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On ultra-products of some families of
composition operators between certain
finite dimensional /P spaces
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ABsTRACT. Let 0 < 0 < 1and 1 < p,7 < oo be such that 1/r + (1 —o)/p’ = 1.
We show that for every continuous linear map 7" between Banach spaces E, F
such that its restriction to every finite dimensional subspace N of E factorizes
through a chain of type

2N, un) = € (Qn, ) = € (v, uv) + E(Qn, pn)
where (2n, un) is a discrete measure space with a finite number of atoms, there

is a o—finite measure space (2, 1) such that T' € L(E, F"') factorizes through
the chain of ” continuous spaces

L=(Q, 1) — L7(Q, 1) — L} (2, ) + LP(, ).
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1. Introduction

It is well known (see [2], [3], [10]) that the ultra-product map of a family of
maps between finite dimensional spaces ¢*° and ¢P is a fundamental tool in
the characterization of p-integral operators in the class of infinite dimensional
Banach spaces. Matter, in his study of absolutely continuous operators of
Niculescu (see [9]) has introduced in [8] the ideal P,,, (0 < 0 < 1,1 < p <
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o0) of (p,o)-absolutely continuous operators, which is strictly larger than the
classical ideal of p—absolultely summing operators. Since P, is a maximal
ideal in the sense of Pietsch (see [10]), it is associated with some tensor norm
according to the theory developed by Defant and Floret in [2].

We have find in [6] the tensor norm g, , such that for any Banach spaces
E,F the equality (E ®,,, F)' = Pp o(F,E’) holds. The natural problem is
the characterization of g, ,-integral operators. To do this, we are in a situation
similar to the classical one of p—integral operators, but with a more complicated
finite dimensional subjacent factorizations which we explain now:

It is clear that every continuous linear map T € L(E, F), E and F' Banach
spaces, defines canonically a linear map T, from E into the dual M’ of every
subspace M C F’ by

VzeE ye M (Tu(z),y) = (T(z),y).

On the other hand, it is easy to check that, given a measure space (2, u),
0<o<1land1 < p< oo, there is always an inclusion map

L=(u) N I () € L™ (o)

and hence an inclusion map J# : L"(u) C L'(u) + LP(u) such that ||J#| <
1. Then, suppose moreover that T is such that for every finite dimensional
subspace M C F”, the restriction of Ths to every finite dimensional subspace
N C F factorizes in the way

KN
N — 2(Qn, un) 225 07 (Qy, on) T (@, un) + O Qv pn) — M

where every (Qy, un) is a discrete measure space with a finite number of atoms
and every Dy is a positive diagonal operator.

Our purpose on this paper is to show that, in this case, there is a o—finite
measure space (§2, u) such that JpT factorizes in the way

E — L®(Q, 1) 2% L7(Q, 1) 25 L@, 1) + LP(Q, 1) — F”

where B,, is a diagonal operator. This is a very technical result and applications
of it will be given in the forthcoming paper [7].

Our notation is standard. If F is a Banach space, Bg will be the closed unit
ball of E, E’ the topological dual Banach space and Jg the natural embedding
of E into its bi-dual E”. Sometimes, to call attention on the norm of the
involved Banach space E, we shall write ||.|z. Given p € [1,00], a measure
space (2, M,pu) and a measurable non null everywhere real function g, we
denote by LP(2, M, g, ) (or simply LP(g, p) if there is no risk of confusion)
the Banach space of classes of functions f such that fg belongs to the Lebesgue
space LP(Q, M, 1), provided with the norm || f|| = || fgllzr()-

From now on, in all the paper, o and p will be real numbers such that 0 <
0 <1 and1 < p < oco. Given such numbers, 7 €]1, oo[ will be always the real
number such that 1/r + (1 — o) /p’ = 1. All Banach spaces of this paper will be
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defined over the field of real numbers since we shall use results of the theory of
Banach lattices (see [1] for questions concerning this topic).

Given a compatible couple (Ag, A;) of Banach spaces (i.e. two Banach spaces
which are vector subspaces of a larger vector space F), the spaces Ag + A; and
Ao N A; will be always endowed with its canonical norms

2]l ao+4, = inf{llalla, +1[blla, | z=a+b,a € Ao, b€ A1}
and

”x”AoﬂAl = max{“m“Ao! |I‘rI|A1}

respectively.

2. On ultra-products of some factorizations

We refer the reader to [4] for definitions and basic results about ultra-products
of Banach spaces. Let D be an index set an D a non-trivial ultrafilter on
D. Given a family {A4| d € D} of Banach spaces, (A4)p will denote its
ultra-product by D and (z4)p will be the class of (z4) € MgepAq in (Ad)p.
Analogously, if we have a family of maps {Ty € L(Aq4, F4), d € D} in such
a way that supyep [|T4]| < oo, we denote by (Ty)p € L((Ad)p,(Fa)p) the
canonical ultra-product linear map. If every Ay, d € D is a Banach lattice,
(A4)p has a canonical order which makes it a Banach lattice.

Suppose now that for every d € D we have the chain of Banach spaces and
continuous mappings
Ad Ta, 4d Ir% 4d 4 Ad
00 T 1 P
where A4 = 1'(Q, pa),i = 1,7,p,00 for some atomic measure space (Qq, ta)
and Ty is a positive operator such that supqepl||Ty|| < co. We put U; = (A‘,-i)p
for every i = 1,7, p,00. Now, the map (Ty)p : Uso — U, is well defined.

The ultra-products S = (A¢ + Ag)p and U;, 1 = 1,p,r, are Banach lattices
under its canonical order. For i = 1,p and d € D, let J? : A} — Af + A4
be the canonical map. The ultra-product maps J; = (J&)p : U; — S,i = 1,p
and J, := (JH)p : U, — S are well defined lattice homomorphisms. In this
situation, the main technical problem is that every J; can not be an injective
map. To overpass this inconvenient we need to work with quotient spaces which
makes more involved the argumentation.

Each kernel Ker(J;),t = 1,p,r is a closed ideal in ;. Let H; be the quotient
Banach lattice of U; by Ker(J;), K; € L(U;, H;) the canonical quotient map
and J; the canonical injective positive map from H; into S. We put E; = J;(H,)
provided with the topology of H;. It is easy to check that E; is an abstract
L-space and J; is an order isomorphism onto the sublattice E; of S.

For every ((z%)) € MaepA? we define ((y¢)) and ((2¢)) in ITge p AZ such that
for every d € D and every i € Qq, y¢ ;= ifz¢ < 1,yd:=0if2d > 1, 28 :=0
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if ¢ < 1 and 2{ := z if ¥ > 1. Since 1 < r < p we have ((y¢)) € Igep A2
and ((z%)) € HdeDAd Now we define
Pi(((z))p) = TpKp((3))p) and  Pa(((2f))p) = T1 K1 (((29)))-
Hence
Jr K (((2)p) = T Kr(((4)p) + T K (((2)D)
= Pi(((z))p) + P(((2))p) € E1 + E,
and for every ((z¢))p in the open unit ball of i, we have
17K () D) 2 £y < T2 K (WD) B, + 1T+ K (((28)D) | 4
< 7K (@), + 17K (@), < 2

In consequence, since E, and E; + E, are subsets of S, there is a continuous
inclusion E, C E; + E,. Clearly, E, is a sublattice of E, + E, and J, is an
order isomorphism.

Lemma 1. Suppose E, # {0}. Then E, N E, # {0}.

Proof. Clearly, the diagram (arrows without characters are inclusion maps)

Jr
U, S
J I
E, E, + Ep

is commutative by definition of the involved mappings. Let 0 # wq := ((w))p
€ E, C E\+E,. Puty := Pi(wg) € E, and z := P2(wg) € Ey. Then wp = y+2
and hence y # 0 or z # 0. Suppose y # 0. Then there is € > 0 such that, for
every representation y = u+v with u € Ey,v € E,, we have € < ||ul|g, +||v| &, -
Since r < p we obtain

sup 3 < sup > v < sup > If "< sup Y " < oo.

IGQd 169 zGQ IEQd
Hence
T EA(((1917)p) = ToK1 (((19517)p) = ToKp((191°)p) € Ex N E,.
Now, if f := ((f%)) € ((|y4|?))p in the ultra-product U;, we have

@ < ol <lim 3 WPud < lim ( S v - fdlu,) +lim |72

1€, 1€Q, 1€EQy

= 1% = Fllety + 1l = 1o -
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Then, taking the infimum over f we obtain ” < [ly[|; < 1K (w2 ) D) &,y -

Since 7; is injective, we have 0 # J,. K, (((|¥¢|P))p)- Analogously, if z # 0, there
is € > 0 such that, for every representation z = u + v with v € E;,v € E,, we
have € < ||u||g, + |[v||E,- Now we have

bup Z Izdlv < sup Z |28] < sup Z |28|” < sup Z |wé|” < oo.
zeQ zeQ ‘lEQd zEQd
Hence

KA(((12817))0) = TiE1 (12217 )p) = TpKp(((12£]7)D) € E1 N Ep.
Now, if f := ((f)) € ((|2¢]7))p in the ultra-product Uj,, we have

1
P

1 . d|,d
er < ||zllg, Shf)n <Z |2 |#i)

1€Q4

1 1
s 1 P : ; ’
< lim (Z 12215 — £t ui—’) +lim (Z If,”l”u?)
1€Qq i€Qq
1
= 121D = fliugy + £ llety = N1 fleg, -

1
Then, taking the infimum over f we obtain e < lvllg, < K (((lyd | )))llH,-
Since J, is injective, we have 0 # J,. K(( (|2¢ | ))p). Consequently E1 N E, #
{0}. v

Let Ey be the closure of E1NE, in E, + E,. Clearly Ej is a closed sublattice
of E] + Ep.

Lemma 2. The norm of E, + E, is order continuous in Ej.

Proof. Let x € E; N E, be the supremum of an increasing non negative net
{Za, @ € A} in E; N E,. We have

”-T = za||E1+Ep < ”‘T - a“a”El'

Since F; is an abstract L-space, it has order continuous norm. Then lim, zo =
z in E; + E,. By a result of Luxemburg, (see theorem 12.10 in [1]), Eo has
order continuous norm. v

Lemma 3. Suppose J,.(Ty)p # 0. There is a set £ C Ey N E, N E, which is a
maximal system of pairwise disjoint elements in Eq and hence also in E.

Proof. Since Ey has order continuous norm (lemma 2), there is a topological
vector space F of measurable real functions defined on some measure space
(22, %, v) and a continuous order isomorphism ¥ : Eg — F when F is provided
with its canonical order. (See for instance section 1 of Pisier’s paper [11] for
the detailed construction of ¥).
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On the other hand, the element u = ((u%))p € Uso such that uf = 1 for
every d € D and i € (2, is a strong unit in Uss. Then (Ty)p(Ux) is contained in
the band generated by w := (Tq)p(u) in U,. Let wo := Jr(w) € E1 + Ep. Since
J(T4)p # 0, necessarily we have 0 # wp. By lemma 1, Ey N E, # {0}. By
Zorn’s lemma, there is a maximal system £ = {e,|v € V} of pairwise disjoint
vectors in E; N E, such that 0 < |le, ||, < 1.

Let us see that every z € E1 N E, is the sum of a series z = Yoo Zp (in the
topology of Fy) with every z,, in the band e;,Lnl generated in Fy by some e,,, € £.
By Zorn’s lemma, there is a set £’ such that £UE’ is a maximal set of pairwise
disjoint elements in the order continuous lattice Ey (lemma 2). Then, by a well
known result of Kakutani (see proposition 1.a.9 in [5]), there are sequences
(v2)22, C € and (w,); C & such that z =3 > =, + E:’ | Yn With every
T, € eJ*l and y, € egt. Then ¥(z) =Y 7, ¥(z,) + > L ¥(yn) and hence
[ Y omey ¥lyn)| < |¥(2 ) | and |3°°, yn| < |2|. In consequence Y77, yn €
EiNE, and z — EZ“:I r, € E1 N E,. Moreover,

o= S =[S
n=1

for all e, € £. Hence 2 =) oo | Tn.

Now, suppose there is z € Ey such that z A e, = 0 for every v € V. Then
W(z) A ¥(ey,) = 0 for all v € V. On the other hand there is a sequence
(20)3%, C E1 N E, such that z = lim, 2, in Ep. Hence U(2) = lim, ¥(z,)
in F. By the result of last paragraph, for every z,, n € N, there is a sequence
(vkn)3S,; C V such that 2, = > o°, Ty,, in Ep. In consequence, if we put
Q, = {t € Q| U(e,)(t) # 0}, it follows that ¥(2z,) = Y 12, ¥(Zy,,) is null on
a measurable set Q . (Uren(y,, ) for each n € N and hence we have that ¥(z)
is null on a measurable set N\ (Uneny, ) for some sequence (vi)5e; C V. But
W(z) is also null on €, for all v € V since ¥(z) A ¥(e,) = 0. Then ¥(z) =0,
2z =0 and £ is maximal in Ej.

Finally, let us see that £ C E,. Given e, € £ C Ey N E,, we can write
e, = ((e?))p such that

ol sup{sup > led s, sup C l”ui} < o0.
€

1€Qq de 1694

/\ev<Z|yn|/\ev—O

But r < p from definition of r. Then, putting
Q={icQy| | >1} and Q%= {ie Q| |ef] <1}
we have

sup Zle"lruZSsup > ledPui + Y leflui | < 2a

€D jeq, i€Q} i€n?
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and hence e, € E,. As above, since E, C Ey we get that £ must be maximal
in E, too. , o

Once again by the quoted result of Kakutani ([5], Proposition 1.a.9) and by
Lemma 2, there is a set Vo = {v,,n € N} C V such that wo = . | 2, in Ey
with every z,,, in the band generated by e,, in E; + E,. For every i = 1,p,r
we define the complemented subspaces

Gi={2€E;i| |z|Ae, =0 Yo ¢ W}.
Now we can state the main theorem of this paper:

Theorem 4. Suppose 1 < p < oo. Then there are a o-finite measure space
(92, M, v), a multiplication operator C}, and suitable operators for the following
vertical arrows, such that the diagram

(Ta)p (I¥4)p
uoo u’r S

Ch Jy

L=(v) Lr(v)

Li(v) + LP(v)

is commutative.

Proof. Fix v, € Vp and let ¢ = 1,7,p. Let B,-(évn) be the band generated by
ey, in E;. Let A, be the boolean algebra A,, of the components of e, in Ey

A, :={z€Ey | zA(ey, — ) =0}.

By lemma 2 and theorems 12.9 and 3.15 in [1], A,, is Dedekind complete and by
the Stone representation theorem, it is isomorphic to the boolean algebra O,
of the clopen sets of a separated compact extremally disconnected topological
space ). Since e,, € Ey N E, N E,, we have A, C Bj(e,,) and we can define
the following set of functions on O,: if z € A,, and S, is its image in Oy, we

put
—=—1

wy(8z) = IJ; (@) I, -
As H; is an abstract L'-space, w}, is a finitely additive measure on O,, and hence
a measure, ), being extremally disconnected. By the Carathéodory extension
procedure we get an other measure w}:, i = 1,7, p, which is a measure (again
denoted by wi) when restricted to the o-algebra M, of w}, -measurable sets of
Q,,. Considering the o-algebra M,, = ML NMNM?, every v}, i =1,7,p is
a measure on M, and w}, () = ||7,-1(ev")||}{‘_ < 00. It is easy to see that the

map
k k
v, (z a> e o
h=1 h=1
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z € Ay, is a well defined isometry from

k

Fo = {Zahxh | an € Ryzp € AnyTh ATj = 0,h#j;h,j=1,...,k, k€ N}
h=1

(with the induced topology of G) into the linear span of measurable charac-

teristic functions of L!(2,, M,,w?). Let us see that ¥; can be extended to

n
an isometric lattice homomorphism (again denoted by ¥;) from B;(e,,) onto
Ll(an M, w:«,)
Let S = U2 ,S;, with z, € A, and z, <p41< ey, for every h € N. Then
there exists £ = supjen Zn € An. By the order continuity of the norm in E; we

have
——1

. . . " ___1 . o
Wh(8) = lim wi(Sey) = lim [T @)y, = 177 @)l = wh(Se).
Then we obtain that S C S, and wi,(S) = w},(S,).

Now, if S is a M,,-measurable set in §2,, we choose a sequence (y}z);l“;l c A,
such that § C Sy =~ C Sy for every h € N and wh(8) = limp— oo wp, (Sys )-
Then exists y' = infren ¥, € A, and it satisfies S C S and w},(S) = w},(S})-
Therefore xs = Xgi = ¥, (y*) holds, which shows that ¥; is a map onto the
linear span of measurable characteristic functions of L'(Q,, My,w},). Since
this set and F,, are dense in Li(2,, M,,w:) and B;(e,, ) respectively (by the
Freudenthal’s spectral theorem, see for instance theorem 6.8 in [1]), we get the
announced isometry.

Now, we define © := U222, and the o-algebra M and the measure w’ in
M such that

M={MCQ |MNQ eEM,} and w'(M)=) wi(MNQ) VMeM
n==l

Now it is easy to show that ¥; can be extended to an isometric and lattice
isomorphism (again denoted by ¥;) from G;,i = 1,7,p, onto Li(Q, M, ).
Hence there is a natural isometric order isomorphism ¥ from G; + G, onto
LY (2, M,w') + LP(Q, M,wP) C B(2, M), the space of measurable scalar func-
tions on €.

Next we define in M the o-finite measure w = w” +w! +wP. Every w', i =
r,1,p is absolutely continuous with respect to w. By the Radon-Nikodym
theorem, there is a measurable function g; such that

wi(A)=/gitixu YAe M
A

and

/ |flidut = / flgdo V€ L{QM,w')
Q Q
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and hence for every i = r,1,p, the identity on L(Q, M,w') is an isometry
onto the space Li(Q, M, g”*,w). Consider the measure v = (g¥/g,)"/®~.w

on (2, M), which is o-finite again as it is easily checked. Let
Wi : LN, M, g1,w) + LP(Q,M, g2/, w) — LM, w') + LP (2, M, wP)
be the identity map and let
Wy : LHQ, M, v) + LP(Q, M, v) — LY(Q,M, g1,w) + LP(Q,M, g2/?,w)

be such that Wa(f) = f(g7/9p)/® V(1/g1). Straightforward calculations
show that W; and W, are isometric maps. Now consider the multiplica-
tion operators C, and C, where w = gl/r(gf/gp)_l/’"(”‘l) and g =
w(gy/g1)/ PV = gr_l/rg‘l’g,f,l"a)/p. C,, is an isometry from L"(Q2, M,w")
onto L" (2, M,v). Let Q, be a continuous projection from E.. onto G,. We have
the commutative diagram (arrows without character means natural inclusions)

QnKrjr (Td)D
Use G, CHEREA

E, + E,— S
v, L\
FUAY crdisocion s ERel - EP(1R)

Cw W1 W2

Cy

L™ (v) L'(v) + L*(v)

Givene > 0, put A := {t € Q| |g(t)| > (1+¢€)||C,||} and suppose that v(A) > 0.
The transposed map Cy : L>(v) N L? (v) — L™ (v) verifies

(v
A E)HC_:;” ”fXA”L"(u) = |ngA”L°°(u)r‘1LP'(u)
<

|
”C;“ ”fXA“Lw(u)nLv’(u)

for all f € L®(v) N L? (v). Since we have the inclusion map L*=(4,v) N
LP(A,v) C L™ (A,v) with norm less or equal than 1, there must be (1 +
€)||Cyll < ||Cy|l which is a contradiction. Then |g(t)| < ||Cy|| v—everywhere
and g € L*(v). As the map C.¥,.Q.K,J.(Tsq)p is positive, it is enough to
apply 7.3 and 18.9 of [2] (Maurey’s factorization theorem) to get the result. o]

Theorem 5. Let T € L(E, F) be such that for every finite dimensional sub-
space M C F', the restriction of Tn to every finite dimensional subspace
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N C E factorizes in the way
KN
N — £2(Qn, pv) 25 (@, i) = €O, ) + Qv in) — M

where every (Qn, un) Is a discrete measure space with a finite number of atoms
and every Dy is a positive diagonal operator. Then there is a o —finite measure
space (2, u) such that JpT factorizes in the way

E — L¥(Qu) 2% L7(Q, 1) 25 LY@ p) + LA(Q, ) — F”
where B,, is a diagonal operator.

Proof. The proof goes along the same lines than in the classical case of
p-integral operators but using our theorem 4. See [3] for the detailed proof. o]
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