Revista Colombiana de Matemaéticas
Volumen 35 (2001), paginas 61-65

Two Wolstenholme’s type theorems
on g-binomial coefficients

TIANXIN CAI
GILBERTO GARCIA-PULGARIN

Universidad de Antioquia, Medellin, COLOMBIA
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The famous Wilson’s Theorem (which actually first appeared in Leibnitz’s

work) states that
(p-1)!=-1 (mod p),
for all primes p. Babbage noticed in 1819 that
2 —
( B 1> =1 (mod p?),
p—1
for all primes p > 3, and Wolstenholme proved in 1862 that
2p—1 .
(;_1) =1 (mod p?),
for all primes p > 5. In 1952, Ljunggren generalized this to

(2)+() i
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(/)=

for any integers n > r > 0 and primes p > 5, where a is the power of p divid-
ing p®nr(n —r). This exponent could only be increased in case p | B,_3, the
(p — 3)rd Bernoulli number. Recently, Granville [1] developed several congru-
ences which could lead to the generalization of both Wolstenholm’s and Ljung-
gren’s Theorems, as well as many other interesing congruences. For example,

he showed that . 3
)/ () = G)/G) ot

for all primes p > 7. In this paper, we study whether ‘Wolstenholme-type’
Theorems hold for g-binomial coefficients (:)q, which as usual, it is defined by

the following formula:

and Jacobsthal to

qn_l qn-—l_l . qn—r+1_1 .
i = R~ o o if0<r<n,
(r) =<1, if r=0,
¢ 0, ifr<Oorr>n.

The first result we obtain is the following theorem:

Theorem 1. Let p > 5 be a prime, then for any integer q # 1,
(2p_1) =1+ kP B) (o - ), (2)
p—1) 2 g —1
where K is an integer only depending on p. In particular, when ¢ — 1, one
derives (1) immediately from (2).

In order to prove Theorem 1, we need the following lemma.
Lemma 1. Let p > 3 be a prime, 0 < k < p. Define f(k) as the number of
solutions of the congruence,
k=t +i2+---+ip_1 (mod p),
with1 <1 <ipg <---<ip_1 <2p—1. Then
fO-1=f1)=f2)=--=f(p-1).

Proof. For 1 < m < 2p — 1, define f,,(k) as the number of solutions of the
congruence

k=ii+ia+ - +i, (modp), 1<i<izg<---<i, <2p—-1. (3)
Hence fo (k) = f(k).

Let X be the set of all solutions of (3) for fixed ¥k and m. When 1 <
ki, k2 < p—1, we define a function ¢ between X, and Xy, by

{iv, i, ... im} — {kokuiy, kokiiz,. .., kokiim},
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where k is an associate of k, i.e., kk = 1 (mod p).
It is easy to verify that ¢ is a bijection, since the restriction
1<ip< - <im<2p—1
in (3) could be replaced by
1< <2< <im <p

with at most two consecutive i’s being equal and at most one i equal to p.
Therefore, for any 1 < k1, ko < p — 1, fm(k1) = fin(k2); in particular,

fQ)=f@) == f(p~1). (4)
Now we want to prove f(0) = f(1)+1. Define F,,(k) as the number of solutions
of the congruence

k=ii+ig+-+inm (modp), 1<i3 <izg < <im < 2p. (5)
It is easy to verify that forall 1 < m < p—1, F;,(0) = F;z(1) = -+ = Fu(p—1),
since we could establish a bijection between Yj, and Yi, by
{il,ig, . .,im} — {il + (k2 — kl)ﬁl, io + (ko — k1)my ... im + (kg — kl)’ﬁl},

where Yx = {yx} is the set of all solutions of (5). By taking i,, = 2p, we get
that Fy, (k) — fm (k) is equal to fp,—1(k), therefore
fO) - f(1) = fp-1(0) = fr
= Fp1(0) = fp—2(0) = (Fp-1(1) = fp—2(1)) (6)
~(fp=2(0) — fp—2(1)) = fp-3(0) — fp—3(1)
= - =—(H0)-A(1)=-1-2)=1

since p is an odd prime. Combining (4) with (6), the lemma is proved. o]

Proof of Theorem 1. 1t is well known [2, Th. 348] that

[[o+da=3(}) ot ™)

i=1 k=0

Takingn =2p—-1, ¢ = q”2 and comparing the coefficients of zP~! on both
sides of (7), one has
" 2p—1
FO+ W+ + S -1 = (P
(here f(k) is defined as in the lemma), since q{“’ = q{ (mod qp3 -1).
Let ¢ — 1 (¢1 — 1). We derive from the lemma that

1+ s@p= (7)) (mod ©)
by Wolstenholme’s result (1) we get
f(1)=0 (mod p?).

) med ¢ -1 (®)

2p—1
p—1



64 T. CAI & G. GARCIA-PULGARIN

Let f(1) = Kp?. Combining (8) and (9), we deduce (2) from the lemma. o]
The following result is a consequence of the proof of Theorem 1.

Corollary 1. Let p > 3 be a prime and b a positive integer. If
2p—1
( Y ) =1 (mod p°),
p—1
then for any integer q # 1,

b

2p— 1 st ] b
=1+ Kp* ! S——— dg” -1).
(p—1>qpb—x e e

Next, we prove a generalization of (1) modulo p® for an arbitrary positive
integer b.

Theorem 2. Let p > 3 be a prime, (¢,p) = 1, ¢ # 1 (mod p). Then for any
positive integer b,

() ./0)..=

where d is the order of ¢ modulo p, i.e., the smallest positive integer f such
that

2(p—1)
(%) (moash), (10)
d

¢/ =1 (mod p).

Proof. Let q1 = ¢*""". Then

(B Oyt
P/ g 1, @ 1<j<p—-1 q-1
2p-1 _q p=1+j _ 4

=4 II gl}fiff;“ (11)

1
N 2<j<p-1

Since ¢ # 1 (mod p), d must be no less than 2. Moreover, d is also the order
of ¢; modulo p®; hence

qf—l+j -1 qui—l+])d -1 qlp—1+j =y ]
I = HE s I 5/ ®@
2<j<p-1 ‘T{ - 145< gt q{ -1 2<j<p-1 a
j#0 (mod d)
The first product on the rightside of (12) is equal to
2(p—-1) 2(p—1)
( é ) E( gg_l ) (mod p°). (13)
a /g d

Noting that q’f”l = 1 (mod p®) and that q{ # 1 (mod p) for any positive

integer j # 0 (mod d), and using the property of divisibility for integers, one
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has
qu_l — 1 d b
=1 (mo s 14
oY (mod p°) (14)
p—l+i _ 4
H [ — | (mod p°). (15)
2<j<p1 A1
j#Z0 (mod d)

Combining (11) and (15), we deduce (10). i

As an example, 2 is a primitive root of 5 and 4 belongs to the order 2 modulo
b— b=t
5 and it is easy to verify that 23°7" = —1 (mod 5%),25"" = —1 (mod p®), then
for an arbitrary positive integer b,

(5),/ (), =2 o (3),/(3),, = tmoas)
(). /), =2 woan. (9) /(). =0 tmeash)

Remark. Similarly we could study the generalization of ‘Ljunggren-type’ The-
orems, however, it seems to be much more complicated.

~—
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