Revista Colombiana de Matemáticas Volumen 36 (2002), paginas 19-27

On a class of variational-hemivariational inequalities

NIKOLAOS HALIDIAS¹

University of the Aegean, Samos, GREECE

ABSTRACT. **In** this paper we consider a class of variational-hemivariational inequalities. We use the critical point theory for nonsmooth functionals due to Motreanu-Panagiotopoulos [9]. We derive_ nontrivial solutions using the mountain-pass theorem.

Keywords and phrases. Variational-Hemivariational inequalities, discontinuous nonlinearities, critical point theory, mountain pass theorem.

2000 Mathematics Subject Classification. Primary: 35A15. Secondary: 35J85, 35R45.

(a) \ & yd besonab daily to at 1. Introduction outsetting

Our starting point is the paper of Motreanu-Panagiotopoulos [8] for hemivariational inequalities. Namely, the authors there want to answer the following question:

Mr sation (Brace Monace Casherene

Find
$$
u \in X
$$
 and $\lambda \in \mathbb{R}$ satisfying the inequality

$$
a(u, v) + \int_Z j^o(u, v) dx \ge \lambda(u, v) \text{ for all } v \in X
$$

where $j : \mathbb{R} \to \mathbb{R}$ is a locally Lipschitz function and $a(\cdot, \cdot)$ a continuous symmetric bilinear form. $((x))$ the set $((x), (y), (x), (y), (y), (z))$

¹This work was supported partially by a postdoctoral scholarship from the State Scholarship Foundation (LK.Y.) of Greece.

20 NIKOLAOS HALIDIAS

Our goal here is to have some existence results for such problems with the solution being at a closed, convex subset K of $W^{1,p}(Z)$ and in our case the differential operator is the p-Laplacian. Moreover, we seek for nontrivial solutions and for that purpose we use the mountain-pass theorem.

The problem under consideration is the following:

Let $Z \subseteq \mathbb{R}^N$ be a bounded domain with a C^1 -boundary Γ . Find $x \in W^{1,p}(Z)$ sub ^{*f*}

that
\n
$$
\int_Z (\|Dx(z)\|^{p-2} (Dx(z), Dy(z))_{R^N} dz + \int_Z F^o(z, x(z); y(z)) dz \ge 0
$$
\n(1)

for all $y \in K$. Here $K = \{x \in W^{1,p}(Z) : x(z) \geq 0\}$. Clearly, K is closed and convex on $W^{1,p}(Z)$ and finally $F: Z \times \mathbb{R} \to \mathbb{R}$ is the potential of some $f:Z\times\mathbb{R}\rightarrow\mathbb{R}.$

2. **Preliminaries**

Let *X* be a real Banach space and *Y* be a subset of *X*. A function $f: Y \to \mathbb{R}$ is said to satisfy a Lipschitz condition (on *Y)* provided that, for some nonnegative scalar *K,* one has

$$
|f(y) - f(x)| \le K\|y - x\|
$$

for all points $x, y \in Y$. Let f be Lipschitz near a given point x, and let v be any other vector in *X.* The generalized directional derivative of *f* at *x* in the direction *v*, denoted by $f^o(x; v)$ is defined as follows:

$$
f^o(x;v)=\limsup_{\substack{y\to x\\t\downarrow 0}}\frac{f(y+tv)-f(y)}{t}
$$

where *^y* is a vector in *^X* and *t* a positive scalar. If *f* is Lipschitz of rank *^K* near x then the function $v \to f^{\circ}(x; v)$ is finite, positively homogeneous, subadditive and satisfies $|f^o(x; v)| \le K \|v\|$. In addition f^o satisfies $f^o(x; -v) = (-f)^o(x; v)$. Now we are ready to introduce the generalized gradient which denoted by $\partial f(x)$ as follows:

$$
\partial f(x) = \{ w \in X^* : f^o(x; v) \ge \langle w, v \rangle \text{ for all } v \in X \}
$$

Some basic properties of the generalized gradient of locally Lipschitz functionals are the following:

(a) $\partial f(x)$ is a nonempty, convex, weakly compact subset of X^* and $||w||_* \leq K$ for every *w* in $\partial f(x)$.

(b) For every *v* in *X,* one has

$$
f^o(x; v) = \max\{\langle w, v \rangle : w \in d\partial f(x)\}.
$$

If f_1, f_2 are locally Lipschitz functions then

$$
\partial(f_1+f_2)\subseteq\partial f_1+\partial f_2.
$$

Moreover, $(x, v) \rightarrow f^o(x; v)$ is upper semicontinuous and as function of v alone, is Lipschitz of rank *K* on *X. .*

Let us mention the mean-value theorem of Lebourg.

Theorem 1 (Lebourg). *Let x and ^y* be *points in X, and suppose that j is Lipschitz* on an open set containing the line segment $[x, y]$. Then there exists a point $u \in (x, y)$ such that

$$
f(y) - f(x) \in \langle \partial f(u), y - x \rangle. \tag{2}
$$

Let $R: X \to \mathbb{R} \cup \{\infty\}$ be such that $R = \Phi + \psi$ where $\Phi: X \to \mathbb{R}$ be a locally Lipschitz functional while $\psi : X \to \mathbb{R} \cup \{+\infty\}$ is a lower semicontinuous, convex but not defined everywhere functional.

A point *x* in *X* is said to be a critical point of *R* if $x \in D(\psi)$ and if it satisfies the inequality

$$
\Phi^{o}(x; y-x) + \psi(y) - \psi(x) \ge 0 \text{ for every } y \in X. \tag{3}
$$

Definition 1. We say that $R: X \to \mathbb{R} \cup \{\infty\}$ with $R = \Phi + \psi$ satisfies H_1 is Φ is locally Lipschitz and ψ proper, convex and lower semicontinuous.

Let us now state the formulation of our (PS) condition.

(PS) If $\{x_n\}$ is a sequence such that $R(x_n) \to c$ and

$$
\Phi^o(x_n; y - x_n) + \psi(y) - \psi(x_n) \ge -\varepsilon_n \|y - x_n\| \text{ for every } y \in X. \tag{4}
$$

where $\varepsilon_n \to 0$, then $\{x_n\}$ has a convergent subsequence.

The following theorem is a mountain-pass theorem for functionals which satisfies condition H_1 and (PS) (see Motreanu-Panagiotopoulos [9], Cor. 3.2).

Theorem 2. If $f: X \to \mathbb{R}$ satisfies H_1 and (PS) on the reflexive Banach space *X and the hypotheses*

(i) there exist positive constants ρ *and* a *such that*

$$
f(u) \ge a
$$
 for all $x \in X$ with $||x|| = \rho$;

(ii) $f(0) = 0$ *and there* a *point* $e \in X$ *such that*

$$
\|e\| > \rho \text{ and } f(e) \le 0,
$$

then there exists a *critical value* $c \geq a$ *of f* determined by

$$
c = \inf_{g \in G} \max_{t \in [0,1]} f(g(t))
$$

where

A. Maria edition of has had

$$
G = \{ g \in C([0,1], X) : g(0) = 0, g(1) = e \}
$$

an andw s = (... ii sads done (S. 5 W 2 , ... , .. to.)

In what follows we will use the well-known inequality

$$
\sum_{j=1}^{N} (a_j(\eta) - a_j(\eta'))(\eta_j - \eta_j') \ge C|\eta - \eta'|^p, \tag{5}
$$

for $\eta, \eta' \in R^N$, with $a_j(\eta) = |\eta|^{p-2} \eta_j$.

3. **Hemivariational inequalities with constraints**

Let $f: Z \times \mathbb{R} \to \mathbb{R}$. Then we introduce the following functions:

$$
f_1(z, x) = \liminf_{x' \to x} f(z, x'), f_2(z, x) = \limsup_{x' \to x} f(z, x).
$$

In this section we state and prove an existence result for a variational-hemivariational inequality. So our hypotheses on the data are:

 $H(f): f_1, f_2: Z \times \mathbb{R} \to \mathbb{R}$ is N-measurable (i.e. if $x(z)$ is measurable then so is $f_{1,2}(z, x(z))$;

- (i) for almost all $z \in Z$ and all $x \in \mathbb{R}$, $|f(z,x)| \leq a(z) + c|x|^{\theta-1}$ with $a \in L^{\infty}(Z), c > 0, 1 \leq \theta < p;$
- (ii) uniformly for almost all $z \in Z$ we have that $\frac{f_{1,2}(z,x)}{|x|^{6-2}x} \to f_+(z)$ as $x \to \infty$ where $f_+ \in L^1(Z), f_+ \geq 0$ with strict inequality on a set of positive Lebesgue measure.
- (iii) Uniformly for almost all $z \in Z$ we have that

$$
\limsup_{x\to 0}\frac{pF(z,x)}{|x|^p}\leq h(z),\qquad\text{for all }|z|>0\text{ for all }z\in\mathbb{R}.
$$

with $h \in L^{\infty}(Z)$ and $h(z) \leq 0$ with strict inequality on a set of positive measure. Here, by $F(z, x)$ we denote the integral of f, that is $F(z, x) =$ $\int_{a}^{x} f(z,r) dr$.

Theorem 3. If $H(f)$ holds then problem (1) has a nontrivial solution $x \in K$. *Proof.* Let $\Phi: W^{1,p}(Z) \to \mathbb{R}$ and $\psi: W^{1,p}(Z) \to \mathbb{R} \cup {\infty}$ be defined such that

$$
\Phi(x) = -\int_{Z} F(z, x(z)) dz \text{ and } \psi(x) = \frac{1}{p} \|Dx\|_{p}^{p} + I_{K}(x).
$$

In the definition of $\Phi(\cdot)$, $F(z, x) = \int_0^x f(z, r) dr$ and I_K is the indicator function of $K = \{x \in W^{1,p}(Z) : x(z) \geq 0 \text{ a.e. on } Z\}$. It is easy to see that K is closed, convex and thus I_K is convex and lower semicontinuous.

Set $R = \Phi + \psi$. Recall that Φ is locally Lipschitz and ψ is lower semicontinuous, proper and convex.

Claim 1 $R(\cdot)$ satisfies the (PS)-condition.

Let
$$
\{x_n\}_{n\geq 1} \subseteq W^{1,p}(Z)
$$
 such that $R(x_n) \to c$ when $n \to \infty$ and

$$
\Phi^{o}(x_{n}; x - x_{n}) + \psi(x) - \psi(x_{n}) \geq -\varepsilon_{n} \|x - x_{n}\|
$$

with $\varepsilon_n \to 0$. Note that $\{x_n\} \in K$ because $|R(x_n)| \leq M$. In the above inequality choose $x = x_n + \delta x_n$ and then divide with δ . Also,

$$
\frac{1}{p} \|Dx_n\|_p^p - \frac{1}{p} \|Dx_n + \delta Dx_n\| = \frac{1}{p} \|Dx_n\|_p^p (1 - (1 + \delta)^p).
$$

So if we divide this with δ and let $\delta \to 0$ we have that is equal with $-||Dx_n||_p^p$. Finally there exists $v_n(z) \in [-f_1(z, x_n(z)), -f_2(z, x_n(z))]$ such that $\langle v_n, x_n \rangle =$ $\Phi^o(x_n; x_n)$. So, it follows that

$$
\int_Z -v_n x_n(z) dz - \|Dx_n\|_p^p \geq -\varepsilon_n \|x_n\|.
$$

Suppose that $\{x_n\} \subseteq W^{1,p}(Z)$ was unbounded. Then (at least for a subsequence), we may assume that $||x_n|| \to \infty$. Let $y_n = \frac{x_n}{||x_n||}$, $n \ge 1$. By passing to a subsequence if necessary, we may assume that

$$
y_n \stackrel{w}{\rightarrow} y
$$
 in $W^{1,p}(Z), y_n \rightarrow y$ in $L^p(Z), y_n(z) \rightarrow y(z)$ a.e. onZ as $n \rightarrow \infty$

and $|y_n(z)| \leq k(z)$ a.e. on *Z* with $k \in L^p(Z)$.

Recall that from the choice of the sequence $\{x_n\}$ we have $|R(x_n)| \leq M_1$ for some $M_1 > 0$ and all $n \geq 1$, thus

$$
\frac{1}{p} \|Dx_n\|_p^p - \int_Z F(z, x_n(z))dz \le M_1,
$$

(since $I_K \geq 0$). Dividing by $||x_n||^p$ we obtain

$$
\frac{1}{p} \|Dy_n\|_p^p - \int_Z \frac{F(z, x_n(z))}{\|x_n\|^p} dz \le \frac{M_1}{\|x_n\|^p}.
$$
\n(6)

But we have

$$
\left| \int_{Z} \frac{F(z, x_n(z))}{\|x_n\|^p} dz \right| \leq \frac{1}{\|x_n\|^p} \int_{Z} \int_0^{|x_n(z)|} |f(z, r)| dr dz
$$

$$
\leq \frac{1}{\|x_n\|^p} (\|\alpha\|_{\infty} \|x_n\| + \frac{c}{\theta} \|x_n\|^{\theta}) \to 0 \text{ as } n \to \infty.
$$

So by passing to the limit as $n \to \infty$ in (6), we obtain

$$
\lim_{n \to \infty} \frac{1}{p} \| D y_n \|_p^p = 0
$$

from which it follows $||Dy||_p = 0$ (recall that $Dy_n \stackrel{w}{\rightarrow} Dy$ in $L^p(Z, R^N)$ as $n \to \infty$) and consequently, $y = \xi \in R$.

Note that $y_n \to \xi$ in $W^{1,p}(Z)$ and since $||y_n|| = 1, n \geq 1$ we infer that $\xi \neq 0$. We deduce that $|x_n(z)| \to +\infty$ a.e. on *Z* as $n \to \infty$.

From the choice of the sequence $\{x_n\} \subseteq W^{1,p}(Z)$, we have

$$
\int_{Z} -v_n(z)x_n(z)dz - \|Dx_n\|_p^p \ge -\varepsilon_n \|x_n\| \tag{7}
$$

and **be a set of the set**

$$
\|Dx_n\|_p^p - p \int_Z F(z,x_n(z))dz \ge -pM_1.
$$

Adding (7) and (8), we obtain

$$
\int_Z (-v_n(z))x_n(z)-pF(z,x_n(z)))dz \geq -pM_1-\varepsilon_n||x_n||.
$$

Dividing this inequality by $||x_n||^{\theta}$ we have

$$
\int_{Z} \frac{-v_{n}(z)}{\|x_{n}\|^{\theta-1}} y_{n}(z) dz - \int_{Z} \frac{pF(z, x_{n}(z))}{\|x_{n}\|^{\theta}} dz \geq -\frac{1}{\|x_{n}\|^{\theta}} pM_{1} - \frac{\varepsilon_{n}}{\|x_{n}\|^{\theta-1}} \tag{9}
$$

Note that

Note that
\n
$$
\int_Z \frac{-v_n(z)}{\|x_n\|^{\theta-1}} y_n(z) dz = \int_Z \frac{-v_n(z)}{|x_n(z)|^{\theta-2} x_n(z)} |y_n(z)|^{\theta} dz \to |\xi|^{\theta} \int_Z f_+(z) dz
$$
\nas $n \to \infty$.

Also by virtue of hypothesis $H(f)$ (ii), given $z \in Z \setminus N, |N| = 0$ (|C| denotes the Lebesgue measure of a measurable set $C \subseteq Z$) and $\varepsilon > 0$, we can find $M_{\varepsilon} > 0$ such that for all $|r| \geq M_{\varepsilon}$ we have $|f_+(z) - \frac{f_{1,2}(z,r)}{|r|^{\theta-2}r} | \leq \varepsilon$. Then, if $x_n(z) \rightarrow +\infty$, we have

$$
\frac{1}{|x_n(z)|^\theta} F(z, x_n(z))dz \geq \frac{1}{|x_n(z)|^\theta} F(z, M_\varepsilon)dz \n+ \frac{1}{|x_n(z)|^\theta} \int_{M_\varepsilon}^{x_n(z)} (f_+(z)|r|^{\theta-2}r - \varepsilon|r|^{\theta-2}r)dr \n= \frac{1}{|x_n(z)|^\theta} \eta(z) + \frac{|x_n(z)|^\theta - M_\varepsilon^\theta}{\theta |x_n(z)|^\theta} (f_+(z) - \varepsilon)
$$

for some $\eta \in L^1(Z)$. It follows that

$$
\liminf_{n \to \infty} \frac{F(z, x_n(z))}{|x_n(z)|^{\theta}} \ge \frac{1}{\theta} (f_+(z) - \varepsilon)
$$
\n(10)

Similarly we obtain that

$$
\limsup_{n \to \infty} \frac{F(z, x_n(z))}{|x_n(z)|^{\theta}} \le \frac{1}{\theta} (f_+(z) + \varepsilon)
$$
\n(11)

From (10) and (11) and since $\varepsilon > 0$ and $z \in Z \setminus N$ were arbitrary, we infer that

$$
\frac{F(z, x_n(z))}{|x_n(z)|^{\theta}} \to \frac{1}{\theta} f_+(z)
$$
 a.e. on Z as $n \to \infty$

whence

$$
\int_{Z} \frac{F(z, x_n(z))}{\|x_n\|^{\theta}} dz = \int_{Z} \frac{F(z, x_n(z))}{\|x_n(z)\|^{\theta}} \frac{|x_n(z)|^{\theta}}{\|x_n\|^{\theta}} dz
$$
\n
$$
= \int_{Z} \frac{F(z, x_n(z))}{\|x_n(z)\|^{\theta}} |y_n(z)|^{\theta} dz \to \xi^{\theta} \int_{Z} \frac{1}{\theta} f_{+}(z) \text{ as } n \to \infty
$$
\n(12)

Thus by passing to the limit in (9), we obtain
denote
$$
(1 - \frac{p}{\theta})\xi^{\theta}\int_Z f_+(z) \ge 0,
$$

a contradiction to hypothesis $H(f)$ (ii) (recall $p > \theta$). If $x_n(z) \to -\infty$, with similar arguments as above we show that

$$
\int_Z \frac{F(z, x_n(z))}{\|x_n\|^{\theta}} dz \to \xi^{\theta} \int_Z \frac{1}{\theta} f_+(z) \text{ as } n \to \infty.
$$

Therefore, it follows that $\{x_n\} \subseteq W^{1,p}(Z)$ is bounded. Hence we may assume that $x_n \stackrel{w}{\to} x$ in $W^{1,p}(Z), x_n \to x$ in $L^p(Z), x_n(z) \to x(z)$ a.e. on Z as $n \to \infty$ and $|x_n(z)| \leq k(z)$ a.e. on *Z* with $k \in L^p(Z)$. Note that *K* is closed and convex so it is weakly closed; thus $x \in K$.

So we have

have
\n
$$
-\varepsilon_n \|x - x_n\| \le \langle Ax_n, x - x_n \rangle - \int_Z v_n(z)(x - x_n(z))dz
$$

with $v_n(z) \in [f_1(z, x_n(z)), f_2(z, x_n(z))]$ and $A: W^{1,p}(Z) \to W^{1,p}(Z)^*$ such that $\langle Ax, y \rangle = \int_{Z} (||Dx(z)||^{p-2} (Dx(z), Dy(z))_{R^N} dz$. But $x_n \stackrel{w}{\to} x$ in $W^{1,p}(Z)$, so $x_n \to x$ in $L^p(Z)$ and $x_n(z) \to x(z)$ a.e. on *Z* by virtue of the compactionembedding $W^{1,p}(Z) \subseteq L^p(Z)$. Then we have that $\limsup \langle Ax_n, x_n - x \rangle = 0$ (note that v_n is bounded). By virtue of the inequality (5) we have that $Dx_n \to$ *Dx* in $L^p(Z)$. So we have $x_n \to x$ in $W^{1,p}(Z)$. The claim is proved.

Now let $W^{1,p}(Z) = X_1 \oplus X_2$ with $X_1 = \mathbb{R}$ and $X_2 = \{y \in W^{1,p}(Z) :$ $\int_Z y(z) dz = 0$. For every $\xi \geq 0$ we have

$$
R(\xi) = \Phi(\xi) + I_K(\xi) = -\int_Z F(z,\xi)dz.
$$

By virtue of hypothesis $H(f)_2$ (ii) we conclude that $R(\xi) \to -\infty$ as $\xi \to \infty$. On the other hand for $y \in X_2$, we have

$$
R(y) \ge \frac{1}{p} \|Dy\|_p^p - \int_Z F(z, y(z))dz \quad \text{(since } I_K(y) \ge 0)
$$

$$
\ge \frac{1}{p} \|Dy\|_p^p - c_2 \|y\|_p - c_3 \|y\|_p^{\theta}
$$

for some c_2 , $c_3 > 0$ (since $\theta < p$, see **H**(f)₃ (i))

From the Poincare-Wirtinger inequality we know that $\|Dy\|_p$ is an equivalent norm on *X2.* So we have

$$
R(y) \ge \frac{1}{p} \|Dy\|_p^p - c_4 \|Dy\|_p - c_5 \|Dy\|_p^{\theta}
$$

for some $c_4, c_5 > 0$. So, $R(\cdot)$ is coercive on X_2 (recall $\theta < p$) hence, bounded below on *X2.*

In order to use the mountain-pass theorem it remains to show that there exists $\rho > 0$ such that for $||x|| = \rho$ we have that $R(x) \ge a > 0$. In fact, we will show that for every sequence $\{x_n\} \subseteq W^{1,p}(Z)$ with $||x_n|| = \rho_n \downarrow 0$ we have that $R(x_n) > 0$. Indeed, suppose not. Then there exists some sequence $\{x_n\}$ such that $R(x_n) \leq 0$. Thus, we have

$$
\frac{1}{p} \|Dx_n\|_p^p \le \int_Z F(z, x_n(z)) dz.
$$

Recall that $I_K \geq 0$. Divide this inequality with $||x_n||^p$. Let $y_n(z) = \frac{x_n(z)}{||x_n||}$. Then we have

$$
||Dy_n||_p^p \le \int_Z p \frac{F(z, x_n(z))}{||x_n||^p} dz.
$$

From $H(f)$ (iii) we have that for almost all $z \in Z$ for any $\varepsilon > 0$ we can find $\delta > 0$ such that for $|x| \leq \delta$ we have

$$
pF(z, x) \le (h(z) + \varepsilon)|x|^p.
$$

On the other hand, for almost all $z \in Z$ and all $|x| \geq \delta$ we have

$$
p|F(z,x)| \le c_1|x| + c_2|x|^{\theta} + c_3 \le c_1|x|^p + c_2|x|^{p^*} + c_4.
$$

Thus we can always find $\gamma > 0$ such that $p|F(z, x)| \leq (h(z) + \varepsilon)|x|^p + \gamma |x|^{p^*}$ for all $x \in R$. Indeed, choose $\gamma \geq c_2 + \frac{c_4}{|\delta|p^*} + |h(z) + \varepsilon - c_1| |\delta|^{p-p^*}$. Therefore we obtain

$$
||Dy_n||_p^p \le \int_Z (h(z) + \varepsilon) |y_n(z)|^p dz + \gamma \int_Z \frac{|x_n(z)|^{p^*}}{||x_n||^p} dz
$$

\n
$$
\le \int_Z (h(z) + \varepsilon) |y_n(z)|^p dz + \gamma_1 ||x_n||^{p^* - p}.
$$
\n(13)

Here we have used the fact that $W^{1,p}(Z)$ embeds continuously in $L^{p^*}(Z)$. So we obtain

$$
0 \leq \|Dy_n\|_p^p \leq \varepsilon \|y_n\|_p^p + \gamma_1 \|x_n\|_p^{p^*-p} \text{ recall that } h(z) \leq 0.
$$

Therefore in the limit we have that $||Dy_n||_p \to 0$. Recall that $y_n \to y$ weakly in $W^{1,p}(Z)$. So $||Dy||_p \le \liminf ||Dy_n||_p \le \limsup ||Dy_n||_p \to 0$. So $||Dy||_p = 0$, thus $y = \xi \in \mathbb{R}$. Note that $Dy_n \to Dy$ weakly in $L^p(Z)$ and $||Dy_n||_p \to ||Dy||_p$ so $y_n \to y$ in $W^{1,p}(Z)$. Since $||y_n|| = 1$ we have that $||y|| = 1$ so $\xi \neq 0$. Suppose

that
$$
\xi > 0
$$
. Going back to (13) we have
\n
$$
0 \le \int_Z (h(z) + \varepsilon) y_n^p(z) dz + \gamma_1 \|x_n\|^{p^* - p}
$$

In the limit we have

it we have
\n
$$
0 \le \int_Z (h(z) + \varepsilon) \xi^p dz \le \varepsilon \xi^p |Z| \text{ recall that } h(z) \le 0.
$$

Thus we obtain that $\int_Z h(z) \xi^p dz = 0$. But this is a contradiction. The same holds when $\xi < 0$. So the claim is proved. Now, by mountain pass theorem we have that there exists $x \in W^{1,p}(Z)$ such that

$$
\Phi^{o}(x; y - x) + \psi(y) - \psi(x) \ge 0
$$

for all $y \in W^{1,p}(Z)$. Choose $y = x + tv$ with $v \in K$. Dividing by $t > 0$ we have

in the limit
\n
$$
\int_{Z} F^{o}(z, x(z); v(z))dz + \langle Ax, v \rangle \ge \Phi^{o}(x; v) + \langle Ax, v \rangle \ge 0
$$

for all $v \in K$.

Remark 1. Note that if $K = W^{1,p}(Z)$ then from above we have that $-Ax \in$ $\partial \Phi(x)$ and the subdifferential is in the sense of Clarke.

References

- [1] K. C. CHANG, *Variational methods for non-differentiable functionals and their applications to partial differential equations,* J. Math. Anal. Appl. 80 (1981), 102-129.
- [2] F. CLARKE, *Optimization and Nonsmooth Analysis,* Wiley, New York, 1983.
- [3J D. G. DE FIGUEIREDO, *Lectures on the Ekeland Variational Principle with Applications and Detours,* Tata Institute of Fundamental Research, Springer, Bombay, 1989.
- [4J D. G. COSTA-J. V. GONCALVES, *Critical point theory for nondifferentiable functionals and applications,* Journal of Math. Anal. Appl. 153 (1990), 470-485.
- [5J S. Hu & N.S. PAPAGEORGIOU, *Handbook of Multivalued Analysis Volume I: Theory,* Kluwer Academic Publishers, Dordrecht, 1997.
- [6] S. Hu & N.S. PAPAGEORGIOU, *Handbook of Multivalued Analysis Volume II: Applications,* Kluwer Academic Publishers, Dordrecht, 2000.
- [7J N. KENMOCHI, *Pseudomonotone operators and nonlinear elliptic boundary value prob*lems, J. Math. Soc. Japan 27 (1975), No. 1, 121-149.
- [8J D. MOTREANU & P. D. PANAGIOTOPOULOS, *A Minimax Approach to the eigenvalue Problem of Hemivariational Inequalities and Applications,* Applicable Analysis, 58 (1995), 53-76.
- [9] D. Motreanu & P. D. Panagiotopoulos: *Minimax Theorems and Qualitative Properties of Hemivariational Inequalities,* Kluwer, Dordrecht, 1999.
- [10J R. SHOWALTER, *Monotone Operators in Banach Space and Nonlinear Partial Differential Equations* Math. Surveys, vol. 49, AMS, Providence, R. 1., 1997.
- [l1J A. SZULKIN, *Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems,* Annales Inst. H. Poincare-Analyse Nonlineaire 3 (1986), 77-109.

(Recibido en febrero de 2002)

DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE UNIVERSITY OF THE AEGEAN KARLOVASSI, 83200 SAMOS, GREECE

e-mail: nick@aegean.gr

⊺√