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ABSTRACT. In this paper we consider a class of variational-hemivariational
inequalities. We use the critical point theory for nonsmooth functionals due
to Motreanu-Panagiotopoulos [9]. We derive_ nontrivial solutions using the
mountain-pass theorem.
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1. Introduction

Our starting point is the paper of Motreanu-Panagiotopoulos [8] for hemivari-
ational inequalities. Namely, the authors there want to answer the following
question:

Find u E X and .\ E IRsatisfying the inequality

a(u, v) + l f(u, v)dx 2' .\(u, v) for all v E X

where j : IR ----+ IR is a locally Lipschitz function and aC') a continuous sym-
metric bilinear form.

1This work was supported partially by a postdoctoral scholarship from the State Schol-
arship Foundation (LK.Y.) of Greece.
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Our goal here is to have some existence results for such problems with the
solution being at a closed, convex subset K of W1,P(Z) and in our case the dif-
ferential operator is the p-Laplacian. Moreover, we seek for nontrivial solutions
and for that purpose we use the mountain-pass theorem.

The problem under consideration is the following:
Let Z <:;; lRN be a bounded domain with a C1-boundary f. Find x E W1,P(Z)

such thatl (IIDx(z)IIP-
2(Dx(z), DY(Z))RNdz + l FO(z, x(z); y(z))dz ~ 0 (1)

for all y E K. Here K = {x E W1,P(Z) : x(z) ~ O}. Clearly, K is closed
and convex on W1,P(Z) and finally F : Z x lR ----+ lR is the potential of some
f:ZxlR----+lR.

2. Preliminaries

Let X be a real Banach space and Y be a subset of X. A function f :Y ----+ lR is
said to satisfy a Lipschitz condition (on Y) provided that, for some nonnegative
scalar K, one has

If(Y) - f(x)1 :::;KIIY - z]
for all points x, Y E Y. Let f be Lipschitz near a given point x, and let v be
any other vector in X. The generalized directional derivative of f at x in the
direction v, denoted by t" (x; v) is defined as follows:

jO(x; v) = lim sup f(y + tv) - f(y)
u-:» t
'10

where y is a vector in X and t a positive scalar. If f is Lipschitz of rank K near
x then the function v ----+ i" (x; v) is finite, positively homogeneous, subadditive
and satisfies IjO(x; v)1 :::;Kllvll. In addition jO satisfies jO(x; -v) = (- f)°(x; v).
Now we are ready to introduce the generalized gradient which denoted by 8 f (x)
as follows:

8f(x) = {w E X* : jO(x; v) ~ (w, v) for all v E X}

Some basic properties of the generalized gradient of locally Lipschitz functionals
are the following:

(a) 8f(x) is a nonempty, convex, weakly compact subset of X* and Ilwll* :::;K
for every win 8f(x).

(b) For every v in X, one has

r(x; v) = max{ (w, v) : w E d8f(x)}.

If h, 12 are locally Lipschitz functions then

8(h + h) <:;; 8h + 8h
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Moreover, (x, v) ----> r (x; v) is upper semi continuous and as function of valone,
is Lipschitz of rank K on X. .

Let us mention the mean-value theorem of Lebourg.

Theorem 1 (Lebourg). Let x and y be points in X, and suppose that j is
Lipschitz on an open set containing the line segment [x, y]. Then there exists
a point U E (x, y) such that

f(y) - f(x) E (8j(u),y - x). (2)

Let R : X ----> ~ U {oo} be such that R = <I> + 'IjJ where <I> : X ----> ~ be a
locally Lipschitz functional while 'IjJ : X ----> ~U { +oo} is a lower semicontinuous,
convex but not defined everywhere functional.

A point x in X is said to be a critical point of R if x E D( 'IjJ) and if it satisfies
the inequality

<I>°(Xi Y - x) + 'IjJ(y) - 'IjJ(x) ;::: 0 for every y E X. (3)

Definition 1. We say that R : X ----> ~ U {oo} with R = <I> + 'IjJ satisfies HI is
<I> is locally Lipschitz and 'IjJ proper, convex and lower semicontinuous.

Let us now state the formulation of our (PS) condition.

(PS) If {Xn} is a sequence such that R(xn) ----> c and

<I>°(Xni y - Xn) + 'IjJ(y) - 'IjJ(Xn) ;::: -Enlry - xnll for every y E X. (4)

where En ----> 0, then {xn} has a convergent subsequence.

The following theorem is a mountain-pass theorem for functionals which
satisfies condition HI and (PS) (see Motreanu-Panagiotopoulos [9], Cor. 3.2).

Theorem 2. Iff: X ----> ~ satisfies HI and (PS) on the reflexive Banach space
X and the hypotheses

(i) there exist positive constants P and a such that

j(u) ;::: a for all x E X with Ilxll = Pi

(ii) f(O) = 0 and there a point e E X such that

IleII > P and j(e) :S 0,

then there exists a critical value c ;:::a of j determined -by

c = inf max f(g(t))
gEG tE[C,I]

where

G = {g E C([O, l]'X) : g(O) = O,g(l) = e}
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In what follows we will use the well-known inequality
N

2::(aj(TJ) - aj(TJ'))(TJj - TJ~) ~ CITJ - TJ'IP,

j=1

(5)

3. Hemivariational inequalities with constraints

Let! : Z x lR ----t lR. Then we introduce the following functions:

h(z,x) = liminf !(z,x'), h(z,x) = limsup!(z,x').
x' ----+x x'-tx

In this section we state and prove an existence result for a variational-hemi-
variational inequality. So our hypotheses on the data are:
H'(f') : h .[z : Z x lR ----t lR is N-measurable (i.e. if x(z) is measurable then so
is !r,2(Z, x(z));

(i) for almost all z E Z and all x E lR, I!(z, x)1 ::; a(z) + clxllJ-1 with
a E LOO(Z),c > 0,1::; e < p;

(ii) uniformly for almost all z E Z we have that ~;19(z~:)----t 1+(z) as x ----t 00

where 1+ E £1(Z), 1+ ~ 0 with strict inequality on a set of positive
Lebesgue measure.

(iii) Uniformly for almost all z E Z we have that

lim sup p~(~' x) ::; h(z),
X--;O x P

with h E £OO(Z) and h(z) ::; 0 with strict inequality on a set of positive
measure. Here, by F(z, x) we denote the integral of [, that is F(z, x) =
fox !(z, r)dr.

Theorem 3. If R(f) holds then problem (1) has a nontrivial solution x E K.

Proof. Let <I> : W1,p (Z) ----t lRand 7jJ : W1,p (Z) ----t lRU {oo} be defined such that

<I>(x)= - r F(z,x(z))dz and 7jJ(x) = ~IIDxll~ +h(x).Jz p

In the definition of <I>(-), F(z, x) = fox !(z, r)dr and I« is the indicator
function of K = {x E W1,P(Z) : x(z) ~ 0 a.e. on Z}. It is easy to see that K
is closed, convex and thus IK is convex and lower semicontinuous.

Set R = <I> + 7jJ. Recall that <I> is locally Lipschitz and 7jJ is lower semicon-
tinuous, proper and convex.

Claim 1 R(-) satisfies the (PS)-condition.
Let {Xn}n2':1 <;;;; W1,P(Z) such that R(xn) ----t c when n ----t 00 and

<I>°(xn; x - xn) + 7jJ(x) -7jJ(xn) ~ -cnllx - xnll
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with En ---+ O. Note that {xn} E K because IR(xn)1 :::; M. In the above
inequality choose x = Xn + bXn and then divide with b. Also,

1 1 1-IIDxnll~ - -IIDxn + bDxnl1 = -IIDxnll~(1- (1+ bY)·
p p p

So if we divide this with 15 and let 15 ---+ 0 we have that is equal with -IIDxnll~·
Finally there exists vn(z) E [- !I(z, xn(z)), - h(z, xn(z))] such that (vn,xn) =
<I> °(xn; xn). So, it follows that

~ -vnxn(z)dz - IIDxnll~ ~ -Enilxnll·

Suppose that {z.,} <:;; WI,P(Z) was unbounded. Then (at least for a subse-
quence), we may assume that Ilxnll ---+ 00. Let Yn = II~~II'n ~ 1. By passing to
a subsequence if necessary, we may assume that

Yn ~ Y in WI,P(Z), Yn ---+ Y in U(Z), Yn(z) ---+ y(z) a.e. onZ as n ---+ 00

and IYn(z)1 :::; k(z) a.e. on Z with k E U(Z).
Recall that from the choice of the sequence {xn} we have [R(xn)1 :::;MI for

some MI > 0 and all n ~ 1, thus

~IIDxnll~ - r F(z,xn(z))dz:::; MI,
p Jz

(since Itc ~ 0). Dividing by IlxnllP we obtain_

~ liD liP- r F(z, xn(z)) dz < MI
p Ynp Jz Ilxnllp -llxnllp' (6)

But we have

I
r F(z, xn(z)) I 1 r r1xn(zll

Jz Ilxnllp dz:::; Ilxnllp JzJo If(z,r)ldrdz

1 C e
< IlxnliP(llalloollxnll + ellxnll ) ---+ 0

So by passing to the limit as n ---+ 00 in (6), we obtain

. 1
lim -IIDYnll~ = 0

n-+oo p

from which it follows IIDyllp = 0 (recall that DYn ~ Dy in U(Z, RN) as
n ---+ (0) and consequently, Y = ~E R.

Note that Yn ---+ ~ in WI,P(Z) and since IIYnl1= 1, n ~ 1 we infer that ~ -=I- O.
We deduce that Ixn(z)1 ---+ +00 a.e. on Z as n ---+ 00.

From the choice of the sequence {xn} <:;; WI,P(Z), we have

as n ---+ 00.

(7)
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and

IIDXnll~ - p ~ F(z, xn(z))dz ~ -pMl·

Adding (7) and (8), we obtain

~ (-vn(z))Xn(z) - pF(z, xn(z)))dz ~ -pMl - cnllxnll.

Dividing this inequality by Ilxn liewe haver -vn(z) r pF(z, xn(z)) 1 Cn

Jz Ilxnlle-l Yn(z)dz - Jz Ilxnlle dz ~ -llxnllePMl - Ilxnlle-l
Note thatr -vn(z) r -vn(z) e IJ j'Jz Ilxnlle-l Yn(z)dz = Jz Ixn(z)le-2xn(z) IYn(z)1 dz --+ I~I z !+(z)dz
as n --+ 00.

(8)

(9)

Also by virtue of hypothesis H(f) (ii), given z E Z" N,INI = 0 (ICI
denotes the Lebesgue measure of a measurable set C c:;; Z) and e > 0, we can
find Me > 0 such that for all Ir I ~ Me we have If + (z) - ~~129~;:)I :s; c. Then, if
xn(z) --+ +00, we have

1
Ixn(z)lO F(z, xn(z))dz >

1
Ixn(z)lO F(z, Me)dz

1 rn(z)
+ Ixn(z)lO J ME (!+(z) Irle-2r - clrle-2r)dr

1 Ixn(zW - M:
Ixn(z)101](z) + elxn(z)lO (!+(z) - 0:)

for some 1] E £1 (Z). It follows that

. . F(z, xn(z)) 1
lim inf I ()IO ~ -e(!+(z) -0:)
n--+oo Xn Z

Similarly we obtain that

. F(z, xn(z)) 1
lim sup I (-)10 < -e(!+(z) +0:)
n---+oo Xn .c

From (10) and (11) and since 0: > 0 and z E Z -, N were arbitrary, we infer
that

(10)

(11)

F(z, xn(z)) 1
Ixn(z)lO --+ e!+(z) a.e. on Z as n --+ 00

whence
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Thus by passing to the limit in (9), we obtain

(1 - ~)~(I l !+(Z) ~ 0,

a contradiction to hypothesis H(f) (ii) (recall p > e ). If xn(z) ---+ -00, with
similar arguments as above we show thatr F(z, xn(z)) (I r 1

Jz Ilxnll(l dz ---+ ~ Jz g!+(z) as n ---+ 00.

Therefore, it follows that {xn} S;; WI,P(Z) is bounded. Hence we may assume
that Xn ~ x in WI,P(Z),xn ---+ x in U(Z),xn(z) ---+ x(z) a.e. on Z as n ---+ 00

and Ixn(z)1 ::; k(z) a.e. on Z with k E U(Z). Note that K is closed and convex
so it is weakly closed; thus x E K.

So we have

-Enllx - xnll ::; (Axn, X - xn) -l vn(z)(x - xn(z))dz

with vn(z) E l!r(z, xn(z)), h(z, xn(z))] and A : WI,P(Z) ---+ WI,P(Z)* such
that (Ax,y) = Jz(IIDx(z)IIP-2(Dx(z), DY(Z))RNdz. But Xn ~ x in WI,P(Z),
so Xn ---+ x in LP (Z) and Xn (z) ---+ x( z) a.e. on Z by virtue of the compact
embedding WI,P(Z) S;; U(Z). Then we have that limsup(Axn, Xn - x) = 0
(note that Vn is bounded). By virtue of the inequality (5) we have that DXn ---+

Dx in LP(Z). So we have Xn ---+ x in W1,P(Z). The claim is proved.
Now let WI,P(Z) = Xl EBX2 with Xl == lR and X2 = {y E WI,P(Z) :

Jz y(z)dz = O}. For every ~ ~ 0 we have

R(~) = 1>(~) + Ix (0 = -l F(z, Odz.

By virtue of hypothesis H(fh (ii) we conclude that R(~) ---+ -00 as ~ ---+ 00.

On the other hand for y E X2, we have

R(y) ~ ~IIDYII~- r F(z,y(z))dz (since Ix(y) ~ 0)
p Jz
1

~ -IIDyll~ - c211yllp~ c311yll~
p

for some C2, C3> 0 (since e < p, see H(fh (i))
From the Poincare- Wirtinger inequality we know that IIDyllp is an equivalent

norm on X2. So we have
1

R(y) ~ -IIDyll~ - c411Dyilp- c511Dyll~
p

for some C4,CS > O. So, R(·) is coercive on X2 (recall e < p) hence, bounded
below on X2.

In order to use the mountain-pass theorem it remains to show that there
exists p > 0 such that for Ilxll= p we have that R(x) ~ a > O. In fact, we will
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show that for every sequence {Xn} <;;; Wl,P(Z) with Ilxnll = Pn lOwe have that
R(xn) > O. Indeed, suppose not. Then there exists some sequence {xn} such
that R(xn) < O. Thus, we have

~IIDxnll~:::; r F(z, xn(z))dz.
P Jz

Recall that I« ~ O. Divide this inequality with IlxnllP. Let Yn(z) = II~~I?'
Then we have

liD liP < r F(z, xn(z)) d
Yn P - Jzp Ilxnllp z.

From H(f) (iii) we have that for almost all z E Z for any e > 0 we can find
e5> 0 such that for [z] :::;e5we have

pF(z, x) :::; (h(z) + c)lx[P.

On the other hand, for almost all z E Z and all Ixi ~ e5we have

p[F(z, x)1 :::;cllxl + c21xlo + C3 :::; cllxlP + c2lxlP' + C4·

Thus we can always find, > 0 such that pIF(z, x)1 :::; (h(z) + c)lxlP + ,lxlP'
for all x E R. Indeed, choose, ~ C2 + lolt. + Ih(z) + E - cllle5IP-P•. Therefore,
we obtain

IIDYnll~ < l (h(z) +c)IYn(z)fPdz +, llxll;=~r dz

< l (h(z) + c)IYn(z)fPdz + ,rIIxnIIP·-p.

Here we have used the fact that Wl,P(Z) embeds continuously in LP' (Z). So
we obtain

(13)

o < IIDYnll~ < cllYnll~ + ,rIIxnIIP'-P recall that h(z) < O.

Therefore in the limit we have that IIDYnllp ---7 O. Recall that Yn ---7 Y weakly
in Wl,P(Z). So IIDyllp :::;liminf IIDYnllp :::; lim sup IIDYnllp ---7 O. So IIDyllp = 0, ,-
thus Y = ~E R Note that DYn ---7 Dy weakly in LP(Z) and IIDYnllp ---7 IIDyllp
so Yn ---7 Y in Wl,P(Z). Since llYnII= 1 we have that Ilyll = 1 so ~ i- O. Suppose
that ~ > O. Going back to (13) we have

0:::; l (h(z) + c)y~(z)dz + ,rIIxnIIP·-p.

In the limit we have

0:::; l (h(z) + c)edz < celZI recall that h(z) < O.

Thus we obtain that Jz h(z)~Pdz = O. But this is a contradiction. The same
holds when ~ < O. So the claim is proved. Now, by mountain pass theorem we
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have that there exists x E W1,P(Z) such that

<I>°(x; y - x) + 1jJ(y) -1jJ(x) 2: 0

for all y E W1,P(Z). Choose y = x + tv with v E K. Dividing by t > 0 we have
in the limitl FO(z, x(z); v(z))dz + (Ax, v) 2: <I>°(x; v) + (Ax, v) 2: 0

for all v E K.

Remark 1. Note that if K = W1,P(Z) then from above we have that -Ax E

8<I>(x) and the subdifferential is in the sense of Clarke.
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