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Categorical properties
of iterated power
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ABSTRACT. In [2], the class of the Lawson monads was introduced which con-
tains sufficiently wide class of monads and have a functional representation.
Unfortunately, the powers monads are not in this class. We introduce in this
paper the iterated power monad and show that it is a Lawson monad.
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o. Introduction
The algebraic aspect of the theory of functors in categories of topological spaces
and continuous maps was investigated rather recently. It is based, mainly, on
the existence of monad (or triple) structure in the sense of S.Eilenberg and
J.Moore [1].

In [2], the class of the Lawson monads was introduced which contains suffi-
ciently wide class of monads. Lawson monads have a functional representation,
i.e., their functorial part F X can be naturally imbedded in jRex. It was shown
in [3] that the power monad is not a Lawson monad. In this paper we introduce
the iterated power monad and show that it is a Lawson monad.

The paper is arranged in the following manner. In 1 we give some necessary
definition. In 2 we introduce the iterated power monad in the category of T ych
and in 3 we use some completion to obtain a monad in Comp and show that
this monad is Lawson.
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1. Preliminaries
By Comp (Tych) we denote the category of compact Hausdorff spaces (Ty-
chonov spaces) and continuous maps.

We need some definitions concerning monads and algebras. A monad 1I'=
(T, ry, J.l) in a category E consists of an endofunctor T : E -+ E and natural
transformations ry : IdE -+ T (unity), J.l : T2 -+ T (multiplication) satisfying
the relations J.l0 Try = J.l 0 ryT =IT and J.l 0 J.lT = J.l0 TJ.l.

Let 1I'= (T, ry, J.l) be a monad in a category E. The pair (X,~) is called
a '['-algebra if ~ 0 ryX = idx and ~ 0 J.lX = ~ 0 Tf Let (X,O, (Y, e) be two
'['-algebras. A map! : X -+ Y is called a 1I'-algebras morphism if e 0 T! = ! 0 ~.

For any real t ~ O,we denote by It the segment [-t, t]. If tl, t2 are real
numbers with 0 ::; tl :S ta, by ji~ we denote the natural embedding ji~ : t., -+
It2•

Let '[' = (T, ry, J.l) be a monad in the category Camp. A family of 1I'-algebras
{~t : TIt -+ It I t ~ O} is called coherent iff for each tl, t2 E IR with 0 :S tl ::;t2
the embedding ji~ is an 1I'-algebras morphism. A monad 1I'= (T, ry, J.l) is called
Lawson if there exists a coherent family of 1I'-algebras {~t : TIt -+ It I t ~ O}
such that for each X E Comp there exists a point-separating family of 1I'-,
algebras morphisms {JOt: (TX,J.lX) -+ (It(Ot),~t(Ot)) 10: E A} (see [2]).

For X E Comp and n E N by DnX we denote the compactum X". For
a map f : X -+ Y we define the map Dn! : DnX -+ DnY by the rule
Dn!(XI, ... ,Xn) = (J(XI), ... '!(xn)). One can check that Dn is a covariant
functor on Compo .

For X E Comp define the maps ,X: X -+ DnX and J.lX: D~X -+ DnX by
the formulas

,X(X) = (x, ... ,x)

for x E X and

J.lX((xL· .. , x~J, ... , (xf,···, x~)) = (xL···, x~)

for ((xL ... , x;), ... , (Xl' ... ' x~)) E D~X = Dn(DnX).
It is known that the triple IIJ)n = (Dn", J.l) is a monad in the category Comp,

where, = {IX} : Idcomp -+ Dn and J.l = {J.lX} : D~ -+ Dn are the natural
transformations defined above [4]. This monad is called the power monad. It
was shown in [3] that IIJ)n is not Lawson.

2. The iterated power construction
Let us consider any X E Tych. For each n E N U {O}we consider the product
X2n as a subset of X2n+

i with the natural inclusion X2n = {(x,y) E X2n+
i I

x = y}. Put Xoo = U:oX2'.
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Let us define a function I :lRoo ~ lRby the induction: put 10 = idlR : lR~ lR.
Assume that we have defined Ii : lR2i

~ lRfor each i < n ~ 1. Let us define
In : lR2n

~ lRby the formula

In(al,a2) = ~ min{l, Ifn-l(ad - fn-l(a2)!}fn-l(al)

+ (1 - ~ min{l, Iln-l (ad - In-l (a2)1) )fn-l (a2)

for (aI, a2) E lR2n
. We can define the function f : lRoo ~ lRby the condition

IIlR2i = Ii for each i E N U {a}.

Lemma 1. For each (a, b), (c, d) E lR2 with a ::;c and b ::;d we have 12 (a, b) ::;
h(c, d).

Proof. Firstly we will show that 12 (a, b) ::; 12 (a, d) whenever b ::; d. We can
assume that a = 0. Consider the case b ~ 0. If b ~ 1, the inequality is obvious.
If b ::; 1 ::; c, we have 12(0, b) = (1 - tb)b ::; ~ < 1 ::; 12(0, c). In the case
b ::; c ::; 1 we have

1 2 212(0, c) - 12(0, b) = (c - b) --3(c - b )

1= (c - b)(l- 3(c + b)) ~ 0.

If b ::; ° ::;c the inequality is obvious. The proof of the case c ::;° is similar to
the case b ~ 0.

Let us prove that 12(a, b) ::; h(c, b), whenever a ::;c. We can assume b = 0.
Then h(a,O) = tlala::; tlclc = h(c, 0).

Finally, if a::; c and b ::; d we have 12 (a, b) ::; 12 (a, d) ::; h(c, d). The lemma
is proved. l!f

We consider in lRoo the coordinate-wise partial order. Using the induction
to Lemma lone can obtain the following lemma.

Lemma 2. For each a, bE lRoo with a ::; b we have I(a) ::; f(b).

Consider any X E Tych. By BC(X) we denote the set of all continuous
bounded functions from X to lR.

Let 9 : X ~ Y be any morphism in T ych. Let us define a function
900 : Xoo ~ Yoo as follows. If the function 9oolX2' : X2

' ~ y
2i is de-

i+1 i+1 .+1 i+l
fined, define 900lX2 : X2 ~ y2 by the formula 9oo!X2 (x, y)
(goolX2' (x), foolX2' (y)) for each (x, y) E X2·+

1

•
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Lemma 3. For each x = (Xl"", X2')' Y = (YI, ... , Y2') E X2i
C Xoo such that

X2' i- Y2i there exists a function 'P E BC(X) such that 10 'Poo(x) i- 10 'Poo(Y)·

Proof. Choose a E (0,1] such that (1 - ~)i > ~. Consider a function 'P : X -+
[0, a] such that 'P(X2') = ° and 'P(Y2i) = a. Then we have

10'Poo(x) = 1('P(xd,···,'P(X2i-I),0)
a·:S I(a, ... ,a,O):S (1- (1- :3)')a

a a .< '2 < (1 - :3)'a :S 1(0, 00 • ,0, a)

:S 1('P(yd,oo·,'P(Y2i)) = 1°'Poo(Y)·

The lemma is proved. ~

Let X E Tych. Consider an equivalence relation p in the set Xoo defined
by xpy iff 1 a 'Poo(x) = 10 'Poo(Y) for each 'P E BC(X). Denote by SooX the
identification set Xoo/ p. The class of equivalence with a representative X E Xoo

will be denoted by [x].
We are going to define a topology of SooX. For each 'P E BC(X) define a

function 'PI : SooX -+ lR by the formula 'PI ([x]) = 10 'Poo(x). Define the map
Pi : X2i -+ X by the formula Pi (Xl, ... , X2i) = X2i. The condition pIX2i = Pi
defines the map P : Xoo -+ X. Let us define for each 'P E BC(X) the function
'PP : SooX -+ lR by the formula 'Pp([x]) = 'P(p(x)). It follows from Lemma 3
that the map 'Pp is well-defined. We will consider SooX = U~=O SnX where
SnX = {[x] E SooX I there exists Y E X2i such that Y E [xl}.

Consider a family F(X) C BC(SooX) defined as

F(X) = {'PI I 'P E BC(X)} U {'Pp I 'P E BC(X)}.

For ;PI,'''' 'Pn E F(X) define the function d'Pl"",'Pn : Sex:, x Soo -+ lR by the
formula

d'Pl, ... ,'Pn (x, y) = max{I'Pi(X) - 'Pi(Y)1 : i E {I, ... ,n}}.

It is easy to check that d'Pl, ... ,'Pn is a pseudometric of SooX, The family of
pseudometrics {d'Pl , ... ,'!'n I n E N and 'PI, ... , 'Pn E F(X)} defines a unifor-
mity U:F(X) of SooX, We consider SooX with the topology generated by this
uniformity.

By T]X : X -+ SooX we denote the continuous map defined by the formula
T]X(x) = [(x)] for x E X. Let us remark that T]X(X) = SaX.

For each continuous map 9 : X -+ Y define a function S009 : SooX -+ SooY
by the formula S009([X]) = [900 (x)] for x E Xoo' It is easy to see that the
function S009 is well defined.
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Lemma 4. For each 'P E BC(X) we have 'Pf °Soog = ('Po 9)f and 'Pp °Soog =
('P0g)p.

Proof. Let [x] E SooX, We have 'PfoS009([x]) = 'Pf[goo(x)] = j('Poo(goo(x))) =
j(('P0g)oo(x)) = ('Po 9)f([x]) and 'Pp oSoog([x]) = 'Pp[goo(x)] = j(p(goo(x))) =
j ° g(p(x)) = ('P ° g)p([x]). The lemma is proved. ~

Corollary 1. The map Soog : (SooX,U:F(X)) -+ (SooY,U:F(Y)) is uniformly
continuous.

In particular, we have that the map Soog is continuous and is easy to check
that Soo is a covariant functor in the category I ych.

For each a, b E X2n we can consider the element (a, b) E X
2n

+
1
. Define

the map s : SooX x SooX -+ SooX by the formula s([a], [b]) = [(a, b)] for
[a], [b] E SooX. It is easy to check that the map s is well-defined.

By S~ we denote the iteration SoooSoo of the functor Soo· Now we are going
to define a map JlX : S~X -+ SooX for each X E Iych. Put JlX\So(SooX) =
(TJSooX)-l. Assume that we have defined JlX\Si(SooX) for each i < n ~ 1.
Consider any [x] E Sn(SooX), Then [x] = [(Xl,X2)] where Xl,X2 E (SooX)2

n
-

1

•

Put JlX([x]) = s(JlX([xd), JlX([X2]))'

Lemma 5. For each 'P E BC(X) we have 'Pf 0 JlX = ('Pf)f and 'Pp 0 JlX =
('Pp)p,

Proof. Consider any [x] E S~X. For [x] E So(SooX) we have ('Pf)f([x]) =
'Pf(TJX-1([x])) = 'Pf(JlX([x]).

Assume that we have proved the equality for [x] E Si(SooX) for each i <
n ~ 1. Consider any [x] E Sn(SooX), Then [x] = [(Xl,X2)] where Xl,X2 E
(SooX)2n

-

1
• Then we have

'Pf 0 JlX([x]) = 'Pf(s(JlX([xd), JlX([X2])))

= j('Pf ° Jlx([Xd),'Pf 0 JlX([X2]))

= j(('Pf )f([xd), ('Pf )f([X2])) = ('Pf )f([x]).

The equality 'Pp ° JlX = ('Pp)p can be proved analogously. ~

Corollary 2. The map JlX : (S~X,U:F(sooX)) -+ (SooX,U:F(X)) is uniformly
continuous.

It is easy to check that the maps TJX : X -+ SooX and JlX : S~X -+ SooX
are the components of the natural transformations TJ : I dTych -+ Soo and

Jl : S~ -+ Soo·
Theorem 1. The triple (Soo, TJ,Jl) forms a monad in the category I ych.

Proof. Let X E I ych. The equality JlX 0 TJSooX = idsoox follows from the
definition. Let us prove the equality JlX 0 TJSooX = idsoox. For [x] E SoX we
have SooTJX = TJSooX([x]), so JlX 0 SooTJX([x]) = [x].
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Let us assume that we have proved the equality for [x) E SiX for i < n 2: 1.
Consider any [xl E SnX, Then [x) = [(Xl, X2)) where Xl, X2 E X

2n
-
1
• We have

/-LX 0 S=71([X)) = /-LX[((71X)=([XI)) , O(71X)OO([X2))))

= S(/-LX 0 S=71X([XI]),/-LX 0 S=71X([X2))

= s([xd, [X2)) = [x).

Now, let us prove the equality /-LX0 S=/-LX = /-LX 0/-LS=X. For a E So(S~X)
we have /-LX 0 S=/-LX(a) = /-Lx((71S~X)-I(a)) = /-LX 0 /-LS=X(a).

Let us assume that we have proved the equality for a E Si(S~X) for i <
n 2: 1. Consider any a E Sn(S~X), Then a = [(aI, (2)) where aI, a2 E
(S~X)2n-l. Then we have

/-LX 0 S=/-LX([(al, (2))) = s(/-LX 0 /-LS=X[aI) , /-Lx 0/-LS=X[a2])

= /-LX 0 /-LS=X([(al, (2)))'

The theorem is proved. ~

3. The iterated power monad

In this section we will define a monad in the category Camp using the construc-
tion of the iterated product and we are going to prove that this monad is a
Lawson monad.

It is easy to check that the uniformity UF(X) defined in S=X is totally
bounded. For each X E Camp define a uniform space (SX, VF(X)) being a
completion of the uniform space (S=X,UF(X))' Then we have SX E Camp.
We consider S=X as a subset of SX which is certainly dense.

Consider any morphism f : X -t Y. We have by Corollary 1 that the map
Soof : S=X -t S=Y is uniformly continuous. Thus, there exists a unique
extension Sf : SX -t SY. We have defined the functor S : Comp -t Camp.

For each X E Camp define the map hX : X -t SX by

hX(x) = 71X(X) E SooX C sx.

Now, the set S~X is dense in S2 X. It follows from Corollary 2 that the map
/-LX : S~X -t S=X is uniformly continuous. Hence there exists a unique
extension mX : S2 X -t S X. We have defined the natural transformations
h : Idcomp -t Sand m : S2 -t S. Since the map mX is the extension of /-LX,
the triple § = (S, h, /-L) is a monad in the category Compo
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Theorem 2. The monad § is a Lawson monad.

Proof. For t ~ 0 define the map It : Soc,/t ~ It by the formula ft([x]) = (it)f
where jt : It ~ IR is the natural embedding. It follows from the definition of
the uniformity U:F(X) that the map ft is uniformly continuous (we consider It
with the uniformity generated by the natural metric). Hence there exists a
unique extension ~t : S It ~ L:

Let us show that the pair (It, ~t) is an §-algebra. Since SooX and S~X are
dense subsets of SX and S2X, it is enough to prove the equalities It 0 TJlt = idI,

and ft 0 {LX = ft 0 Sooft. The first equality is obvious. Let us remark that
ft 0 Sooft = ((it)f )f. Now, the second equality follows from Lemma 5.

It is easy to see that the family {(It, ~t) It ~ O} is coherent.

Finally, for each X E Comp the family {fll ""II0 Soo'P I 'P E eX} separates
points of SooX by the definition of SooX . Hence, the family {~II""II0 Soo'P I 'P E
eX} separates points of SX. The theorem is proved. rYf

References
[IJ S. ElLENBERG & J. MOORE, Adjoint functors and triples, Ill. J. Math. 9 (1965), 381-389.
[2J T. RADUL, On functional representations of Lawson monads, Applied Categorical Struc-

tures 9 (2001), 457-463.
[3] T. RADUL, Lawson monads and proyectiuity, Comment. Math. Univ. of Carolin. (to

appear).
[4] T. RADUL & M. M. ZARICHNYI, Monads in the category of compacta, Uspekhi Mat.

Nauk. 50 no. 3 (1995), 83-108. (Russian)

(Recibido en noviembre de 2001)

DEPARTAMENTO DE MATEMATICAS

UNIVERSIDAD NACIONAL DE COLOMBIA

BOGOTA, COLOMBIA

e-mail: tradul@matematicas. unal. edu. co
tarasradul@yahoo.co.uk


