1) corresponds to the integrable
complex structures. The other classes correspond to non-integrable almost
complex structures, and the class (52) corresponds to the parabolic structure.

In this case we have the following result

Theorem 5.1. Between the classes of 6-tournaments (Figure 6, 7 and 8),
the only ones that admit (1, 2)-symplectic metrics, different to the Kahler and
parabolic, are (19), (31), (37) and (55).

Proof. We use the Theorem 2.3 to prove that each of the classes of 6-tour-
naments different to the (1), (19), (31), (37), (52) and (55) does not admit
(1,2)-symplectic metrics:

• (2) contains Ti formed by the vertices 1,2,3,4.
• (3) contains 72 formed by the vertices 1,2,3,4.
• (4) contains Ti formed by the vertices 1,2,3,5.
• (5) contains 72 formed by the vertices 2,3,4,5.
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(11~4

~
(0, I ,2,3,4,5)

(~~4

~
(0,2,2,2,4,5)

(~~4

~
(0,2,3,3,3,4)

2 3

6 5
(1,1,1,3,4,5)

(I1~4

~
(I, I,2,3,3,5)

(~~4

~
(0, I ,2,4,4,4)

(~~4

~
(0,2,2,3,3,5)

(ll~4

~
(0,2,3,3,3,4)

4

(~~4

~
(0, I ,3,3,3,5)

(~~4

~
(0,2,2,3,4,4)

(ll~4

W
(0,2,3,3,3,4)

2 3

4

4

2 3

(~)~4

~
(0, I,3,3,4,4)

(~~4

~
(0,2,2,3,4,4)(:~4

~
(0,3,3,3,3,3)

2 3

4

4

FIGURE 6. Isomorphism classes of 6-tournaments

• (6) contains 72 formed by the vertices 1,2,3,4.
• (7) contains Ti formed by the vertices 1,2,3,4.
• (8) contains h formed by the vertices 1,2,3,4.
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(~~4

~
(1,1,2,3,4,4)

(~~4

~
(1,2,2,2,3,5)

2 3

(~~4

~
(1,1,3,3,3,4)

(~~4

~
(1,2,2,2,3,5)

2 3

4

4

(~~4

~
(1,1,3,3,3,4)

(~~4

~
(1,2,2,2,3,5)

2 3

4

4

(~~4

~
(1,1,3,3,3,4)

(~~4

~
(1,2,2,2,4,4 )

2 3

4

FIGURE 7. Isomorphism classes of 6-tournaments

• (9) contains Ti formed by the vertices 1,2,3,4.
• (10) contains Ti formed by the vertices 1,2,3,4.
• (11) contains 12 formed by the vertices 1,2,3,4.
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(~~4

~
(1,2,2,3,3,4)

(~~4

~
(1,2,3,3,3,3)

(~~4

~
(2,2,2,2,3,4)

(~~4

~
(1,2,2,3,3,4 )

(~~4

~
(1,2,3,3,3,3)

(~~4

~
(2,2,2,2,3,4)

2 3 2 3

(~~4

~
(l,2,3,3,3,3)

(~~4

~
(2,2,2,2,3,4 )

(~~4

~
(2,2,2,2,2,5)

4

(~4

~
(1,2,3,3,3,3)

2 3

(~~4

~
(2,2,2,2,3,4)

(~~4

~
(2,2,2,3,3,3)

4 4

2 3

FIGURE 8. Isomorphism classes of 6-tournaments

• (12) contains Ti formed by the vertices 2,3,5,6.
• (13) contains T2 formed by the vertices 3,4,5,6.
• (14) contains T2 formed by the vertices 3,4,5,6.
• (15) contains T2 formed by the vertices 2,3,4,5.
• (16) contains T2 formed by the vertices 1,2,3,4.
• (17) contains T2 formed by the vertices 3,4,5,6.
• (18) contains T2 formed by the vertices 3,4,5,6.
• (20) contains T2 formed by the vertices 2,3,4,5.
• (21) contains T2 formed by the vertices 2,3,4,5.
• (22) contains Ti formed by the vertices 1,2,3,5.
• (23) contains Ti formed by the vertices 1,2,3,5.



THE GEOMETRY OF FULL FLAG MANIFOLDS AND HARMONIC MAPS 71

• (24) contains 12 formed by the vertices 1,2,3,4.
• (25) contains 12 formed by the vertices 1,2,3,4.
• (26) contains 12 formed by the vertices 3,4,5,6.
• (27) contains 12 formed by the vertices 2,3,4,5.
• (28) contains 12 formed by the vertices 3,4,5,6.
• (29) contains 12 formed by the vertices 2,3,4,5.
• (30) contains 12 formed by the vertices 2,3,4,5.
• (32) contains Ti. formed by the vertices 1,2,3,4.
• (33) contains 12 formed by the vertices 3,4,5,6.
• (34) contains 12 formed by the vertices 3,4,5,6.
• (35) contains 12 formed by the vertices 2,3,4,5.
• (36) contains 12 formed by the vertices 1,2,3,4.
• (38) contains Ti. formed by the vertices 3,4,5,6.
• (39) contains 12 formed by the vertices 1,2,3,4.
• (40) contains Ti. formed by the vertices 3,4,5,6.
• (41) contains Ti. formed by the vertices 3,4,5,6.
• (42) contains 12 formed by the vertices 1,2,3,6.
• (43) contains Ti. formed by the vertices 3,4,5,6.
• (44) contains Ti. formed by the vertices 3,4,5,6.
• (45) contains 12 formed by the vertices 1,2,3,4.
• (46) contains Ti. formed by the vertices 2,3,5,6.
• (47) contains 12 formed by the vertices 1,3,4,6.
• (48) contains 12 formed by the vertices 2,3,4,5.
• (49) contains 12 formed by the vertices 1,2,3,4.
• (50) contains 12 formed by the vertices 1,2,3,4.
• (51) contains 12 formed by the vertices 1,3,5,6.
• (53) contains Ti formed by the vertices 1,2,4,6.
• (54) contains 12 formed by the vertices 1,2,4,5.
• (56) contains Ti formed by the vertices 1,2,4,6.

By making similar computations to we made in the proof of Theorem 4.1 we
obtain:

• The class (19) admits (1,2)-symplectic metric if and only if the elements
of corresponding matrix A(19) (>'ij) satisfy the following system of
linear equations

>'12 - >'13 + >'23 0 >'12 - >'14 + >'24 0
>'12 - >'15 + >'25 0 >'13 - >'14 + >'34 0
>'13 - >'15 + >'35 0 >'14 - >'15 + >'45 0
>'23 - >'24 + >'34 0 >'23 - >'25 + >'35 0
>'23 - >'26 + >'36 0 >'24 - >'25 + >'45 0
>'24 - >'26 + >'46 = 0 >'25 - >'26 + >'56 0
>'34 - >'35 + >'45 = 0 >'34 - >'36 + >'46 0
>'35 - >'36 + >'56 0 >'45 - >'46 + >'56 o.
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Then the metric dsX is (1,2)-symplectic if and only if
(19)

>'12 + >'23

>'12 + >'23 + >'34

>'12 + >'23 + >'34 + >'45

>'23 + >'34

>'23 + >'34 + >'45.

>'23 + >'34 + >'45 + >'56

>'34 + >'45

>'34 + >'45 + >'56

>'45 + >'56

• In similar way the class (31) admits (1,2)-symplectic metric if and only
if the elements of the corresponding matrix A(31) = (>'ij) satisfy the
following relations

>'13 >'12 + >'23 >'26 = >'12 + >'16

>'14 >'12 + >'23 + >'34 >'35 >'34 + >'45

>'15 >'12 + >'23 + >'34 + >'45 >'36 >'34 + >'45 + >'56

>'24 >'23 + >'34 >'46 >'45 + >'56

>'25 >'23 + >'34 + >'45.

• Similarly, the class (37) admits (1,2)-symplectic metric if and only if the
elements of the corresponding matrix A(37) = (>'ij) satisfy the following
relations

>'14 >'12 + >'25 + >'45 >'26 >'25 + >'45 + >'46

>'15 >'12 + >'25 >'34 >'36 + >'46

>'16 >'12 + >'25 + >'45 + >'46 >'35 >'12 + >'13 + >'25

>'23 >'12 + >'13 >'56 >'45 + >'46,
>'25 + >'45./\24

• Finally, the class (55) admits (1,2)-symplectic metric if and only if the
elements of the corresponding matrix A(55) = (>'ij) satisfy the following
relations

>'13 >'12 + >'25 + >'35 >'26 >'12 + >'14 + >'46

>'15 >'12 + >'25 >'34 >'36 + >'46

>'16 >'14 + >'46 >'45 >'35 + >'36 + >'46

>'23 >'25 + >'35 >'56 >'35 + >'36

>'24 >'12 + >'14 ~

The matrices A(19)' A(31)' A(37) and A(55) correponding to the classes (19),
(31), (37) and (55) are presented on the end of this paper.

6. (1,2)-Symplectic Structures on F(7)
This case has a problem because it is not known any collection of tournament
drawings for n 2 7. The collection of tournaments drawings of n = 2,3,4,5,6,
is contained in the Moon's book [M].
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There are 456 isomorphism classes of 7-tornaments. In the Dias's M. Sc.
Thesis [D] was obtained a representant matrix of each class of 7-tournament.
The matrix M (T) = (aij) of the tournament T is defined by

aij = { 0,
1,

if j ~ i
if i ~ j.

Obviously, it has the matrix is equivalent to have the tournament drawing.

We used the matrices generated in [D] together with the Digraph computer
program, created by Professor Davide Carlo Demaria, in order to know which
7-tournaments contain the tournaments in Figure 5. Table 1 shows the matrices
of the 7-tournaments which admit (1,2)-symplectic metric. Using the matrices

(
0 1 1 1 1 1 1

] (
0 1 1 1 1 1 0

]
0 0 1 1 1 1 1 0 0 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 1 1 1 1
0 0 0 0 1 1 1 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0

(
0 1 1 1 1 1 0

] (
0 1 1 1 1 1 0

]
0 0 1 1 1 1 0 0 0 1 1 1 1 0
0 0 0 1 1 1 1 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 -0 0 0 0 0 1
1 1 0 0 0 0 0 1 1 1 0 0 0 0

(
0 1 1 1 1 1 0

] (
0 1 1 1 1 0 0

]
0 0 1 1 1 1 0 0 0 1 1 1 1 0
0 0 0 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 1 1 0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 0 0 0 0 0 1
1 1 1 1 0 0 0 1 1 0 0 0 0 0

(
0 1 1 1 1 0 0

] (
0 1 1 1 1 0 0

]
0 0 1 1 1 1 0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0 0 0 0 0 1 1
1 0 0 0 0 0 1 1 1 0 0 0 0 1
1 1 1 0 0 0 0 1 1 0 0 0 0 0

(
0 1 ·1 1 1 0 0

] (
0 1 1 1 0 0 0

]
0 0 1 1 1 0 0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1 0 0 0 0 1 1
1 1 0 0 0 0 1 1 1 0 0 0 0 1
1 1 1 0 0 0 0 1 1 1 0 0 0 0

TABLE 1. Matrices of the 7-tournaments which admit (1,2)-
symplectic metric

in the Table 1 we construct the 7-tournament drawings which admit (1,2)-
symplectic metric. Figures 9 and 10 show this 7-tournaments. Class (1) in
the Figure 9 represents the integrable structures and the class (10) in Figure
10 corresponds to the parabolic structures. To the remain classes we have the
following result.



74 MARLIO PAREDES

(0,1,2,3,4,5,6) 6

(1,2,2,3,4,4,5) 6

(1,2,2,3,4,4,5) 6

(1,1,2,3,4,5,5) 6

(1,2,3,3,3,4,5) 6

(2,2,2,3,4,4,4) 6

FIGURE 9. Isomorphism classes of 7-tournaments which admit
(1,2)-symplectic metric

Theorem 6.1. The classes of 7-toumaments (2) through (9) in the Figures 9
and 10 admit (1, 2)-symplectic metrics, different to the Kahler and parabolic.
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(2,2,3,3,3,4,4) 6 (2,2,3,3,3,4,4) 6

(2,3,3,3,3,3,4) 6 (3,3,3,3,3,3,3) 6

FIGURE 10, Isomorphism classes of 7-tournaments which ad-
mit (1,2)-symplectic metric

Proof. The proof is made through a long calculation similar to the proof of
Theorem 4,1. ~

The matrices A(2) through A(9) corresponding to the classes (2) through (9)
are presented on the end of this paper.

Wolf and Gray [WG] proved that the normal metric on F(n) is not (1,2)-
symplectic for n 2 4. Our results give a simple proof of this fact to n = 5,6,7.

7. Harmonic Maps
In this section we construct new examples of harmonic maps using the following
result due to Lichnerowicz [1]:
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Theorem 7.1. Let ¢: (M,g,J1) -+ (N,h,J2) be a ± holomorphic map be-
tween almost Hermitian manifolds where M is cosymplectic and N is (1,2)-
symplectic. Then ¢ is harmonic. (¢ is ± holomorphic if and only if d¢ 0 Jl =
±J2 0 dd»}.

In order to construct harmonic maps ¢: M2 -+ F(n) using the theorem
above, we need to know examples of holomorphic maps. Then we use the
following construction due to Eells and Wood [EW].

Let h : M2 -+ CJII'n-l be a full holomorphic map (h is full if h(M) is not
contained in none CJIl'k, for all k < n -1). We can lift h to en, i.e. for every p E
M we can find a neighborhood of p, U c M, such that bo = (uo, ... , Un-l) :

M2 :J U -+ en - 0 satisfies h(z) = [hu(z)] = [(uo(z), ... , un-dz))].
We define the k-th associate curve of h by

Ok: M2 ---+ Gk+l (C")
Z f----+ hu(z) /\ 8hu(z) /\ ... /\ 8khu(z),

for 0 ~ k ~ n - 1. And we consider
hk: M2 ---+ CJII'n-l

z f----+ O,t(Z)nOk+l(Z),

for 0 ~ k ~ n - 1.
The following theorem, due to Eells and Wood ([EW]) , is very important

because it gives the classification of the harmonic maps from S2 ,....,CJII'l into a
projective.space CJII'n-l.

Theorem 7.2. For each kEN, 0 ~ k ~ n - 1, hk is harmonic. Furthermore,
given ¢ : (CJII'l, g) -+ (CJII'n-l, Killing metric) a full harmonic map, then
there are unique k and h such that ¢ = hk•

This theorem provides in a natural way the following holomorphic maps

1J1: M2 ---+ F(n)
z f----+ (ho(z), ... , hn-dz)),

called by Eells-Wood's map (see [N2]).
We called 9J1n the set of (1,2)-symplectic metrics on F(n), for n = 5,6 and 7

characterized in the sections above. Using Theorem 7.1 we obtain the following
result

Theorem 7.3. Let ¢ : M2 -+ (F(n),g), 9 E 9J1 a holomorphic map. Then ¢
is harmonic.

In addition for maps from a flag manifold into a flag manifold we obtain the
following result

Proposition 7.1. Let ¢ : (F(l), g) -+ (F(k), h) a holomorphic map, with
g E 9J11 and h E 9J1k. Then ¢ is harmonic.
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