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ABsTrACT. In this paper we consider a class of variational-hemivariational
inequalities. We use the critical point theory for nonsmooth functionals due
to Motreanu-Panagiotopoulos [9]. We derive nontrivial solutions using the
mountain-pass theorem.

Keywords and phrases. Variational-Hemivariational inequalities, discontinu-
ous nonlinearities, critical point theory, mountain pass theorem.

2000 Mathematics Subject Classification. Primary: 35A15. Secondary: 35J85,
35R45.

1. Introduction

Our starting point is the paper of Motreanu-Panagiotopoulos (8] for hemivari-
ational inequalities. Namely, the authors there want to answer the following
question:

Find u € X and )\ € R satisfying the inequality
a(u,v) +/ 7%(u,v)dx > ANu,v) for all v € X
z

where j : R — R is a locally Lipschitz function and a(-,-) a continuous sym-
metric bilinear form.
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Our goal here is to have some existence results for such problems with the
solution being at a closed, convex subset K of W1P(Z) and in our case the dif-
ferential operator is the p-Laplacian. Moreover, we seek for nontrivial solutions
and for that purpose we use the mountain-pass theorem.

The problem under consideration is the following:

Let Z C RN be a bounded domain with a C'-boundary I'. Find z € W'?(Z2)
such that

/ (1D2(2)|P~2(Dx(2), Dy(2))pvdz + / Fo(z,2(2);y(2))dz 20 (1)
Z A

for all y € K. Here K = {x € W'?(Z) : z(z) > 0}. Clearly, K is closed
and convex on WP(Z) and finally F : Z x R — R is the potential of some

f:ZxR—-R

2. Preliminaries

Let X be a real Banach space and Y be a subset of X. A function f : Y — Ris
said to satisfy a Lipschitz condition (on Y') provided that, for some nonnegative
scalar K, one has
|f(y) — f(@)| < K|y - z|
for all points z,y € Y. Let f be Lipschitz near a given point z, and let v be
any other vector in X. The generalized directional derivative of f at z in the
direction v, denoted by f°(z;v) is defined as follows:
fo(l‘; ’U) i limsup f(y & tU) y f(y)
N ¢
where y is a vector in X and t a positive scalar. If f is Lipschitz of rank K near
x then the function v — f°(z;v) is finite, positively homogeneous, subadditive
and satisfies | f°(z;v)| < K|v|. In addition f° satisfies f°(z; —v) = (—f)°(z;v).
Now we are ready to introduce the generalized gradient which denoted by 9f(x)
as follows:

Of(z) ={we X*: f°(z;v) > (w,v) forall v e X}
Some basic properties of the generalized gradient of locally Lipschitz functionals
are the following:
(a) Of(x) is a nonempty, convex, weakly compact subset of X* and |w|, < K
for every w in Of(z).
(b) For every v in X, one has
f(z;v) = max{(w,v) : w € dOf(x)}.
If f1, f2 are locally Lipschitz functions then
O(fi+ f2) COf1 +0fa.
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Moreover, (z,v) — f°(z;v) is upper semicontinuous and as function of v alone,
is Lipschitz of rank K on X.

Let us mention the mean-value theorem of Lebourg.

Theorem 1 (Lebourg). Let z and y be points in X, and suppose that f is
Lipschitz on an open set containing the line segment [z, y]. Then there exists
a point u € (z,y) such that

fy) — f(z) € (0f (u),y — ). (2)

Let R: X — RU {oo} be such that R = ® + ¢ where ® : X — R be a
locally Lipschitz functional while ¢ : X — RU{+o00} is a lower semicontinuous,
convex but not defined everywhere functional.

A point z in X is said to be a critical point of R if z € D(v) and if it satisfies
the inequality

®°(z;y — x) +¥(y) — ¥(x) >0 for every y € X. (3)

Definition 1. We say that R: X — R U {oo} with R = ® + ¢ satisfies H; is
® is locally Lipschitz and v proper, convex and lower semicontinuous.

Let us now state the formulation of our (PS) condition.
(PS) If {z,} is a sequence such that R(z,) — c and
B°(Zn;y — Tn) + Y(y) — Y(@n) > —enlly — 2n| for every y € X. (4)
where ¢, — 0, then {z,,} has a convergent subsequence.

The following theorem is a mountain-pass theorem for functionals which
satisfies condition H; and (PS) (see Motreanu-Panagiotopoulos [9], Cor. 3.2).

Theorem 2. If f : X — R satisfies H; and (PS) on the reflexive Banach space
X and the hypotheses

(i) there exist positive constants p and a such that
f(u) > a for all x € X with |z| = p;
(ii)) f(0) = 0 and there a point e € X such that
lel > p and f(e) <0,
then there exists a critical value ¢ > a of f determined by

— 1 f
ot 7 tré}?,’f]f (g(1)

where

G ={g€C([0,1],X) : g(0) =0,9(1) = e}
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In what follows we will use the well-known inequality
N !’
> (aj(m) — a;j(n))(m; —n;) = Cln—n |, (5)

=1

for n,n € RN, with a;(n) = |n[P~%n;.

3. Hemivariational inequalities with constraints
Let f: Z x R — R. Then we introduce the following functions:
fi(z,2) = liminf f(2,2), fa(z,2) = limsup f(z,2).
r —T T —T

In this section we state and prove an existence result for a variational-hemi-
variational inequality. So our hypotheses on the data are:
H(f) : f1,f2: Z x R — R is N-measurable (i.e. if z(z) is measurable then so
is f1,2(2,2(2));
(i) for almost all z € Z and all z € R, |f(z,2)| < a(z) + clz|?~1 with
a€L>®(Z),c>0,1<6<p;
(ii) uniformly for almost all z € Z we have that %}—fz—? — fy(z) as x — o0
where f, € LY (Z),f+ > 0 with strict inequality on a set of positive

Lebesgue measure.
(iii) Uniformly for almost all z € Z we have that

F(z,z) < h(2),

lim sup 2
z—0  |af?
with h € L>(Z) and h(z) < 0 with strict inequality on a set of positive
measure. Here, by F(z,z) we denote the integral of f, that is F(z,z) =
foz f(z,r)dr.
Theorem 3. If H(f) holds then problem (1) has a nontrivial solution € K.

Proof. Let ® : W'P(Z) — R and v : WHP(Z) — RU{oo} be defined such that
1
d(z) = —/ F(z,z(2))dz and ¢(z) = ;"D:L‘HZ + Ik (z).
z

In the definition of ®(-), F(z,z) = [ f(z,r)dr and Ik is the indicator
function of K = {x € WYP(Z) : z(z) > 0 a.e. on Z}. It is easy to see that K
is closed, convex and thus Ik is convex and lower semicontinuous.

Set R = ® + 1. Recall that ® is locally Lipschitz and % is lower semicon-
tinuous, proper and convex.

Claim 1 R(-) satisfies the (PS)-condition.
Let {z,}n>1 € WHP(Z) such that R(z,) — ¢ when n — oo and

P°(zn; T — Tn) + Y(z) — Y(zn) > "‘571"1' = xn"
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with ¢, — 0. Note that {z,} € K because |R(z,)| < M. In the above
inequality choose x = x,, + dx, and then divide with d. Also,

1 1 1
p1D%nls = S 1Dzn +8Dza] = H1Ponlp(1 = (1+8)%).

So if we divide this with § and let § — 0 we have that is equal with —| Dz, |}.
Finally there exists v,(z) € [~ f1(2,Zn(2)), — f2(2, zn(2))] such that (v,,z,) =
®°(zp; ). So, it follows that

/ —UpTn(z)dz — ||Da:n||g > —enlTnl-
z

Suppose that {z,} € WP(Z) was unbounded. Then (at least for a subse-
quence), we may assume that |z,| — oco. Let y, = " a,n 2 1 By passing to
a subsequence if necessary, we may assume that

yn =y in WHP(2),yn — y in LP(Z),yn(z) — y(2) a.e. onZ as n — oo
and |y, (z)| < k(2) a.e. on Z with k € L?(Z).

Recall that from the choice of the sequence {z,} we have |R(x,)| < M for
some M; > 0 and all n > 1, thus

1
1Dz - /Z F(z,5n(2))dz < My,

(since Ik > 0). Dividing by |z,[? we obtain _

1 Y H G-l M
HEE /Z Banie)) y, o M1 (6)

lznl? e i

But we have

Fle.a,(2) [
d
LT ‘ mnp/ g

<

Iz ||,,(IIGIIooIIJEnII + Zlenl?) = 0 asn — oo
n

So by passing to the limit as n — oo in (6), we obtain
3
Y P
i 21Dyl =0

from which it follows |Dy|, = 0 (recall that Dy, ~> Dy in LP(Z,R") as
n — o00) and consequently, y = £ € R.

Note that y, — & in WP(Z) and since |y,| = 1,n > 1 we infer that £ # 0.
We deduce that |z,(z)] — +oc a.e. on Z as n — <.

From the choice of the sequence {z,} C WP(Z), we have

/Z —tn(2)2n(2)dz — |D2nlE > —enlznl (

=1
~
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and
|Dz, |2 — p / F(z,2n(2))dz > —pM;. (®)
VA

Adding (7) and (8), we obtain
/Z (=tn(2))2n(2) — PF (2, 2n(2)))dz > —pM — enlzal.

Dividing this inequality by |z, |’ we have
—vn(z) pF(Z,:L‘n(Z)) 1 En
o n(dz - [ EEreE s > - My - o (0
/z (E z  lzal® (e lza]®1
Note that

_Un(z) o Un( ) NNodz — |€£]° .

as n — oo.
Also by virtue of hypothesis H(f) (ii), given z € Z ~ N,|N| = 0 (|C|
denotes the Lebesgue measure of a measurable set C C Z) and € > 0, we can
find M. > 0 such that for all [r| > M. we have |f;(z) — {352 (7)) < ¢. Then, if

Zn(2) — 400, we have
1 1

lx—n(?)l—gF(Z,fL'n(Z))dZ > WF(Z,M,;)CZZ
Zn(2)
p L eI — el ryar
ol 1 |xn(z)|0 Mo
== |mn(z)|0n(z) o 9|xn(z)|9 (f+( ) )
for some n € L}(Z). It follows that
imint S22 > Z(7) - ) (10
Similarly we obtain that
imsup SN < 27400+ 0 (1)

From (10) and (11) and since € > 0 and z € Z \ N were arbitrary, we infer
that

F—'(:’—:(Ef)(—lf’—))— - %f+(z) a.e. on Z as n — 00
whence
Fzan(z) [ Flom(@) @l
S [ e T

_ [ F(z,24(2))
*/Zwlyn(Z)ledZ~>€"/0f+ asn—w?u)
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Thus by passing to the limit in (9), we obtain
p
a-2¢ [ f1) 20,
Z

a contradiction to hypothesis H(f) (ii) (recall p > 0 ). If z,(z) — —oo, with
similar arguments as above we show that

F(z,z,(2)) 1
/Z——dzﬁﬁe/zaf_k(z) as n — 00.

lzn]®
Therefore, it follows that {z,} C W1P(Z) is bounded. Hence we may assume
that , — = in WYP(Z),z, — z in LP(Z),z,(z) — z(z) a.e. on Z as n — 00
and |z, (2)| < k(z) a.e. on Z with k € LP(Z). Note that K is closed and convex
so it is weakly closed; thus z € K.

So we have
—en|z — zn| < (AZp, z — zp) — / vn(2)(x — zn(2))dz
Z

with vn(2) € [f1(2,Zn(2)), fa(2,2n(2))] and A : WHP(Z) — WLP(Z)* such
that (Az,y) = [,(|D=(2)[P~(Dz(z), Dy(2))rvdz. But z, = z in W?(Z),
so z, — z in LP(Z) and z,(z) — z(z) a.e. on Z by virtue of the compact
embedding WP(Z) C LP(Z). Then we have that limsup(Az,,z, —z) = 0
(note that v, is bounded). By virtue of the inequality (5) we have that Dz, —
Dz in LP(Z). So we have x,, — z in W'?(Z). The claim is proved.

Now let WlP(Z) = X; @ X2 with X; = R and X, = {y € W'P(Z) :
J y(2)dz = 0}. For every £ > 0 we have

R(E) = B(€) + Ik (6) = — /Z F(z,€)dz.

By virtue of hypothesis H(f)2 (ii) we conclude that R(§) — —oo as £ — oo.
On the other hand for y € X3, we have

R() 2 51Dyl - /Z Flza(a)dz (since Ix(y) 2 0)

1
2 ;IlDyilﬁ — calylp — cslyly

for some cz,c3 > 0 (since 6 < p, see H(f)3 (1))

From the Poincare-Wirtinger inequality we know that |Dy|, is an equivalent
norm on X,. So we have

1
R(y) z ;)IIDyllﬁ — el Dyl — cs| Dyl

for some c4,c5 > 0. So, R(-) is coercive on X, (recall # < p) hence, bounded
below on Xs.

In order to use the mountain-pass theorem it remains to show that there
exists p > 0 such that for |z| = p we have that R(z) > a > 0. In fact, we will
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show that for every sequence {z,} € WP (Z) with |z,| = pn | 0 we have that
R(z,) > 0. Indeed, suppose not. Then there exists some sequence {zn} such
that R(z,) < 0. Thus, we have

%"Dxnng < /Z P 4(30)dz:

Recall that Ixr > 0. Divide this inequality with |z,|P. Let yn(2) = 57
Then we have

F(z,2zn(2))
Dy, |? S/p——dz.
SR N

From H(f) (iii) we have that for almost all z € Z for any € > 0 we can find
d > 0 such that for |z| < § we have
pF(z,z) < (h(z) + €)|z|P.
On the other hand, for almost all z € Z and all |z| > ¢ we have
plF(z,z)| < cilz] + c2|z|® +e3 < cr|zlP + calzlP” + ca-

Thus we can always find v > 0 such that p|F(z,z)| < (h(z) + &)|z|P + ][
for all x € R. Indeed, choose v > c2 + ﬁ%r +|h(z) 4+ € —c1| |8]P7P". Therefore,
we obtain

e

IDwalp < [ (1) + Mtz 4 [ FEE »
< [ () + Olum(aPdz + kel
VA

Here we have used the fact that W1P(Z) embeds continuously in LP" (Z). So
we obtain

0 < |Dynlb < elynlb +71lzn |P" P recall that h(z) < 0.

Therefore in the limit we have that |Dy,|, — 0. Recall that y, — y weakly
in W1#(2). So |Dyl, < liminf [ Dya], < limsup [ Dya|, — 0. So [Dyl, = 0,
thus y = £ € R. Note that Dy,, — Dy weakly in L(Z) and |Dy.|, — |Dyl»
S0 yn — y in WP(Z). Since |yn| = 1 we have that |y| = 1 so § # 0. Suppose
that £ > 0. Going back to (13) we have

0< [ () + Wz + kel
z
In the limit we have
0< / (h(z) + €)€Pdz < ££P|Z| recall that h(z) <O0.
Z

Thus we obtain that [, h(z)éPdz = 0. But this is a contradiction. The same
holds when £ < 0. So the claim is proved. Now, by mountain pass theorem we
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have that there exists z € WP(Z) such that

®°(z;y —z) + Y(y) —(x) >0

for all y € W1P(Z). Choose y = = + tv with v € K. Dividing by ¢t > 0 we have
in the limit

/ZF"(z,a:(z);v(z))dz + (Az,v) > ®°(z;v) + (Az,v) >0

for allv € K. o

Remark 1. Note that if K = W1?(Z) then from above we have that —Ax €
0®(z) and the subdifferential is in the sense of Clarke.
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