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ABSTRACT. Let 0 < a < 1 and 1 < P, T < 00 be such that liT + (1- a)/p' = 1.
We show that for every continuous linear map T between Banach spaces E, F
such that its restriction to every finite dimensional subspace N of E factorizes
through a chain of type

f.""'(nN,Ji-N) ----+ f,T(nN,Ji-N) ----+ f,l(nN,Ji-N) +fP(nN,Ji-N)
where (nN, Ji-N) is a discrete measure space with a finite number of atoms, there
is a a-finite measure space (0" Ji-) such that T E .t:.(E, F") factorizes through
the chain of "continuous spaces

LOO(n, Ji-) ----+ LT(n, Ji-) ----+ L 1(0" Ji-)+ LP(n, Ji-).
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1. Introduction

It is well known (see [2], [3], [10]) that the ultra-product map of a family of
maps between finite dimensional spaces £00 and £P is a fundamental tool in
the characterization of p-integral operators in the class of infinite dimensional
Banach spaces. Matter, in his study of absolutely continuous operators of
Niculescu (see [9]) has introduced in [8] the ideal Pp,u, (0 < CJ < 1, 1 ~ P ~
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(0) of (p, a)-absolutely continuous operators, which is strictly larger than the
classical ideal of p-absolultely summing operators. Since Pp,CT is a maximal
ideal in the sense of Pietsch (see [10]), it is associated with some tensor norm
according to the theory developed by Defant and Floret in [2J.

We have find in [6] the tensor norm gp,CT such that for any Banach spaces
E,F the equality (E 0gp,u F)' = Pp',a(F,E') holds. The natural problem is
the characterization of gp,a-integral operators. To do this, we are in a situation
similar to the classical one of p-integral operators, but with a more complicated
finite dimensional subjacent factorizations which we explain now:

It is clear that every continuous linear map T E £(E, F), E and F Banach
spaces, defines canonically a linear map TM from E into the dual M' of every
subspace M c F' by

"ix E EyE M (TM(x), y) = (T(x), y).

On the other hand, it is easy to check that, given a measure space (0, J.L),
o < 0' < 1 and 1 < P < 00, there is always an inclusion map

, L
£OO(J.L) n U (J.L) c £1-u (J.L)

and hence an inclusion map Jf: : U(J.L) C £1(J.L) + U(J.L) such that IIJf:11 ::;
1. Then, suppose moreover that T is such that for every finite dimensional
subspace M C F', the restriction of TM to every finite dimensional subspace
NeE factorizes in the way

N ---> .eOO(ON,J.LN)!l!:!... .eT(ON,J.LN) ~ .e1(ON,J.LN) +.eP(ON,J.LN) ---> M'

where every (ON, J.LN) is a discrete measure space with a finite number of atoms
and every DN is a positive diagonal operator.

Our purpose on this paper is to show that, in this case, there is a a-finite
measure space (0, J.L) such that JFT factorizes in the way

E ---> £00(0, J.L) ~ £T(O, J.L) lL £1 (0, J.L) + U(O, J.L) ---> F"

where Bw is a diagonal operator. This is a very technical result and applications
of it will be given in the forthcoming paper [7].

Our notation is standard. If E is a Banach space, BE will be the closed unit
ball of E, E' the topological dual Banach space and JE the natural embedding
of E into its bi-dual E". Sometimes, to call attention on the norm of the
involved Banach space E, we shall write II.IIE' Given p E [1,00], a measure
space (0, M, J.L) and a measurable non null everywhere real function g, we
denote by U(O, M, g, J.L) (or simply U(g, J.L) if there is no risk of confusion)
the Banach space of classes of functions f such that f 9 belongs to the Lebesgue
space U(O, M, J.L), provided with the norm Ilfll = Ilfglb(J.L)'

From now on, in all the paper, 0' and p will be real numbers such that 0 <
0' < 1 and 1 < p < 00. Given such numbers, r E]l, oo] will be always the real
number such that 11r + (1 - a)lp' = 1. All Banach spaces of this paper will be
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defined over the field of real numbers since we shall use results of the theory of
Banach lattices (see [1] for questions concerning this topic).

Given a compatible couple (Ao, AI) of Banach spaces (i.e. two Banach spaces
which are vector subspaces of a larger vector space E), the spaces Ao +A1 and
Ao n A1 will be always endowed with its canonical norms

IlxllAo+Al = inf {lIallAo + IlbllAI I x = a + b, a E Ao, bEAd

and

respectively.

2. On ultra-products of some factorizations

We refer the reader to [4] for definitions and basic results about ultra-products
of Banach spaces. Let D be an index set an V a non-trivial ultrafilter on
D. Given a family {Adl d E D} of Banach spaces, (Ad)v will denote its
ultra-product by V and (Xd)'D will be the class of (Xd) E IIdEDAd in (Ad)v.
Analogously, if we have a family of maps {Td E .c(Ad, Fd), d E D} in such
a way that sUPdED IITdl1 < 00, we denote by (Td)v E .c((Ad)v, (Fd)'D) the
canonical ultra-product linear map. If every Ad, d E D is a Banach lattice,
(Ad)v has a canonical order which makes it a Banach lattice.

Suppose now that for every d E D we have the chain of Banach spaces and
continuous mappings

Ad i-.Ad £ Ad + Ad
CXJ r 1 p

where Af = li(Dd, fLd), i = 1, r, P, 00 for some atomic measure space (Dd, fLd)
and Td is a positive operator such that sUPdE'DIITdll < 00. We put Ui = (Af)v
for every i = 1, r, P, 00. Now, the map (Td)'D : UCXJ --+ Ur is well defined.

The ultra-products S = (At + A~)'D and Ui, i = 1,p,r, are Banach lattices
under its canonical order. For i = 1,p and d E D, let Jf : Af --+ At + A~
be the canonical map. The ul tra- prod uct maps Ji = (Jf) v :Ui --+ S, i = 1,P
and J; := (J;:d)V : Ur --+ S are well defined lattice homomorphisms. In this
situation, the main technical problem is that every Ji can not be an injective
map. To overpass this inconvenient we need to work with quotient spaces which
makes more involved the argumentation.

Each kernel Ker(Ji), i = 1,p, r is a closed ideal in Ui. Let Hi be the quotient
Banach lattice of Ui by Ker(Ji), K, E .c(Ui,Hi) the canonical quotient map
and]i the canonical injective positive map from Hi into S. We put E, = ]i(Hi)

provided with the topology of Hi. It is easy to check that E; is an abstract
Li-space and ]i is an order isomorphism onto the sublattice E, of S.

For every ((xf)) E IIdEDA~ we define ((yt)) and «e» in IIdEDA~ such that
for every d ED and every i E D yd.= xd if xd < 1 yd.= a if xd > 1 zd.= ad, 1.' 1, 't - , t . 1.' 't •
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if xt < 1 and zf := xt if xt ;::::1. Since 1 < r < p we have ((yf)) E IIdEDA~
and ((zf)) E IIdEDAf. Now we define

PI (((xf))1J) = JpKp(((yf))1J) and P2(((xf))1J) = JIKI(((zf))v).
Hence

JrKr(((xf)v) = JrKr(((yf)1J) + JrKr(((zf)1J)

= PI (((xf))1J) + P2(((xf))1J) EEl + Ep

and for every ((xt))v in the open unit ball of Ur we have

l17rKr(((xf)1J)IIE,+Ep ~ l17rKr(((yf)1J)IIEp + l17rKr(((zf)1J)IIE,
- d 1: - d< IIJrKr(((Xi )1J)llur + IlJrKr(((Xi )1J)lIur ~ 2.

In consequence, since E; and EI + Ep are subsets of 5, there is a continuous
inclusion E; C EI + Ep. Clearly, E; is a sublattice of EI + Ep and Jr is an
order isomorphism.

Lemma 1. Suppose e. =I- {O}. Then EI n e, =I- {O}.

Proof. Clearly, the diagram (arrows without characters are inclusion maps)

Jr
Ur 5

J,K, j 1
Er ' EI + Ep

is commutative by definition of the involved mappings. Let 0 =I- Wo := ((wf))1J
E E; eEl +Ep. Put y:= PI (wo) E Ep and z:= P2(wo) EEl. Then Wo = y+z
and hence y =I- 0 or z =I- O. Suppose y =I- O. Then there is E > 0 such that, for
every representation Y = u+v with u E Ell VEEp, we have E < IlulIE, + IIvilEp'

Since r < p we obtain

sup L IYflP2 < sup L lyflP ~ sup L Iyflr < sup L Iwflr < 00.
dED iEDd dED iEDd dED iEDd dED iEDd

Hence
- d - d - dJrKr(((IYi IP))1J) = J1K1(((1Yi IP)v) = JpKp(((IYi IP)1J) EEl t.e;

Now, if f := «r» E ((IYfIP))1J in the ultra-product U1, we have

E
P < IIYllt < li.g1 L lyflP,4 < li.g1 (L IlyflP - fidl /If) + li.g1 L Iftl/lf

iEDd iEDd iEDd

= 11((lyfIP))1J - fllu, + Ilfllu, = Ilfllu,·
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Then, taking the infimum over f we obtain €p < Ilyll~ :::;IIK1(((lyfIP))v)IIH,.
p .

Since}l is injective, we have 0 =I- }rKr(((lyfIP))v). Analogously, if Z =I- 0, there
is e > 0 such that, for every representation Z = u + v with u E E1, vEEp, we
have e < IlulIE, + IlvllEp. Now we have

sup L Izfl~ :::;sup L 141:::;sup L Izflr :::;sup L Iwflr < 00.
dED iEn

d
dED iEnd dED iEnd dED iEnd

Hence
- d' - d' - d'JrKr(((lzi Ii»)v) = hK1(((lzi Ii»v) = JpKp(((lzi Ii»v) E E1 ne;

Now, if f := «n» E ((Izfl~))v in the ultra-product Up, we have
i

c~ < IlzIIE, :::;ligJ (L 141/4) i>
zEnd

i i

:::;ligJ (L Ilzfl~ - ft\P flt)i> +ligJ (L IftIPflt)i>
zEnd zEnd

d '= II((IZi Ii»)v - fllup + Ilfllup = Ilfllup.
1 1 1

Then, taking the infimum over f we obtain €i> < IIYllEp :::; IIKp(((!yfli»)v)IIHp•

Since}p is injective, we have 0 =I- }rKr(((lztl~))v). Consequently E1 n Ep =I-
{OJ. [!f

Let Eo be the closure of E1 nEp in E1 +Ep. Clearly Eo is a closed sublattice
of E1 + Ep.

Lemma 2. The norm of E1 + Ep is order continuous in Eo·

Proof. Let x E E1 n Ep be the supremum of an increasing non negative net
{xQ" a E A} in E1 n Ep. We have

Ilx - xallE,+Ep :::; Ilx - xaIIE,.
Since E1 is an abstract L-space, it has order continuous norm. Then lima Xa =
x in E1 + Ep. By a result of Luxemburg, (see theorem 12.10 in [1]), Eo has
order continuous norm. [!f

Lemma 3. Suppose Jr(Td)v =I- O. There is a set e C E1 n e,n e. which is a
maximal system of pairwise disjoint elements in Eo and hence also in Er·

Proof. Since Eo has order continuous norm (lemma 2), there is a topological
vector space :F of measurable real functions defined on some measure space
(O,~, v) and a continuous order isomorphism W : Eo ----> :F when :F is provided
with its canonical order. (See for instance section 1 of Pisier's paper [11] for
the detailed construction of w).
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On the other hand, the element u = ((uf))'O E Uoo such that uf = 1 for
every d ED and i E 0, is a strong unit in Uoo. Then (Td)'O(Uoo) is contained in
the band generated by w:= (Td)V(U) inUr. Let Wo:= Jr(w) E E1 +Ep• Since
J1.(Td)V i= 0, necessarily we have a i= wOo By lemma 1, E1 n Ep i= {a}. By
Zorn's lemma, there is a maximal system [ = {evlv E V} of pairwise disjoint
vectors in E1 nEp such that a < tlevllEp < 1.

Let us see that every Z E E1 n Ep is the sum of a series z = L~=1 Xn (in the
topology of Eo) with every Xn in the band e;n-l generated in Eo by some eVn E E.
By Zorn's lemma, there is a set E' such that [U E' is a maximal set of pairwise
disjoint elements in the order continuous lattice Eo (lemma 2). Then, by a well
known result of Kakutani (see proposition l.a.9 in [5]), there are sequences
(V1,)~=1 C [ and (Wn)~=1 C E' such that z = L~=1 Xn + L~=1 Yn with every
Xn E e;n-l and Yn E e~;. Then ll1(z) = L~=1 w(xn) + L~=1 w(Yn) and hence
I L~=1 III(Yn) I < Iw(z)1 and I L~=1 Ynl ::; 14 In consequence L:~=1 Yn E
E1 n Ep and z - L~=1 Xn E E1 n Ep• Moreover,

00 00 00

Iz - L Xnll\ev = ILYnlAev < L IYnl A e., = a
n=1 n=1 n=1

for all e., E E, Hence z = L~=1 Xn·
Now, suppose there is z E Eo such that z A ev = a for every v E V. Then

W(z) A W(ev) = a for all v E V. On the other hand there is a sequence
(Zn)~=1 C E1 n Ep such that z = limn Zn in Eo. Hence w(z) = limn W(zn)
in F. By the result of last paragraph, for every Zn, n E N, there is a sequence
(vknH~o=1 C V such that Zn = L~=1 XVkn in Eo· In consequence, if we put
Ov = {~EO I w(ev)(t) i= a}, it follows that w(zn) = L~=1 W(XVkJ is null on
a measurable set 0" (UkENOvkJ for each n EN and hence we have that ll1(z)
is null on a measurable set 0" (UhENOVh) for some sequence (Vh)h=1 C V. But
w(z) is also null on Ov for all v E V since w(z) A w(ev) = O. Then w(z) = 0,
z = a and E is maximal in Eo·
. Finally, let us see that [ c E»: Given ev E [ C E1 n Ep, we can write

ev = ((ef))'O such that

a:= sup {sup L leflIJi' sup L letlPIJi} < 00.
dED iElld dED iElld

But r < p from definition of r. Then, putting

0~={iEOdlletl2:1} and O~={iEOdlletl<l}

we have
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and hence e.. E Er. As above, since Er C Eo we get that [; must be maximal
in E; too. . 0

Once again by the quoted result of Kakutani ([5], Proposition 1.a.9) and by
Lemma 2, there is a set Vo = {vn, n E N} c V such that Wo = I:~=1xVn in Eo
with every xVn in the band generated byevn in E1 + Ep• For every i = 1,p,r
we define the complemented subspaces

G, = {z E E, I Izj/\ ev = 0 "Iv rt. Vo}·

Now we can state the main theorem of this paper:

Theorem 4. Suppose 1 < p < 00. Then there are a a-finite measure space
(0, M, v), a multiplication operator Cit and suitable operators for the following
vertical arrows, such that the diagram

(Td)v (Ifd)V
Uoo • Ur ·S

. I j 1~ Cit JV
LOO(v) • U(v) r • £l(v) + LP(v)

is commutative.

Proof. Fix Vn E Vo and let i = 1, r, p. Let B, (eVn) be the band generated by
eVn in Ei. Let An be the boolean algebra An of the components of eVn in Eo

An := {x E Eo I x /\ (eVn - x) = O}.
By lemma 2 and theorems 12.9 and 3.15 in [1], An is Dedekind complete and by
the Stone representation theorem, it is isomorphic to the boolean algebra On
of the clopen sets of a separated compact extremally disconnected topological
space On' Since eVn EEl n E; n Ep, we have An C Bi(evJ and we can define
the following set of functions on On: if X E An and Sx is its image in On, we
put

. --1·
w~(Sx) = lIJi (x)llk·

As Hi is an abstract Li-space, w~ is a finitely additive measure on On and hence
a measure, On being extremally disconnected. By the Caratheodory extension
procedure we get an other measure w~', i = 1, r,p, which is a measure (again
denoted by w~) when restricted to the a-algebra M~ of w~' -measurable sets of
On' Considering the a-algebra Mn = M; nM~ nMf., every w~, i = 1, r,p is

. --1 .
a measure on Mn and w~(O) = IIJi (evJllk < 00. It is easy to see that the
map
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z E An' is a well defined isometry from

:Fn ;= {t O'.hXh I O'.h E JR, Xh E An' Xh 1\ Xj = 0, h -I j; h,j = 1, ... , k, kEN}
h=1

(with the induced topology of Gi) into the linear span of measurable charac-
teristic functions of Li(0.n, M," w~). Let us see that Wi can be extended to
an isometric lattice homomorphism (again denoted by Wi) from Bi(evn) onto
U(0.n, Mn, w~).

Let S = Uh=ISxh with Xh E An and Xh :::;h+l:::; eVn for every hEN. Then
there exists x = sUPhENXh E An. By the order continuity of the norm in E, we
have

Then we obtain that S c Sx and w~(S) = w~(Sx).
Now, if S is a Mn-measurable set in 0.n we choose a sequence (Y~)h=1 CAn

such that S C Syi C Sy' for every hEN and w~(S) = lim), ......oo w~ (Syi ).
h+l h h

Then exists yi = inf hENy~ E An and it satisfies S C st and w~ (S) = w~ (st)·
Therefore XS = XS' = Wi(yi) holds, which shows that Wi is a map onto the

y

linear span of measurable characteristic functions of Li(0.n, Mn, w~). Since
this set and:Fn are dense in Li(0.n,Mn,w~) and Bi(evJ respectively (by the
Freudenthal's spectral theorem, see for instance theorem 6.8 in [1]), we get the
announced isometry.

Now, we define 0. ;= U~=1 0.n and the o-algebra M and the measure wi in
M such that

00

M = {M C 0. I Mn0.n E Mn} and wi(M) = Lw~(Mn0.n) V ME M
n=1

Now it is easy to show that Wi can be extended to an isometric and lattice
isomorphism (again denoted by Wi) from Gi,i = l,r,p, onto Li(0.,M,wi).
Hence there is a natural isometric order isomorphism W from G1 + Gp onto
L1 (0., M, wI) + LP(n, M, wP) C B(0., M), the space of measurable scalar func-
tions on 0..

Next we define in M the o-finite measure w = wr +w1 +wp• Every wi, i =
r, l,p is absolutely continuous with respect to w. By the Radon-Nikodym
theorem, there is a measurable function 9i such that

wi(A) = i 9irk.J VA E M

and
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and hence for every i = r, 1, p, the identity on Li(n, M, wi) is an isometry
onto the space Li(n,M,g;/\w). Consider the measure v = (gf/gp)I/(p-I).W
on (n,M), which is a-finite again as it is easily checked. Let

WI: LI(n,M,gl,W) + U(n,M,g~/p,w) -> LI(n,M,wl) + U(n,M,wP)

be the identity map and let

W2 : LI(n,M, v) + U(n, M, /I) -> LI(n,M,gl,W) +U(n, M, g~/p,w)

be such that W2(J) = f(gflgp)I/(p-I)(l/gd_ Straightforward calculations
show that WI and W2 are isometric maps. Now consider the multiplica-
tion operators Cw and Cg where w = g~/r(gflgp)-I/r(p-I) and 9 =

w-l(gp/gdl/(P-I) = g;l/rg'{g~I-U)/P. Cw is an isometry from Lr(n,M,wr)
onto U(n, M, v). Let Qr be a continuous projection from E; onto G», We have
the commutative diagram (arrows without character means natural inclusions)

----- .....GI+Gp -EI+Ep-SIW, 1 w-,

Uoo ------ ...... C;

Given c > 0, put A := {t E n Ilg(t)1 > (l+c)IICgll} and suppose that v(A) > O.
The transposed map C~ : L00 (v) IJ U' (v) ---+ U' (/I) verifies

(1+c)IICgllllfXAIILr'(v)::; IlgfXAlluX>(v)nLP'(v)
::; IIC~llllfxAllux>(v)nLP'(v)

for all f E LOO(v) n LP' (v). Since we have the inclusion map LOO(A, v) n
LP' (A, /I) C tr' (A, v) with norm less or equal than 1, there must be (1 +
c)IICgll ::; IICgl1which is a contradiction. Then Ig(t)1 ::; IICgl1 v-everywhere
and 9 E LOO(/I). As the map CwWrQrK,.Jr(Td)V is positive, it is enough to
apply 7.3 and 18.9 of [2] (Maurey's factorization theorem) to get the result. [!f

Theorem 5. Let T E £(E, F) be such that for every finite dimensional sub-
space M C F', the restriction of TM to every finite dimensional subspace
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NeE factorizes in the way

N -. eCXJ(nN,J.lN) ~ er(nN,J.lN) ~ e1(nN,J.lN) +ep(nN,J.lN) -. M'

where every (nN, J.lN) is a discrete measure space with a finite number of atoms
and every DN is a positive diagonal operator. Then there is a a-finite measure
space (0., J.l) such that JFT factorizes in the way

E -. LCXJ(n,J.l) ~ U(n,J.l) -.!E... L1(n,J.l) + LP(n,J.l) -. F"
where Bw is a diagonal operator.

Proof. The proof goes along the same lines than in the classical case of
p-integral operators but using our theorem 4. See [3] for the detailed proof. ~
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